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Regular Paper

An Implementation of the Block Householder Method

Hiroshi Murakami†

When large matrix problems are treated, the locality of storage reference is very important.
Usually higher locality of storage reference is attained by means of block algorithms. This
paper introduces an implementation of block Householder transformation based on the block
reflector (Schreiber, 1988) or “GGT ” representation rather than on the method using “WY T ”
representations or compact “WY T ” or “Y TY T ” (Bischof, 1993, etc.). This version of block
Householder transformation can be regarded as a most natural extension of the original non-
blocked Householder transformation, with the matrix elements of the algorithm changed from
numbers to small matrices. Thus, an algorithm that uses the non-blocked version of House-
holder transformation can be converted into the corresponding block algorithm in the most
natural manner. To demonstrate the implementation of the Householder method based on
the block reflector described in this paper, block tridiagonalization of a dense real symmetric
matrix is carried out to calculate the required number of eigenpairs, following the idea of the
two-step reduction method (Bischof, 1996, etc.).

1. Introduction

Large matrix problems usually require large
amounts of storage space, and not all of the
data can be placed in local storage at the same
time. Consequently, most of them must be held
in lower-hierarchy storage that is larger but
takes longer to access. In such cases, blocked
algorithms have the great advantage that they
increase the locality of storage reference and
markedly reduce the data transfer between hi-
erarchies. With high-speed local storage such
as cache memory, even if the storage space is
small, the computation can proceed smoothly
on account of the very high locality of the ref-
erence.

Several block Householder transformation
methods already exists, such as those based on
the “WY T ” representations 1),4),6),7), and com-
pact “WY T ” representation or “Y TY T ” repre-
sentation 15)20),21), for the block reflector or the
“GGT ” representation 14).

WY T representation:
The WY T representation is the aggregation

of the series of ordinary Householder transfor-
mations Qi = I − v(i)(v(i))T , i = 1, · · · , r ∈
Rm×m . The equation Q = Q1Q2 · · ·Qr can be
represented in the matrix form Q = I + WY T ,
where W, Y ∈ Rm×r, and the representation is
computed by using the recurrence relation for
W and Y for increasing r (§5.1.1-5.1.2 of Golub
and van Loan 11)). The calculation of appli-
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cation QA or QAQT is rich in matrix-matrix
multiplications and higher performance is ob-
tained with the level-3 BLAS routines, which
have high locality of memory reference. Note
that aggregated Q is orthogonal but not sym-
metric.

Compact WY T representation:
Similarly, compact WY T representation is

the aggregation of the ordinary Householder
transformations in the form Q = I + Y TY T ,
Y ∈ Rm×r, T ∈ Rr×r, and is upper triangular.
When m� r, the amount of storage needed for
representation is less than that for the original
WY T representation, since W need not be held
and T is small.

Block reflector:
Using the matrix of rank r orthonormal vec-

tors U ∈ Rm×r, the block reflector has the form
H = I − 2UUT . The matrix H is orthogonal
and symmetric.

Since C ∈ Rm×n is a rank r matrix, if a ma-
trix U of rank r is chosen suitably, all rows of
HC are eliminated to zeros except the first r
rows. The rank of the first r rows is r and full.

The reflector version of the block Householder
transformation can be regarded as a natural ex-
tension of the original non-blocked Householder
transformation, with the matrix elements of the
algorithm changed from numbers to small ma-
trices. Therefore, an algorithm using the non-
blocked version of Householder transformation
would have a corresponding blocked version al-
gorithm, and could be converted naturally.

The block reflector method of Schreiber and
Parlett 14) is implemented and explained in this
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paper, but it is constructed by using singular
value decomposition (SVD) rather than polar
decomposition, since SVD is more familiar and
more widely studied in the area of numerical
computation.

In this paper, as an example of the block
Householder method, the eigensolver of a dense
real symmetric matrix similar to the two-step
reduction method 2),3) is tested. The eigenprob-
lem of a symmetric dense matrix is first con-
densed into a problem of a symmetric block
tridiagonal matrix by the block Householder
transformations, and is then solved by the band
eigensolver for the required eigenvalues and the
corresponding eigenvectors. The eigenpairs of
the original dense symmetric matrix can be ob-
tained from the eigenpairs of a block tridiago-
nal matrix by application of the backward block
Householder transformations.

In the next section, we will explain a con-
struction of the block reflector of Schreiber and
Parlett based on the SVD, which is different
from Algorithm 2 of Schreiber and Parlett 14)

based on polar decomposition. Note that both
block reflectors constructed in the form H =
I − 2UUT are the same; the only difference is
the orthogonal factor in the matrix U .

2. Block Householder Transformation

In this section, a SVD-based algorithm for
constructing the block Householder vector U to
give the two-sided block Householder transfor-
mation H = I − 2UUT will be presented.

For simplicity of description, matrices of com-
plex numbers are not treated in this paper. We
write Ik ∈ Rk×k to denote the identity matrix
of size k, and Ek ∈ Rm×k to denote the gener-
alized identity matrix whose (i, j)-th element is
δi,j .

2.1 Definition of a Block Reflector
For a given matrix C ∈Rm×b and r =

rank(C)≤ b, there exists a matrix U ∈Rm×r

such that UT U = Ir and also all rows of HC
are eliminated to zeros except the first r rows,
where H = Im − 2UUT . The matrix H is
symmetric and orthogonal, since HT = H and
HT H = Im. The matrix U is the block House-
holder vector constructed from C, and H is the
matrix of block Householder transformation.

2.2 Construction of a Block Reflector
Assuming b≤m, for the given matrix C ∈

Rm×b, the algorithm below constructs the
block Householder vector U ∈ Rm×r and β ∈
Rr×b, such that rank(β) = r and H = Im −

2UUT is the block reflector which has the elim-
ination property HC = Erβ .

2.2.1 Algorithm
The following steps from STEP-1 to STEP-4

compute the block Householder vector U and
β, the top non-zero part of HC.

STEP-1: Let “any” orthogonal de-
composition of C be C⇒XZ, and let
r = rank(C)≤ b . (X ∈ Rm×r and Z ∈
Rr×b.) Usually, in-place decomposition is
available and X overwrites C.
If r = 0, let U and β be rank zero and
finish computation. Hereafter it that r >
0 is assumed.

STEP-2: Let X̂ ∈ Rr×r denote the
first r rows of X. Let X̂⇒WDV be SVD
of X̂. Here W, V ∈ Rr×r are orthogonal
matrices and D ∈ Rr×r is the diagonal
matrix of singular values.
Let β = (−WV )Z.

STEP-3: Let Y = X+ErWV ∈Rm×r ;
that is, Y overwrites X by adding WV to
part of the first r rows.

STEP-4: Let “any” orthonormalization
of Y be U ∈Rm×r and let UT U = Ir .
The computation of U can be made
much more efficient by using the level-
3 BLAS routine DGEMM where U =
Y [V T {2(Ir + D)}(−1/2)] instead of or-
thonormalization. In-place computation
is easy if columns are partitioned into
blocks.
U is the block Householder vector of rank
r to give HC = Erβ.
By the above chain of overwrites, U may
be written in the place of C.

2.2.2 Properties of Intermediate
Quantities

Properties of the intermediate quantities in
the above construction from STEP-1 to STEP-
4 of the algorithm are explained here. Suppose
that m, b, r ∈ N and 0≤ r≤ b≤m.

In STEP-1: X consists of r orthonormal
vectors and XT X = Ir. Z is full rank i.e.
rank(Z) = r.

Note that in the case where r = 0, C = 0. U
is Rm×0 and H = Im ∈ Rm×m is identity. β is
R0×b. Thus there is no problem.

