
IPSJ SIG Technical Report

Space-Efficient Algorithms for Longest Increasing
Subsequence (Extended Abstract)

Masashi Kiyomi1 Hirotaka Ono2 Yota Otachi3 Pascal Schweitzer4 Jun Tarui5

Abstract: Let π be a permutation of {1, . . . , n}. For 1 ≤ i1 < · · · < iℓ ≤ n, a subsequence π⟨i1, . . . , iℓ⟩ of π is the
sequence ⟨π(i1), . . . , π(iℓ)⟩. A subsequence π⟨i1, . . . , iℓ⟩ is an increasing subsequence of π if π(i1) < · · · < π(iℓ). In
this extended abstract, we present space-efficient algorithms for finding a longest increasing subsequence of a given
permutation. Using

√
n words of additional working space, our algorithm solves the problem in O(n1.5 log2 n) time. It

runs in O(n1.5 log n) time when we need only the length of a longest increasing subsequence.

1. Introduction
Given a sequence of ordered (totally or partially) elements, the

problem of finding a longest increasing subsequence is studied
in many settings (see [8] and the references therein) and known
to have an O(n log n)-time deterministic exact algorithm that uses
additional space of O(n log n) bits [1], [4], [10], where n is the
length of the sequence.

In this paper, we present the first space-efficient deterministic
exact algorithm for the longest increasing subsequence problem
(LIS). We say that an algorithm for LIS is space-efficient if it
uses o(n) bits and runs in polynomial time. We ask for o(n) bits
since an O(n2)-time algorithm with O(n) bits can be obtained by
slightly modifying a known algorithm. Also, we can observe that
a Savitch type algorithm [9] for this problem uses O(log2 n) bits
and runs in quasipolynomial time. We deeply study the inter-
nal states of the known algorithm and show that by only keeping
some part of a state we can simulate it. For any

√
n ≤ s ≤ n, our

algorithm for computing the length of a longest increasing subse-
quence uses O(s log n) bits and runs in O(1

s n2 log n) time. When
s = n our algorithm is equivalent to the known algorithm, and
when s =

√
n it uses O(

√
n log n) bits and runs in O(n1.5 log n)

time. To find an actual subsequence, one can run our algorithm n
times since in each run one can find the last element in a longest
increasing subsequence. We show that we can do much better
and present an O(1

s n2 log2 n)-time algorithm. Finally we show
that the running time of our algorithm (for the length) is best pos-
sible as a comparison-based multi-pass algorithm. An algorithm

1 Yokohama City University, Yokohama, Japan.
masashi@yokohama-cu.ac.jp

2 Nagoya University, Nagoya, Japan.
ono@i.nagoya-u.ac.jp

3 Kumamoto University, Kumamoto, Japan.
otachi@cs.kumamoto-u.ac.jp

4 RWTH Aachen University, Aachen, Germany.
schweitzer@informatik.rwth-aachen.de

5 The University of Electro-Communications, Tokyo, Japan.
tarui@ice.uec.ac.jp

is a multi-pass algorithm if it can read the input only from left to
right and can repeat it multiple times.

For the sake of simplicity, we assume in the rest of the paper
that the input is a permutation of {1, . . . , n} rather than a gen-
eral sequence over an ordered alphabet. Since our algorithms are
comparison based, we can easily modify the algorithms to work
for general sequences with possibly repeated entries. There are
O(n log log n)-time algorithms known for permutations [2], [6].
However, those algorithms are not comparison-based and thus
cannot be applied to the general case. It is known that any
comparison-based algorithm needs Ω(n log n) comparisons even
for only computing the length of a longest increasing subse-
quence [4], [7].

In this extended abstract, most of the proofs are omitted. A full
version will be available online soon.

2. Preliminaries
Let π be a permutation of {1, . . . , n}. For 1 ≤ i1 < · · · < iℓ ≤ n,

a subsequence π⟨i1, . . . , iℓ⟩ of π is the sequence ⟨π(i1), . . . , π(iℓ)⟩.
A subsequence π⟨i1, . . . , iℓ⟩ is an increasing subsequence of π if
π(i1) < · · · < π(iℓ). A decreasing subsequence is defined anal-
ogously. By lis(π), we denote the length of a longest increasing
subsequence of π.