In STEP-2: Ir = XT X = X̂T X̂ +
(X − ErX̂)T (X − ErX̂) = V T D2V + (X −
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ErX̂)T (X − ErX̂), and therefore Ir − D2 =
{(X − ErX̂)V T }T {(X − ErX̂)V T }. Since the
right-hand side is symmetric semi-positive def-
inite, so is Ir −D2. Therefore the singular val-
ues do not exceed 1. (The standard selection
of non-negative signs for the singular values in
SVD makes the calculation in later steps nu-
merically most stable as the sign selection in
the ordinary Householder transform.)

In STEP-3: The relation Y T Y = V T 2(Ir +
D)V is derived from both XT X = Ir and
XT Er = X̂T . Y is well-conditioned and
cond(Y )≤√2, since all diagonals of 2(Ir + D)
are between 2 and 4.

In STEP-4: Let “any” orthonormalization of
Y be written as Y⇒US . The matrix S ∈ Rr×r

is invertible, since cond(S)≤√2.
The matrix U can be multiplied by any

orthogonal matrix of size r from the right
side. The special selection U = Y [V T {2(Ir +
D)}(−1/2)] also gives an orthonormalization.

From UT U = Ir , the symmetry and orthog-
onality of H = Im − 2UUT∈Rm×m follows.
Moreover, as a block Householder transforma-
tion, H satisfies the following elimination prop-
erty.

Lemma 1 For a given matrix X ∈ Rm×r

such that XT X = Ir, the matrix H constructed
following STEP-2 to STEP-4 transforms the
matrix X into HX = Er(−WV ), which means
that all rows of HX are zeros except for the
first r rows, and the matrix of the first r rows
of HX is (−WV ) .
Proof Since Y = X+ErWV and X̂ = WDV ,
ET

r Y = X̂ + WV = W (Ir + D)V .
From the relation (ErWV )T Y = V T WT (ET

r Y )
= V T (Ir + D)V = (1/2)Y T Y , by transposition
we get Y T ErWV = (1/2)Y T Y , and also from
ErWV = Y −X we get Y T (Y − 2X) = 0.
Since S is not singular and Y T = ST UT ,
UT (Y − 2X) = 0; that is, 2UT X = UT Y .
Since UT Y = S and US = Y , UUT Y = Y , and
thus we get 2UUT X = U(2UT X) = UUT Y =
Y .
Therefore HX = X − 2UUT X = X − Y =
Er(−WV ), which was to be proved.

Using the above Lemma 1, the matrix H is
constructed from the orthonormal X of rank r,
and therefore HX = Er(−WV ) holds. Hence,
HC = HXZ = Er(−WV )Z = Erβ . Here
β ∈ Rr×b is defined as β = (−WV )Z , which
is full rank, i.e. rank(β) = r. Therefore, the
matrix of the first r rows of HC is β, and the

others are zeros.
If the Householder QR-decomposition is used

for the orthonormalization of C, then the re-
lation CΠ = XR holds. Here, R ∈ Rr×b is
upper triangular and Π is the permutation ma-
trix of column pivoting. When decomposition
is without pivoting, Π is just an identity. In
that case, the QR-decomposition of β is given
by βΠ = (−WV )R, since (−WV ) ∈ Rr×r is an
orthogonal matrix.

2.3 Another Construction
Note that even when the matrix C is rank-

deficient, by taking the extended orthonormal
basis of C the matrix X can be made rank b
and X ∈Rm×b. The extended orthonormal ba-
sis may be constructed quite naturally by the
Householder QR-decomposition, for example.
In that case, the (effective) rank of the matrix
Z ∈ Rb×b is r. Applying the above procedure
of Lemma 1 (replacing r with b), from X the ex-
tended orthonormal basis of rank b in the ma-
trix H is constructed and HX = Eb(−WV ).
Thus, HC = HXZ = Eb(−WV Z) = Ebβ.
Here, the matrix β = −WV Z ∈Rb×b and
rank(β) = r. Therefore, the matrix of the first
b rows of HC is β, and all other rows are zeros.

If the Householder QR-decomposition is
used, the orthogonal decomposition is CΠ =
XR. Here, Π is the permutation matrix of col-
umn pivoting and X is the matrix of the ex-
tended orthonormal basis of rank b. The ma-
trix R∈Rb×b is upper triangular, and all the
rows are zeros except the first r rows. The
last zero-valued (b− r) rows of R correspond to
the redundant orthonormal basis. In this case,
the QR-decomposition of β is βΠ = (−WV )R ,
where the matrix (−WV ) ∈ Rb×b is orthogo-
nal. R∈Rb×b is upper triangular and all rows
are zeros except the first r rows.

In both of the above methods, the block
Householder reflector H is constructed from the
given general matrix C. If rank(C) = r, the
first r rows of HC are of rank r, and the other
rows of HC are eliminated to zeros.

If we regard matrix C ∈Rm×b as a block vec-
tor whose elements are small matrices of size b,
then C has n = �m/b� block elements. (The
last fragmented element of a block vector may
not be square b-by-b, but we may always use a
b-by-b matrix to store the fragmented elements,
and zeros are used to pad the unoccupied places
in the matrix.) Then, by the block Householder
transformation, the block vector C is trans-
formed into the one such that the first block
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element is β ∈ Rb×b and all other elements are
zeros. If r = rank(C), then the rank of β is
also r and all the rows of β except the first r
are zeros. The matrix U , which represents the
Householder matrix H, can also be regarded as
a block vector. The matrix A∈Rm×m can also
be regarded as a block matrix of n-by-n of b-
by-b small matrices.

3. Application of a Block Reflector

In this section, it is shown that by successive
applications of the block reflectors, the dense
symmetric matrix A can be condensed into the
block tridiagonal matrix T in a manner similar
to the ordinary Householder tridiagonalization
and that, after the eigensolutions of the block
tridiagonal matrix T have been obtained, the
eigenvectors of T can be transformed by back-
ward block reflections into eigenvectors of A.

The flow of this two-step reduction eigen-
solver is as follows:
( 1 ) [BHSHLD] By the block Householder

transformations, the symmetric matrix A
is transformed into the block tridiagonal
matrix T . The information needed to
construct the transformations is stored
in a place in A for later use in backward
transformations.

( 2 ) [BT2BND] T is transformed into the
symmetric band matrix B in order to
halve the bandwidth.

( 3 ) The number of required eigenpairs of the
band matrix B is obtained by using Mu-
rata’s method as follows:
( a ) [TRIDIA] B is transformed into

the ordinal tridiagonal matrix t by
Murata’s band Householder tridi-
agonalization.

( b ) [BISECT] The required eigenval-
ues of t are calculated by the
Sturm bisection method.

( c ) [INVITR] For each of the ob-
tained eigenvalues of t, the corre-
sponding eigenvector of B is ob-
tained by using inverse iterations
of the band LU -decomposition
with selective reorthogonalization.

( 4 ) [BND2BT] The obtained eigenvectors
of B are simultaneously transformed
backward into eigenvectors of T by the
inverse of the transformation previously
used in step (2).

( 5 ) [BCKTRS] The eigenvectors of T are si-
multaneously transformed backward into

eigenvectors of A by the block House-
holder transformations used and stored
previously in a place in A in step (1), in
reverse order.

BHSHLD, BT2BND, TRIDIA, BISECT, IN-
VITR, BND2BT and BCKTRS in the above
are the names of computation steps. In this
section, further explanations of these steps will
be given.

3.1 Block Tridiagonalization of a
Dense Matrix [BHSHLD]

For a given dense symmetric matrix A, the
solution of the eigenproblem of A is considered.
The matrix is partitioned by a small matrix
of size b. The first block column vector of A,
excluding the first element, is regarded as the
block column vector C (see the figure below).

A =




← b →
↑ |
b α |
↓ |

|
This |

part is |
named | Ã

as |
C |




The block transformation H is thus deter-
mined by the construction described in the pre-
vious section as STEP-1 to STEP-4 of the al-
gorithm, so that all elements of HC except the
first r rows are eliminated, where r(≤b) is the
effective rank of C (see the figure below).




← b →

∗




from H to HC
=⇒




← b →
↑
r β
↓

0

...

...
0




The calculation HAH transforms the princi-
ple block column or row into tridiagonal form
(see the figure below).



Vol. 47 No. SIG 7(ACS 14) An Implementation of the Block Householder Method 65




← b → ←r→
↑ |
b α | βT 0 · · ·
↓ |
↑ |
r β |
↓ |

0 | HÃH
|

... |
|
|




As in ordinary tridiagonalization, this block
transformation is applied until the matrix is in a
block tridiagonal form. At each step, the trans-
formation reduces the size of the matrix by a
block. It is not necessary to take the block size
of each column to be uniform. Continuing this
operation finally yields the expected block tridi-
agonal matrix (see the figure below).

H(n−2)· · ·H(3) H(2) H(1) A H(1) H(2) H(3)· · ·H(n−2)

=




α1 βT
1 0 · · ·

β1 α2 βT
2 0 · · ·

0 β2 α3 βT
3 0

... 0 β3 α4 βT
4

...

0
. . . . . .

...
. . . . . . 0

βn−2 αn−1 βT
n−1

· · · 0 βn−1 αn




3.2 Practical Computation of HAH
Inside the first column of the block matrix

HAH, α is a small matrix in the first posi-
tion and is unchanged, and the first block el-
ement of HC with rank r = rank(C) will be
the small matrix β in the next position. All the
other block elements in the first block column
are eliminated.

Therefore, we need not compute the trans-
form of the first block column, but from the
top of the column α is selected and stored, and
then in the construction of the block House-
holder vector U the matrix β is obtained and is
also stored, and the part C is overwritten by U
for later use in the backward transform.

If we denote by Ã the part of A whose size
is reduced by one block, the update A←HAH
for that part of A can be represented by using

the auxiliary block vector P and the symmetric
small matrix G as follows:


P←ÃU,
G←UT P,
P←(−2)(P − UG)),
Ã←Ã + UPT + PUT .

This computation is rich in the matrix-matrix
multiplications of small matrices of size b, and
can be implemented by using the level-3 BLAS
routines 5) to obtain high speed and locality of
storage reference. In practice, the symmetry of
the block matrix A is used and only the lower
half of A is stored as column block vectors, be-
cause the small matrix of the block matrix A
can be accessed contiguously in direction of the
column (see the figure below).



∗
↓
∗ ∗
↓ ↓
∗ ∗ ∗
↓ ↓ ↓
∗ ∗ ∗ ∗
↓ ↓ ↓ ↓
∗ ∗ ∗ ∗ ∗




Backward transformation of eigenvec-
tors [BCKTRS]: This operation is also simi-
lar to the ordinary Householder method.

After the required eigenvectors of the block
tridiagonal matrix T have been calculated, they
must be transformed back into the eigenvectors
of the original matrix A.

To transform the eigenvector y of T into the
eigenvector x of the original matrix A, the block
Householder vectors {U (i)} which were previ-
ously determined and stored are retrieved in
reverse order. Using {U (i)}, the block House-
holder transformations {H(i)} are constructed
and applied to y as x←H(1) H(2)· · ·H(n−2) y
from right to left.

For efficiency, many eigenvectors should
be combined and simultaneously transformed.
The application of the block reflector H(i) to a
set of vectors Y simultaneously can be made in-
place as Y ←H(i)Y , and is also rich in matrix-
matrix multiplications. The reflection is iter-
ated for i = (n−2), · · · , 1. Initially, Y is a com-
bined set of eigenvectors of T , and transformed
to a combined set of corresponding eigenvectors
of A.
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3.3 Considerations
Storage: For the case when eigenvectors are

required later, the block Householder vector U
and its effective rank must be reproduced in the
backward transformations. Therefore, at each
step of the forward transformation, the block
Householder vector U is stored in the column
of A which the transformation has just elimi-
nated. The small matrices αi and βi can be
stored by overwriting the i-th block elements
to the places Ui and Pi , since they are shrink-
ing block vectors.

Amount of computation: Here, N is
the true size of the matrix A, and the com-
putational order of the block tridiagonalization
of A is O(N3), which is the same order as
that realized by the non-blocked tridiagonaliza-
tion. When bN , if the multiplications and
additions are counted separately, it is about
(4/3)N3 floating point operations.

Amount of storage transfer: Block tridi-
agonalization of block size b reduces the to-
tal amount of the storage transfer by a factor
of about b, because the number of the sweeps
of the transforming matrix A is reduced from
N − 2 to �N/b�− 2. The same is true for back-
ward transformation.

Storage referencing is also reduced by a factor
of b, since the amount of floating computation is
not greatly affected when the blocking is done.
If the value of b is chosen appropriately, the
speed of computation and the speed of storage
transfer can be balanced.

However (with the combination of methods
used in the current implementation), adoption
of an excessively large value of b should be
avoided, especially when �, the required num-
ber of eigenvectors, is very large, because in the
later steps of calculation, where the eigenprob-
lem of the block tridiagonal matrix is solved
by Murata’s band eigensolver 12),19), which uses
the band matrix Householder tridiagonalization
and the band LU -decomposition inverse itera-
tions, the amounts of computation are O(N2b)
and O(Nb2�), respectively.

The current code of the band eigensolver 19)

was written for vector architecture machines
and does not use blocked algorithms and as-
sumed the higher memory bandwidth. For the
block tridiagonalization, the number of memory
accesses may be O(N3/b).

Case-1. If � is proportional to N , that is,
� = O(N), even if it is only a small fraction
of N , then asymptotically the inverse iteration

process makes more memory accesses than the
band Householder method, and the balancing
condition between O(N3/b) and O(Nb2�) gives
b = O(N1/3). In that case, the total number of
memory accesses will be O(N8/3).

Case-2. If � is a constant and independent of
N (even if the value of � is large), then asymp-
totically the band Householder method makes
more memory accesses than the inverse itera-
tion process, and the balancing condition be-
tween O(N3/b) and O(N2b) gives b = O(N1/2).
In this case, the total number of memory ac-
cesses will be O(N5/2).

Therefore (for the current combination of the
methods, namely the eigenvalue solver given by
the band matrix Householder tridiagonalization
and the inverse iteration given by band LU -
decomposition iterations), b = O(N1/2) is opti-
mal when � is a constant of N and b = O(N1/3)
when � = O(N).

When the number of required eigenpairs is
large, if the recently developed divide-and-
conquer algorithms for the band matrix or the
block tridiagonal matrix 8),9) were used, the sit-
uation could be different, especially when the
number of required eigenpairs is very large and
� = O(N). The inverse iterations with LU -
decomposition approach would be useful only
in cases where the number of required eigen-
pairs is not excessive.

3.4 Transform Eigenproblem of
a Block Tridiagonal into a Band
Matrix [BT2BND]

3.4.1 Reduction of a Block Tridiagonal
Matrix to a Band Matrix:

In the following, it is assumed for simplicity
that the block sizes of all columns are uniform.

A block tridiagonal matrix T of block size
b can be regarded naturally as a band matrix
of width 2b − 1. Therefore, the method of so-
lution for the eigenproblem of the symmetric
band matrix is directly applicable to the sym-
metric block tridiagonal matrix T . But the ma-
trix T of bandwidth 2b − 1 can be reduced to
the symmetric band matrix of width b with a
small amount of computation.