For example, consider a permutation π1 = 284951763*1 of
{1, . . . , 9}. It has an increasing subsequence π1⟨1, 3, 5, 8⟩ =
⟨2, 4, 5, 6⟩. Since there is no increasing subsequence of π1 with
length 5 or more, we have lis(π1) = 4.

In the computational model in this paper, the input is in a read-
only memory and the output must be produced on a write-only
memory. We can use an additional memory that is readable and
writable. Our goal is to minimize the size of the additional mem-
ory while keeping the running time fast. In the best case, we hope
to have a time/space tread-off. For example, if we have a tradi-
tional algorithm of running time f (n), then we want to have an

*1 By this sloppy notation, we mean π1(1) = 2, π1(2) = 8, π1(3) = 4, and
so on.

c⃝ 2017 Information Processing Society of Japan 1

Vol.2017-AL-164 No.2
2017/9/19

IPSJ SIG Technical Report

f (n)/g(s)-time and s-space algorithm for some (good) function
g.

3. Patience Sorting
Since all our algorithms are based on the classical algorithm

Patience Sorting, here we describe it in detail and recall some
important properties of its internal states.

Given a permutation π of {1, . . . , n}, Patience Sorting computes
lis(π) in O(n log n) time using O(n log n) bits working space. See
Algorithm 1.

Algorithm 1 Patience Sorting
1: set ℓ := 0 and initialize the dummy pile P0 with the single element −∞
2: for 1 ≤ i ≤ n do
3: if π(i) > top(Pℓ) then
4: increment ℓ, let Pℓ to be a new empty pile, and set j := ℓ
5: else
6: set j to be the smallest index with π(i) ≤ top(P j)

7: push π(i) to P j.

8: return ℓ

Now use the permutation π1 = 284951763 again for an ex-
ample. The following shows the execution of Algorithm 1 on
π1. The red elements in the final piles form a longest increasing
subsequence π1⟨1, 3, 5, 8⟩ = ⟨2, 4, 5, 6⟩, which can be obtained as
described above.

2
P1

2 8
P1 P2

4
2 8
P1 P2

4
2 8 9
P1 P2 P3

4 5
2 8 9
P1 P2 P3

1 4 5
2 8 9
P1 P2 P3

1 4 5
2 8 9 7
P1 P2 P3 P4

1 4 5 6
2 8 9 7
P1 P2 P3 P4

3
1 4 5 6
2 8 9 7
P1 P2 P3 P4

3.1 Time and space complexity
To see that Patience Sorting runs in O(n log n) time, observe

that at any point of the execution, the top elements of the piles
are ordered increasingly from left to right (see [3]). Namely,
top(Pk) ≤ top(Pk′) for 1 ≤ k < k′ ≤ ℓ. Thus the 6th step in
Algorithm 1 can be done in O(log n) time by binary search. Note
that to compute lis(π), it suffices to remember the top elements of
the piles. However, the algorithm still uses Ω(n log n) bits when
lis(π) ∈ Ω(n).

3.2 Correctness
First observe that each pile is a decreasing subsection of π.

Thus, ℓ is an upper bound of lis(π).
If we keep all elements in the piles, we can compute a longest

increasing subsequence, in the reversed order, as follows [1]:
(1) Pick any element of Pℓ;
(2) For 1 ≤ i < ℓ, let π(h) be the element picked from Pi+1. Pick

the element π(h′) that was on the top of Pi when π(h) had
been pushed to Pi+1. Clearly, h′ < h and π(h′) < π(h′).

3.3 An O(n)-space O(n2)-time algorithm
Here we observe that lis(π) can be computed with O(n) bits of

additional space. The following facts guarantee the correctness
of Algorithm 2.
Proposition 3.1 ([3]). For each element π(i) in P j, the longest
increasing subsequence ending at π(i) has length j.
Proposition 3.2 ([3]). If the elements included in P1, . . . , Pk are
known, the next pile Pk+1 can be constructed by greedily taking
unused elements to form a maximal decreasing subsequence.

Algorithm 2 Computing lis(π) with O(n) bits
1: set ℓ := 0 and mark all elements in π as “unused.”
2: while there is an “unused” element in π do
3: increment ℓ and set t := ∞.
4: for 1 ≤ i ≤ n do ▷ this for-loop constructs Pℓ implicitly
5: if π(i) is unused and π(i) < t then
6: mark π(i) as “used” and set t := π(i). ▷ t is the current top of

Pℓ
7: return ℓ

Theorem 3.3. For a permutation π of {1, . . . , n}, lis(π) can be
computed in O(n2) time using n + O(log n) bits working space.