In an experiment, the code of Murata’s band
Householder method and the method of inverse
iterations by LU -decomposition 12),19) where
used to solve the band eigenproblem. In the
method, the band matrix is stored in packed
form. If w is the bandwidth of the packed
band matrix to Murata’s program, the count
of operations in the band Householder method
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is O(N2w) and in the inverse iterations it is
O(Nw2�), where � is the number of eigenvectors
required. (The operation count of the Sturm bi-
section is independent of w.) Therefore, if the
bandwidth w is reduced here in advance from
2b− 1 to b, the band eigensolver runs faster.

The symmetric block tridiagonal matrix T
can be written as

T =




α1 βT
1

β1 α2 βT
2

β2 α3 βT
3

β3
. . . . . .
. . . . . . βT

n−1

βn−1 αn




In the first step, paying attention to the sec-
ond row, β1 is QR-decomposed as β1→Q1R1,
where Q represents the orthogonal matrix and
R represents the right triangular matrix. (In
the actual computation here, the transforma-
tion matrix Q1 may not formed explicitly but
kept in “factored form”.) After the QR-
factorization of β1, the orthogonal transforma-
tion

diag[I, QT
1 , I, · · · , I] T diag[I, Q1, I, · · · , I]

=




α1 RT
1

R1 QT
1 α2Q1 (β2Q1)T

β2Q1 α3 βT
3

β3
. . . . . .
. . . . . . βT

n−1

βn−1 αn




is applied.
Analogously, at the k-th step, the sub-

diagonal element of the (k + 1)-th row is QR-
decomposed by the Householder-QR method
without pivoting, and Qk and Rk are then de-
termined.

The factor of QR-decomposition Qk is stored
in “factored form” and Rk is overwritten to the
place where βk was stored. The transpose of
Qk is multiplied from the left to the (k + 1)-th
row, and Qk is multiplied from the right to the
(k + 1)-th column.

By symmetry, only the data in the lower half
of the main diagonal block elements and in
the left sub-diagonal block elements are used
in the calculation. After the (n−1)-th step has

been completed, the block tridiagonal matrix T
transformed into the symmetric band matrix B
of bandwidth b is obtained as follows:

B = diag[I, QT
1 , · · · , QT

n−1] T diag[I, Q1, · · · , Qn−1]

=




γ1 RT
1

R1 γ2 RT
2

R2 γ3 RT
3

R3
. . . . . .
. . . . . . RT

n−1

Rn−1 γn




.

3.4.2 Backward Transformation of
Eigenvectors [BND2BT]:

To obtain y, the eigenvector of T , from
z, the eigenvector of the symmetric band
matrix B, the backward transformation:
y←diag[I, Q1

T , · · · , Qn−1
T ] z is used.

To enhance the locality of references, many
eigenvectors are simultaneously transformed in
practice, and y and z are regarded as block vec-
tors in which many columns consisting of eigen-
vectors are transformed at once.

3.4.3 Amount of Computation Needed
to Reduce the Bandwidth:

The order of each computation of the QR-
factorization of a small matrix is O(b3) and
the multiplication of each Qk is O(b3). As
n = N/b, the total computation of the for-
ward transformation is O(b2×N) and the to-
tal amount of computation carried out to apply
the reverse transformation to the eigenvectors
is O(b×�×N), where � is the number of eigen-
vectors to be transformed back.

3.5 Solution of the Eigenproblem of a
Symmetric Band Matrix:

To tridiagonalize the band matrix, instead of
the Rutishauser-Schwarz method in (§II/8 of
Wilkinson and Reinsch 17)), the band House-
holder method proposed by Murata 12) is used.

The eigenproblem of the symmetric band ma-
trix is solved by a combination of the following
methods:
• [TRIDIA] Murata’s band matrix House-

holder tridiagonalization.
• [BISECT] Sturm bisection for eigenvalues

of a tridiagonal matrix.
• [INVITR] inverse iteration band eigen-

solver by LU -decomposition with selective
reorthogonalization.

The Fortran 77 code for these three steps,
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TRIDIA, BISECT, and INVITR, is taken from
a book by Murata, et al. 19), which was written
for the vector supercomputers at that time.

Note that a new algorithm that is an im-
proved version of Murata’s method was tested
and described in Bischof, et al. 3). However,
only the code in Murata, et al. 19) is used in
this paper.

Let � be the required number of eigenpairs.
The computational order used to compute �
eigenpairs by this specific method is

tridiagonalization + bisection
+inverse iterations
= O(N2w) + O(N� log2(1/ε)) + O(Nw2�) ,

where w is the bandwidth of the matrix, N is
the scalar dimension of the matrix, and ε is the
tolerance for the separation of eigenvalues by
the bisection. By the previous transformation
to reduce the bandwidth, the value of w is re-
duced from 2b− 1 to b.

If the bandwidth is reduced, the total amount
of computation for the solution of a block tridi-
agonal matrix will be reduced, even if the re-
duction of the bandwidth is consumed.

3.5.1 Storage Consideration:
The storage requirement for Murata’s band

Householder method is
• N×(w + 1) words for the band matrix B,
• 3N + (3w + 1) ×N = (3w + 4)×N of real

words, and N integer words for the other
working storage,

• N×� words to store the eigenvectors.
The storage for eigenvectors and the working
storage for real type data can be overwritten.

4. Experiments

4.1 Accuracy Checks
4.1.1 Checking of Eigenvalues after

the Block Tridiagonalization
As a test of the numerical error property

of the block tridiagonalization, the eigenvalues
were calculated and compared for both the orig-
inal symmetric matrix A and the block tridiag-
onal matrix T condensed from A by the block
Householder method described in this paper.

The eigenvalues of both A and T were
computed by the dense symmetric eigensolver
NUMPAC routine HOQRUD 13), which uses
the standard method of Householder tridiago-
nalization followed by the QR-iterations, and is
written in Fortran 77 and it is modified for this
experiment to use higher-precision variables for
the inner product accumulations in order to re-

Table 1 Maximum differences of eigenvalues A and
T (N = 3600).

b Frank Hilbert random
20 9.3E-10 2.4E-15 1.6E-12
40 5.6E-09 1.3E-15 1.6E-12
60 2.8E-09 8.9E-16 1.4E-12
80 1.9E-09 2.2E-15 3.4E-12
100 2.3E-10 1.6E-15 3.9E-12

Table 2 Maximum differences of all eigenvalues
(N = 3600).

b Frank Hilbert random
20 8.4E-09 4.7E-15 6.1E-12
40 2.0E-08 4.0E-15 9.0E-13
60 1.6E-08 3.1E-15 8.9E-12
80 8.4E-09 3.1E-15 1.1E-11

100 6.5E-09 4.9E-15 8.1E-13

duce errors.
As test matrices of size N = 3600, the Frank

matrix ai,j = N + 1 − max(i, j), the Hilbert
matrix ai,j = 1/(i + j − 1), and the symmet-
ric matrix of uniform random numbers were
used. The maximum differences in magnitude
between all corresponding eigenvalues of A and
T are tabulated in Table 1 for the block sizes
b = 20, 40, 60, 80, 100 used in the block reflec-
tors.

4.1.2 Checking of Eigenvalues
Computed by the Bisection

It is not so time consuming to compute all
eigenvalues of the (ordinary) tridiagonal ma-
trix of size N which is obtained by Murata’s
Householder tridiagonalization of the band ma-
trix. Since these eigenvalues are those of the
original matrix A, all eigenvalues of the (ordi-
nary) tridiagonal matrix were compared with
all eigenvalues of A directly computed by the
standard dense matrix eigensolver. The maxi-
mum differences between them are tabulated in
Table 2.

4.1.3 Checking of the Total
Eigensolver

To test the property of the numerical error
of the total eigensolver, the Frank matrix, the
Hilbert matrix, and the random matrix were
chosen as test matrices, and the accuracy of
the solved eigenpairs was checked by conduct-
ing the following tests:

Checked items
(1) Error of the orthonormality of vec-
tors:
The maximum error in the orthonormality

errorth of the solved eigenvectors was defined
as the largest value of |〈v(µ), v(ν)〉 − δµ,ν |, and
checked to determine whether it was small
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Table 3 Errors of the 100 smallest eigenpairs
(Frank matrix, N = 3600).

b errorth dmax rmax
20 1.3E-15 3.2E-10 3.0E-10
40 2.0E-15 3.2E-10 3.8E-10
60 1.2E-15 3.2E-10 2.4E-10
80 1.3E-15 3.2E-10 3.2E-10

100 1.1E-15 3.2E-10 2.3E-10

Table 4 Errors of the 100 largest eigenpairs
(Frank matrix, N = 3600).

b errorth dmax rmax
20 1.7E-10 2.1E-09 1.2E-04
40 3.2E-10 1.1E-08 6.9E-04
60 2.8E-10 7.5E-09 6.6E-04
80 6.5E-10 1.9E-09 4.7E-04

100 1.5E-09 8.1E-10 6.2E-04

enough.
(2) Comparison of the eigenvalues with
those obtained by a standard solver:
The accuracy of the eigenvalues obtained by

the present method was examined by a compar-
ison with the eigenvalues of A obtained directly
by the routine HOQRUD in NUMPAC 13).

The two sets of eigenvalues were sorted in or-
der, and the distances between λ(µ) and λ̂(ν)

were computed as |λ(µ) − λ̂(ν)| .
For the obtained eigenvalues, the maximum

distance was dmax .
(3) Residual of the eigenvalue equation:
For each eigenpair (λ, v), the residual of the

eigenvalue equation is the vector r = Av − λv,
and its 2-norm res = ||r||2 was defined. The
value of res is the upper bound of the dis-
tance between the approximated eigenvalue λ
and some true eigenvalue.

rmax was then defined as the maximum val-
ues of res among the solved eigenpairs, and
checked to determine whether it was sufficiently
small.

Checking of results
The Frank matrix, the Hilbert matrix, and

the random matrix were chosen as the most typ-
ical test matrices for this check. The matrix size
N was set to 3600, and 100 eigenpairs from both
the smallest and largest eigenvalues were calcu-
lated with the block sizes b = 20, 40, 60, 80, 100.
The test results were as follows:

Frank matrix (Table 3 and Table 4):
For this matrix, the magnitude of the largest

element was 3600. The 100 smallest eigenval-
ues calculated were between about 0.25 and
0.250476, and the 100 largest eigenvalues cal-
culated were between about 1.3E2 and 5.3E6.

Table 5 Errors of the 100 smallest eigenpairs
(Hilbert matrix, N = 3600).

b errorth dmax rmax
20 4.4E-15 2.2E-16 7.7E-12
40 3.2E-15 3.1E-15 1.4E-11
60 3.6E-15 1.0E-15 2.8E-11
80 3.8E-15 6.7E-16 2.1E-11

100 6.1E-15 1.3E-17 2.2E-11

Table 6 Errors of the 100 largest eigenpairs
(Hilbert matrix, N = 3600).

b errorth dmax rmax
20 4.5E-11 4.4E-15 3.1E-12
40 1.3E-10 3.6E-15 6.7E-12
60 1.7E-10 3.8E-15 7.5E-12
80 4.1E-11 3.8E-15 6.5E-12

100 6.9E-11 4.2E-15 8.4E-12

• The largest errors of the orthonormality be-
tween the solved eigenvectors were under
2.0E-15 for the smallest eigenpairs, and un-
der 1.5E-9 for the largest eigenpairs.

• The largest distance between the calcu-
lated eigenvalues and those computed by
the standard eigensolver for the dense ma-
trix A was under 3.2E-10 for the smallest
eigenpairs, and under 1.1E-8 for the largest
eigenpairs.

• The 2-norm of the residual rmax was un-
der 3.8E-10 for the smallest eigenpairs, and
under 6.9E-4 for the largest eigenpairs.

Hilbert matrix (Table 5 and Table 6):
For this matrix, the largest element in mag-

nitude was 1. The Hilbert matrix was pos-
itive definite but had many eigenvalues very
close to zero when the size of the matrix was
large. The 100 smallest eigenvalues obtained
were indeed very close to zeros, and most of
the 100 largest eigenvalues obtained were also
very close to zero. In fact, only 32 of the calcu-
lated eigenvalues were above 1.0E-15, and the
largest eigenvalue was about 2.5.
• The errors of orthonormality between the

solved eigenvectors were under 6.1E-15 for
the smallest eigenpairs, and under 1.7E-10
for the largest eigenpairs.

• The distances between the solved eigenval-
ues and those computed by the standard
method were under 3.1E-15 for the small-
est eigenpairs, and under 4.4E-15 for the
largest eigenpairs.

• The 2-norm of the residual rmax was un-
der 2.8E-11 for the smallest eigenpairs, and
under 8.4E-12 for the largest eigenpairs.

Random matrix (Table 7 and Table 8):
For this matrix, the magnitude of the largest
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Table 7 Errors of the 100 smallest eigenpairs
(random matrix, N = 3600).

b errorth dmax rmax
20 8.9E-16 9.3E-13 2.8E-05
40 1.0E-15 7.5E-13 3.0E-05
60 1.1E-15 8.3E-13 8.6E-06
80 1.6E-15 8.8E-13 9.2E-06

100 1.3E-15 8.1E-13 1.5E-04

Table 8 Errors of the 100 largest eigenpairs
(random matrix, N = 3600).

b errorth dmax rmax
20 1.4E-14 1.1E-12 5.9E-04
40 8.7E-15 1.1E-12 3.3E-05
60 1.3E-14 5.2E-12 1.3E-05
80 7.5E-14 6.6E-12 3.5E-05

100 9.1E-15 5.0E-12 2.0E-04

element was about 1.0. The magnitude of the
largest eigenvalue was about -3.4E1 for the 100
smallest eigenpairs, and about 1.8E3 for the 100
largest eigenpairs.
• The errors of orthonormality between the

solved eigenvectors were under 1.6E-15 for
the smallest eigenpairs, and under 7.5E-14
for the largest eigenpairs.

• The distances between the calculated
eigenvalues and those by the standard
method were under 9.3E-13 for the small-
est eigenpairs, and under 6.6E-12 for the
largest eigenpairs.

• The 2-norm of the residual rmax was un-
der 1.5E-4 for the smallest eigenpairs, and
under 5.9E-4 for the largest eigenpairs.

4.2 Timing Measurement
The system environment of this experiment

was as follows:
CPU: Intel Pentium 4 2.6C (Northwood,

HT) with SSE2, L1 data cache 8 Kbytes, L2
cache 512 Kbytes. The maximal performance
of the Intel Pentium 4 2.6C with SSE2 in IEEE
double-precision computation is 2 floating point
operations per CPU clock, which is 5.2 Gflops,
since the clock frequency of the CPU is 2.6 GHz.
(Note that 5.2 Gflops is just an ideal value, for
example, when there is no access to main mem-
ory, no branch effect, etc.)

Main memory: 4 pieces of DDR-3200 type
512 Mbyte memory modules with a total capac-
ity of 2 Gbytes in dual-channel mode.

Compiler: The Intel Fortran compiler
v9.0.031 for Linux IA32 was used with the op-
tion “-O3 -xN”.

Level-3 BLAS routines 5): Intel MKL
(Math Kernel Library) version 8.0 for IA32. (In
the block Householder tridiagonalization ker-

Fig. 1 Speed of block tridiagonalization.

nel, to compute HAHT for the given U and
H = I − 2UUT , the level-3 BLAS routines
DGEMM, DSYMM and DSYR2K were used.)