4. Algorithm for computing the length
In this section, we present our main algorithm that computes

lis(π) with O(s log n) bits and O(1
s n2 log n) time for any

√
n ≤

s ≤ n.
Observation 4.1. Let x be an element of π not included in Pi,
and let y be the smallest element of Pi positioned before x. Then,
x is to the left of Pi if and only if x < y.

Proof. When the algorithm accessed x in the permutation π, the
top element of Pi was y. If x > y, then the algorithm pushed x to
a pile P j with j > i. Assume x < y. In this case, the algorithm
pushed x to a pile P j for some h ≤ i. Since the algorithm did not
push x into Pi, x is to the left of Pi. □

Lemma 4.2. Given Pi and an index j > i, the size |Pk | for all
i+1 ≤ k ≤ j can be computed in O(n log n) time with O(|Pi|+ j−i)
words.

Proof. Recall that Algorithm 1 (Patience Sorting) scans the per-
mutation π from left to right, and put each element to the correct
pile. We still do the same except that we ignore the elements to
the left of Pi and the ones to the right of P j.

To ignore the elements to the left of Pi, we maintain the index
j of Pi that points to the element read most recently in the scan.
When we read a new element x, we have three cases.
• If |Pi| ≥ j + 1 and x = Pi(j + 1), then we just update (incre-

ment) the index j and read the next element.
• Else if x < Pi(j), then x is ignored as it is to the left of Pi.
• Otherwise, we have x ≥ Pi(j). In this case, x is normally

processed.
Ignoring the elements to the right of P j is easier. Let x be the

newly read element.
• If no part of P j is constructed, then x is normally processed.
• Otherwise, we compare x and the current top element y of

P j.
– If x > y, then x is to the right of P j, and thus ignored.
– Otherwise x is normally processed.

c⃝ 2017 Information Processing Society of Japan 2

Vol.2017-AL-164 No.2
2017/9/19

IPSJ SIG Technical Report

By ignoring irrelevant elements as described above, we can run
Patience Sorting only for the piles we need. We only keep the top
elements of the piles and additionally store the size of each pile.
Thus the additional space is as we claimed in the statement of
the lemma. The running times is the same as the one of Patience
Sorting since we only need constant number of additional steps
for each step to ignoring irrelevant elements. □

Lemma 4.3. Given Pi and an index j > i, we can compute P j in
O(n log n) time with O(|Pi| + |P j| + j − i) words.

Proof. The proof is almost equivalent to the one of Lemma 4.2.
We just need to keep all the elements of P j additionally. □

Now we are ready to prove our first main result.
Theorem 4.4. Let s be an integer satisfying

√
n ≤ s ≤ n. Given

a permutation π of {1, . . . , n}, the length of a longest increasing
subsequence, lis(π), can be computed in O(1

s n2 log n) time using
O(s log n) bits of additional space.

Proof. To apply Lemma 4.2 for the first step, we start with a
dummy pile P0 with a dummy entry π(0) = −∞. In the follow-
ing, assume that for some i ≥ 0 we have the pile Pi of size at most
s.

We first compute the size |Pk | for i + 1 ≤ k ≤ i + 2s. During
this process, we may find lis(π) ≤ i + 2s. In such a case we out-
put lis(π) and terminate. Otherwise, we find an index j such that
i + s + 1 ≤ j ≤ i + 2s and |P j| ≤ n/s. Since s ≥

√
n, it holds that

|P j| ≤ n/
√

n =
√

n ≤ s. We then compute P j itself and replace i
with j. We repeat this process until we find lis(π).

Clearly, the additional space used is O(s log n) bits. Each pass
runs in O(n log n) time. There are at most lis(π)/s passes since
each pass makes at least s steps of progress. Since lis(π) ≤ n, the
total running time is O(1

s n2 log n). □

See Algorithm 3 for a pseudocode of the algorithm described
in the proof of Theorem 4.4.