SVD routine: “SVDD” in NUMPAC
(Nagoya University Mathematica PACage) 13)

was used. The algorithm that SVDD uses is
the Golub-Reinsch SVD 10). The original code
of SVDD is 205 lines in Fortran 77. The flop
count of Golub-Reinsch SVD is about 21s3 for a
square matrix of size s, where s = b or s = r < b
(§5.4.5 of Golub and van Loan 11)).

In experiments, a symmetric random matrix
(with a uniform random number in the unit in-
terval) was used to measure the elapsed time
needed to solve an eigenproblem.

In the experiments described in this paper,
• Figure 1 shows the “equivalent speed”,

which is defined by “as if” the block tridi-
agonalization of a symmetric matrix of size
N were (4/3)N3 floating point operations.
This equivalent speed in Gflops is shown
on the vertical axis, and the block size b
is shown on the horizontal axis by steps
from 4 up to 200. The graph has six plot-
ted curves corresponding to matrix sizes
of N = 500, 1000, 2000, 4000, 8000, and
16000. As we increased the block size, the
observed speed increased linearly in the re-
gion where the value of b was small, then
saturated, and finally decreased. If b was
fixed, then the larger the value of N , the
faster the speed.
This graph shows that about 60% to 70%
of the peak performance of Pentium 4 2.6C
(the theoretical peak is 5.2 Gflops) was ob-
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Fig. 2 Elapsed time of block tridiagonalization.

Fig. 3 Elapsed time for solution of eigenpairs
of the block tridiagonal (� = 100).

tained when the block size was 50 or more
and the matrix size was 1000 or more. Most
of the computation of the block rank-2 up-
date kernel in the block Householder was
rich in level-3 BLAS computations, and
this measurement was close to being a per-
formance test of level-3 BLAS routines used
for size b matrices.

• Figure 2 is a graph of the elapsed time of
the block tridiagonalization on the vertical
axis, and the block size on the horizontal
axis. Both axe are labeled with logarithmic
values and the graph is plotted for various
values of N .

• Figure 3 is a graph showing the elapsed
time for the 100 solutions of eigenpairs on

Fig. 4 Elapsed time for block backward
transformation of eigenvectors (� = 100).

the vertical axis, and the block size on
the horizontal axis. Both axe are labeled
with logarithmic values and graph is plot-
ted for various values of N . This elapsed
time includes the transformation from a
block tridiagonal matrix into a band ma-
trix, the band eigensolver of 100 eigenval-
ues and vectors, and the back transforma-
tion of 100 eigenvectors from a band matrix
into a block-tridiagonal matrix.

• Figure 4 is a graph showing the elapsed
time of the block backward transformation
of 100 eigenvectors from those of the block
tridiagonal matrix already obtained by the
previous procedure into those of the origi-
nal dense symmetric matrix, and the block
size on the horizontal axis. Both axe are
labeled with logarithmic values, and the
graph is plotted for various values of N .

• Figure 5 is a graph showing the total
elapsed time for the solution of 100 eigen-
pairs of the original dense symmetric ran-
dom matrix of size N by the implemented
method combined with the current method,
and the block size on the horizontal axis .
Both axe are labeled with logarithmic val-
ues, and the graph is plotted for the various
values of N . For each value of N , the best
block sizes for minimizing the total elapsed
time are as follows: b = 20 for N = 500,
b = 28 for N = 1000, b = 36 for N = 2000,
b = 52 for N = 4000, b = 80 for N = 8000,
and b = 80 for N = 16000.

From the above graphs of our experiments:
• Block tridiagonalization: The elapsed



72 IPSJ Transactions on Advanced Computing Systems May 2006

Fig. 5 Total elapsed time for solution of
eigenpairs of a dense matrix (� = 100).

Fig. 6 Elapsed time of three steps
(N = 1000, � = 100).

time is almost proportional to N3, and is
nearly inversely proportional to b for the
region in which the value of b is small. The
value of b that minimizes the elapsed time
of this step seems to be proportional to
N1/2 according to the graph. Above that
values, the elapsed time grows. (In the next
subsection, the reason for this is consid-
ered.)

• Block tridiagonal eigensolver: The
elapsed time needed to obtain the value
� of eigenpairs by using the band eigen-
solver with LU -decomposition inverse it-
eration with selective reorthogonalization
method seems to be proportional to N2b,
according to the graph.

Fig. 7 Elapsed time of three steps
(N = 2000, � = 100).

Fig. 8 Elapsed time of three steps
(N = 4000, � = 100).

• Backward transform: The elapsed time
for the backward transformation of � eigen-
vectors seems to be proportional to N2, ac-
cording to the graph. It is almost inversely
proportional to b for the region in which
the value of b is small.

In the graph for each matrix size, Fig. 6 for
N = 1000, Fig. 7 for N = 2000, Fig. 8 for
N = 4000, Fig. 9 for N = 8000, and Fig. 10
for N = 16000, the elapsed times are plot-
ted for three major steps: “block tridiagonal-
ization” (T1), “block tridiagonal eigensolver”
(T2), “backward transform” (T3), and their
total time (TOTAL). (T1 = BHSHLD; T2 =
BT2BND + (TRIDIA + BISECT + INVITR) +
BND2BT; T3 = BCKTRS.)
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Fig. 9 Elapsed time of three steps
(N = 8000, � = 100).

Fig. 10 Elapsed time of three steps
(N = 16000, � = 100).

For all these timings, �, the number of eigen-
pairs to be solved, is fixed at 100.

The curve of (T3) is always at the bottom
and almost negligible when N becomes large
for fixed � = 100. The curve of (T2) is initially
below the plot of (T1) for smaller block sizes,
but for larger block sizes it increases and tends
to go above (T1). The curve of (TOTAL) is al-
ways at the top, since it is the sum of the others.
Note that (T1) is independent of �, (T3) is pro-
portional to �, and (T2) contains the process of
inverse iterations, which is proportional to �.

In Table 9, when the number of eigenpairs to
be computed is fixed at � = 100, the best block
sizes b = 20, 28, 36, 52, 80, and 80 are chosen to
minimize the total elapsed time for each matrix

Table 9 Elapsed time for the calculation steps (in
seconds).

N 500 1000 2000 4000 8000 16000
b 20 28 36 52 80 80

BHSHLD 0.156 0.777 4.808 31.43 209.76 1581.59
BT2BND 0.003 0.011 0.034 0.13 0.59 1.17
TRIDIA 0.032 0.194 1.238 6.83 38.05 150.73
BISECT 0.040 0.073 0.137 0.26 0.50 0.99
INVITR 0.103 0.396 1.188 4.11 16.45 32.49
BND2BT 0.003 0.006 0.015 0.03 0.08 0.17
BCKTRS 0.020 0.070 0.258 0.96 3.38 13.57
TOTAL 0.359 1.529 7.683 43.75 268.83 1780.74

Table 10 Summary of the source code in this
experiment.

Source file Function of code Lines
MAIN Main program for this experiment 143
GENMAT Test matrix generator 124
BHSHLD Total forward block H-transform 61
MKBREF Construction of block reflector 133
HQRORT H-QR orthogonalization 263

(for the block vector)
SVDD NUMPAC routine SVDD for SVD 334
BREFLECT Block reflection kernel 102
STEP2 Eigensolver for block tridiagonal 294
BT2BND Reduce bandwidth of the block 285

tridiagonal to band matrix, and
later vector backward transform

MUHAUS Murata’s band eigensolver 559
(TRIDIA+BISECT+INVITR)

BCKTRS Total backward block H-transform 64
sub total in the above 2362

REPORT Report routines about the run 107
CHECKS Routines for checking 628
HOQRVD NUMPAC routine HOQRVD/UD 200

for checking (standard eigensolver)
grand total 3297

size of N = 500, 1000, 2000, 4000, 8000, and
16000. (Note that the best block size depends
on the value of �.) In that combination, the
elapsed times measured for each seven steps in
the total computation of the eigensolutions are
tabulated.

4.3 Code Used in the Experiment
In this experiment, all the code used was

written in Fortran 90 except for the BLAS3
routines (Intel MKL), which were supplied in
the form of binary objects. The total size of
the source code, including comments and macro
definitions, is about 3300 lines, and if the rou-
tines from NUMPAC and Murata’s book are
excluded, it is about 2200 lines. (Note that
the routines from NUMPAC and Murata’s in
books written in Fortran 77 were restructured
into Fortran 90 syntax and then used.) A sum-
mary of the source files with short explanations
is shown in Table 10. The source code of
the block reflection kernel written using BLAS3
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Fig. 11 Speed of block tridiagonalization
(dummy U is used).

routines is shown in Fig. 13 as example. The
OpenMP directives lines are left In the sample
source code, which is for SMP machines, and
not for the single-CPU (Pentium 4 2.6C) sys-
tem used in this experiment.

4.4 Note on Performance Degradation
When the block size b becomes larger than

about O(N1/2), the performance of the block
tridiagonalization decreases, as can be seen in
the graph of the experiment (Fig. 1).

In the current implementation used in
the experiment, the ordinary Householder-QR
method (with column pivoting, and backward
accumulation to generate an orthonormal ba-
sis explicitly) 18), (§5.1.6 of Golub and van
Loan 11)) is used for the orthogonal decomposi-
tion of the matrix C in STEP-1 of the algorithm
in this paper, which by nature lacks locality of
memory reference and can be very slow to com-
pute when the matrix C is large. (STEP-2 and
STEP-3, and also STEP-4, have higher mem-
ory reference locality as a result of the matrix
multiplication.)

To show that the performance degradation
in the current implementation results from the
computation of block Householder vectors, a
controlled experiment was conducted in which
the elapsed time was measured with the follow-
ing single change: at each stage of block trans-
formation, the block Householder vector U was
merely copied from a generic dummy block vec-
tor without computation, and HAH was com-
puted as if U were the correct block House-
holder vector. Thus, from the total elapsed
time of block tridiagonalization the elapsed

Fig. 12 Elapsed time of block tridiagonalization
(dummy U is used).

time needed to construct U was completely ex-
cluded.

As before, Fig. 11 shows the “equivalent
speed” and Fig. 12 shows the “elapsed time”
of the block tridiagonalization without the con-
struction of block Householder vectors. The
behavior of the graphs for this experiment is
completely different from that of the graphs for
the original experiment (Fig. 1 and Fig. 2). In
the new graphs, it can be recognized that the
“equivalent speed” does not decrease for the
larger block sizes. By this simple comparison, it
can be understood that the performance degra-
dation for the large block sizes seen in Fig. 1 re-
sults mainly from the construction of the block
Householder vectors.

If the ordinary Householder-QR is used for
the orthogonal decomposition in the construc-
tion of the block Householder vector, to com-
plete the block tridiagonalization of a matrix of
size N , the flop count of the two-sided block
transformations is O(N3); on the other hand,
it can be shown that the flop count of the con-
struction of the block Householder vectors using
the Householder-QR method is O(N2b). There-
fore, as long as bN holds, the construction of
the block Householder vector makes a negligible
contribution to the flop count.

However, to complete the block tridiagonal-
ization, the number of memory accesses made
by the two-sided Householder block transfor-
mations is O(N3/b). On the other hand, the
number of accesses for the Householder-QR or-
thogonal decomposition to construct the block
Householder vectors is O(N2b). These two or-
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ders of memory access meet when b = O(N1/2).
This indicates that if the Householder-QR

method is used for the orthogonal decomposi-
tion in the construction of the block reflector,
the performance of the block tridiagonalization
is highly degraded when a value as large as
O(N1/2) or more is used for the block size b.

Therefore, for a larger block size b, some
other orthogonal decomposition algorithm must
be used rather than the ordinary Householder-
QR method. It should have the highest local-
ity of memory reference and also numerical er-
ror properties as good as those of the ordinary
Householder-QR method.

The block Householder-QR factorization
(§5.2.2 of Golub and van Loan 11)) 4) would be
a method of choice. With some good block size
b′ (b′ < b), the memory access could be re-
duced by a factor of b′ and would run faster
if a few blocks of b′ vectors could be held in
fast memory. The block Householder reflector
described in this paper could also be used to
make block version of Householder-QR factor-
ization, including the explicit formation of the
basis.

Another completely different possibility would
be to use the method described in Stathopou-
los and Wu 16), which is based on the classical
SVD with orthonormality corrections, is rich in
matrix-matrix multiplications of size b, and can
be implemented using the level-3 BLAS rou-
tines DGEMM and DSYRK.

5. Discussion

Recently, the potential speed of CPU chips
has been greatly enhanced by many advances
in hardware architecture. However, the stor-
age transfer speed into and out of a CPU chip
is much slower than that inside the CPU. For
large-scale computation, storage transfer is usu-
ally a bottleneck, especially when the size of
local storage on the chip is insufficient, as it al-
ways is for the large computations. In such sit-
uations, block algorithms usually help to avoid
performance degradation in the computation.
Even a cheap Intel Pentium 4 2.6C is able to
transform a symmetric matrix of size 16, 000
stored in the main memory into block tridiago-
nal form within 2000 seconds.

In this paper, we have demonstrated the ben-
efits of the block Householder method only for
the eigenproblem of a dense symmetric matrix.
However, other algorithms that use the House-
holder transformation could also be used.

6. Conclusion

A block Householder transformation was im-
plemented and tested for the eigenproblem of
block-tridiagonalizing a dense symmetric ma-
trix. The block algorithm approach is effective
for solving large problems. In comparison with
non-blocked algorithms, the locality of storage
reference is enhanced by a factor of b, where b is
the block size. This enhancement of the locality
greatly reduces the amount of storage transfer,
and enables the calculation to be performed in
shorter elapsed time.

If we define the block tridiagonalization pro-
cess of size-N symmetric matrix as (4/3)N3

floating point operations, an “equivalent speed”
can be defined. In the experiment, for the case
of a matrix of size N = 16000, the block tridiag-
onalization can be performed at an “equivalent
speed” of about 3.5 Gflops by a Pentium 4 2.6C
system whose “theoretical” peak performance is
5.2 Gflops. The Intel MKL 8.0 for IA32 is used
for the level-3 BLAS routines.