Algorithm 3 Computing lis(π) with O(s log n) bits
1: set ℓ := 0 and initialize the dummy pile P0 with the single element −∞
2: for ever do
3: compute the size of Pi for all ℓ + 1 ≤ i ≤ ℓ + 2s
4: if we find lis(π) ≤ ℓ + 2s then
5: return lis(π)

6: let j be the largest index |P j | ≤ s and ℓ + 1 ≤ j ≤ ℓ + 2s
▷ j ≥ ℓ + s + 1

7: compute P j and set ℓ = j

5. Algorithm for finding an actual longest in-
creasing subsequence

It is easy to modify the algorithm in the previous section in
such a way that it outputs an element of the last pile, which is the
last element of a longest increasing subsequence. Thus we can re-
peat the modified algorithm n times (ignoring the elements larger
than or equal to the one output last) and find an actual longest in-
creasing subsequence.*2 The running time will be O(1

s n3 log n).

*2 This algorithm outputs a longest increasing subsequence in the reversed
order. One can virtually reverse the input and find a longest decreasing

As we claimed before we can do much better. We need only a
log n multiplicative factor instead of n.
Theorem 5.1. Let s be an integer satisfying

√
n ≤ s ≤ n. Given

a permutation π of {1, . . . , n}, a longest increasing subsequence
of π can be found in O(1

s n2 log2 n) time using O(s log n) bits of
additional space.

Here we only give the high level idea. In the algorithm, we first
find the ⌊lis(π)/2⌋th element of a longest increasing subsequence.
This can be done by simultaneously running the algorithm in the
previous section normally and reversely (i.e., finding a longest
decreasing subsequence from right to left). We then divide the
permutation into two parts at the element and recurse. We can
show that the depth of recursion is O(log n) and at each depth
the total running time is O(1

s n2 log n). To remember the current
recursion, we need some additional space, but it is bounded by
O(log2 n) bits.

6. Lower bound for multi-pass algorithms
An algorithm is a multi-pass algorithm if it can access elements

in the input array only by scanning the array from the beginning.
For example, let i be the position of the element we want to read
and j be the current position of the pointer on the input array. If
i ≤ j, we need j − i steps to move the pointer forward to read
the element i. If i > j, we need to scan the input array from the
beginning and need i steps to read the element.

It is easy to see that our algorithm for computing lis(π) is a
multi-pass algorithm. Note that our algorithm for finding an ac-
tual longest increasing subsequence is not a multi-pass algorithm.

The following theorem can be shown by modifying a lower
bound [5] for streaming algorithms computing lis(π).
Theorem 6.1. Given a permutation π of {1, . . . , n}, any multi-
pass algorithm computing lis(π) using b bits takes Ω(n2/b) time.

Thus our multi-pass algorithm has optimal running time up to
a polylog factor of log2 n.

References
[1] D. Aldous and P. Diaconis. Longest increasing subsequences: from

patience sorting to the Baik-Deift-Johansson theorem. Bulletin of the
American Mathematical Society, 36(4):413–432, 1999.

[2] S. Bespamyatnikh and M. Segal. Enumerating longest increasing sub-
sequences and patience sorting. Information Processing Letters, 76(1-
2):7–11, 2000.

[3] A. Burstein and I. Lankham. Combinatorics of patience sorting piles.
Séminaire Lotharingien de Combinatoire, 54A:B54Ab, 2006.

[4] M. L. Fredman. On computing the length of longest increasing subse-
quences. Discrete Mathematics, 11(1):29–35, 1975.

[5] P. Gopalan, T. Jayram, R. Krauthgamer, and R. Kumar. Estimating the
sortedness of a data stream. In SODA, pages 318–327, 2007.

[6] J. W. Hunt and T. G. Szymanski. A fast algorithm for comput-
ing longest common subsequences. Communications of the ACM,
20(5):350–353, 1977.

[7] P. Ramanan. Tight Ω(n lg n) lower bound for finding a longest in-
creasing subsequence. International Journal of Computer Mathemat-
ics, 65(3-4):161–164, 1997.

[8] M. Saks and C. Seshadhri. Space efficient streaming algorithms for
the distance to monotonicity and asymmetric edit distance. In SODA,
pages 1698–1709, 2013.

[9] W. J. Savitch. Relationships between nondeterministic and determin-
istic tape complexities. Journal of computer and system sciences,
4(2):177–192, 1970.

[10] C. Schensted. Longest increasing and decreasing subsequences.
Canad. J. Math, 13(2):179–191, 1961.

subsequence to avoid this inconvenience.

c⃝ 2017 Information Processing Society of Japan 3

Vol.2017-AL-164 No.2
2017/9/19