In our current implementation of the block
tridiagonalization process for a very large block
size of O(N1/2) or more, clearly a performance
degradation is observed. The reason is that,
inside the current implementation of the con-
struction of the block reflector, the ordinary
Householder-QR method is used for orthogo-
nal decomposition in STEP-1 of the algorithm.
Although the flop count in the Householder-
QR method is negligible, since the ordinary
Householder-QR method lacks locality of mem-
ory reference, the number of storage accesses is
not negligible but is comparable to the other
parts of the computation. This explains why
the performance decreases for large block sizes
of more than b = O(N1/2). To overcome
this problem, it is necessary to use a better
orthogonal decomposition method that is not
only accurate but also has the highest locality
of storage reference. One candidate could be
a block Householder-QR factorization method
that uses some block Householder transforma-
tion (for example, WY T , Y TY T , and also the
block reflector itself).
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7. Addenda

After this paper was accepted, it was found
that the set of solved eigenvectors of the band
matrix by the routine “INVITR”, when the size
of matrix was large, had a tendency to con-
tain some eigenvectors that had large errors in
orthonormality or residual. The errors can be
much reduced by the following modification to
“INVITR”. The part of the original below.
----------------------------------------

DO 360 K=1,N
KMAX=IWK(K)
SUM=-V(KMAX,JJ)
V(KMAX,JJ)=V(K,JJ)
JS=MAX0(1,K-NLD)
IF (JS .GT. (K-1)) GO TO 350
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Table 11 Errors of the 100 smallest eigenpairs
(Frank matrix, N = 3600).

b errorth rmax
20 1.8E-15 3.1E-10
40 1.8E-15 3.7E-10
60 1.6E-15 2.2E-10
80 1.9E-15 2.9E-10

100 1.8E-15 2.8E-10

MMK=M-K
DO 340 J=JS,K-1

340 SUM=SUM+WK(MMK+J,K)*V(J,JJ)
350 V(K,JJ)=-SUM
360 CONTINUE
----------------------------------------
was replaced to as below.
----------------------------------------

DO 360 K=1,N
KMAX=IWK(K)
IE=MIN0(K+NLD, N)
T=-V(KMAX,JJ)
V(KMAX,JJ)=V(K,JJ)
V(K,JJ)=-T
IF ((K+1) .GT. IE) GO TO 360
DO 340 I=K+1,IE

340 V(I,JJ)=V(I,JJ)+T*WK(M-I+K,I)
360 CONTINUE
----------------------------------------
The minimum number of inverse iterations for
each eigenvector was also raised from once to
twice to get higher accuracy. For this, another
line in the original “INVITR” below
----------------------------------------
IF (VNORM .GE. 1.0D0) GO TO 380
----------------------------------------
was replaced to as below.
----------------------------------------
IF(VNORM.GE.1.D0.AND.ITER.GE.2) GOTO 380
----------------------------------------

The above modification reduced the errors of
eigenvectors of the symmetric band matrix B,
and also reduced the errors of eigenvectors of
the original dense symmetric matrix A.

To show that the eigenvectors were much im-
proved by the modification, the maximum er-
rors of orthonormality errorth and the maxi-
mum 2-norm of the residual rmax were com-
puted for the Frank matrix, Hilbert matrix, and
random matrix (symmetric, uniform random)
of size N = 3600, for the block sizes b = 20, 40,
60, 80 and 100.
• For the Frank matrix of 100 smallest eigen-

pairs, there is not so much difference be-
tween Table 3 and Table 11.

• For the Frank matrix of 100 largest eigen-

Table 12 Errors of the 100 largest eigenpairs
(Frank matrix, N = 3600).

b errorth rmax
20 2.1E-15 5.8E-09
40 2.8E-15 1.4E-08
60 1.6E-15 1.0E-08
80 2.0E-15 6.6E-09

100 3.3E-15 9.0E-09

Table 13 Errors of the 100 smallest eigenpairs
(Hilbert matrix, N = 3600).

b errorth rmax
20 2.6E-14 3.0E-12
40 2.3E-14 2.9E-12
60 1.9E-14 1.7E-12
80 1.1E-14 2.7E-12

100 2.5E-14 2.0E-12

Table 14 Errors of the 100 largest eigenpairs
(Hilbert matrix, N = 3600).

b errorth rmax
20 5.0E-14 9.0E-15
40 4.8E-14 6.7E-15
60 1.9E-14 8.7E-15
80 5.8E-14 7.4E-15

100 3.7E-14 7.8E-15

Table 15 Errors of the 100 smallest eigenpairs
(random matrix, N = 3600).

b errorth rmax
20 7.1E-15 4.1E-12
40 4.8E-15 4.6E-12
60 4.4E-15 4.6E-12
80 5.8E-15 6.3E-12

100 3.7E-15 5.8E-12

pairs, there is much difference between Ta-
ble 4 and Table 12. The maximum error
of orthonormality errorth is much improved
from the level of about 1E-10 to about 1E-
15, and the maximum 2-norm of residual
rmax is also much improved from the level
of about 1E-4 to about 1E-8.

• For the Hilbert matrix of 100 smallest
eigenpairs, there is not so much differences
between Table 5 and Table 13.

• For the Hilbert matrix of 100 largest eigen-
pairs, there is much difference between Ta-
ble 6 and Table 14. The errorth is much
improved from the level of about 1E-10 to
about 1E-13. The emax is also much im-
proved from the level of about 1E-11 to
about 1E-14.

• For the random matrix of 100 smallest
eigenpairs, there is much difference be-
tween Table 7 and Table 15. The errorth

is almost same level, but rmax is much
improved from the level of about 1E-5 to
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001| !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
002| ! SAMPLE CODE OF BLOCK REFLECTION: H A H^{T} -> A, WHERE H = I - 2 U U^{T}. |
003| ! COPYRIGHT NOTICE: THIS CODE CAN BE FREELY COPIED,MODIFIED,OR DISTRIBUTED. |
004| !%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
005| SUBROUTINE BREFLECT ( KK, BLKSZ, NBLK, A, RANK, U, P, BS ) |
006| IMPLICIT NONE |
007| INTEGER,INTENT(IN) :: KK ! FOR THE KK-TH STEP OF THE BLOCK H-TRANSFORM. |
008| INTEGER,INTENT(IN) :: BLKSZ, NBLK ! SIZE OF BLOCK AND NUMBER OF BLOCKS. |
009| REAL(8),INTENT(INOUT) :: A(BLKSZ,BLKSZ,(NBLK+1)*NBLK/2) |
010| ! HOLDS ONLY THE LOWER TRIANGULAR PART OF THE BLOCK SYMMETRIC MATRIX A. |
011| ! FOR IB >= JB, THE (IB,JB)-TH BLOCK IS STORED IN A(:,:,INDX(IB,JB)). |
012| ! FOR IB == JB, ONLY THE LOWER TRIANGULAR PART OF DIAGONAL BLOCK |
013| ! IS STORED IN A(:,:,INDX(IB,IB)). |
014| INTEGER,INTENT(IN) :: RANK ! THE EFFECTIVE RANK OF BLOCK VECTOR U. |
015| REAL(8),INTENT(IN) :: U(BLKSZ,BLKSZ,NBLK) ! BLOCK H-VECTOR. (READ-ONLY) |
016| ! THE PART U(:,:,1:KK) WILL NOT BE ACCESSED BY THIS ROUTINE, |
017| ! AND MAY HOLD ALP(1),...,ALP(KK) ALREADY. |
018| REAL(8) :: P(BLKSZ,BLKSZ,NBLK) ! USED AS WORK AREA. |
019| ! THE PART P(:,:,1:KK) WILL NOT BE ACCESSED INSIDE THIS ROUTINE, |
020| ! AND MAY HOLD BET(1),...,BET(KK) ALREADY. |
021| INTEGER,INTENT(IN) :: BS(NBLK) ! THE ARRAY OF THE SIZE OF EACH BLOCK. |
022| ! BS(1),...,BS(NBLK-1) ARE SET TO BLKSZ, AND BS(NBLK) IS SET TO |
023| ! N - BLKSZ * (NBLK-1), WHICH IS THE SIZE OF THE LAST (FRAGMENT) BLOCK. |
024| !========================================================================== |
025| EXTERNAL DSYMM, DGEMM, DSYR2K ! LEVEL-3 BLAS ROUTINES. |
026| REAL(8) G(RANK,RANK), TMP(BLKSZ,BLKSZ) |
027| INTEGER IB, JB, INDX ; INDX(IB,JB) = IB + (JB - 1) * (2 * NBLK - JB) / 2 |
028| ! STATEMENT FUNCTION OF THE INDEX TO THE (IB,JB)-TH MATRIX BLOCK OF THE |
029| ! SYMMETRIC BLOCK MATRIX STORED USING THE SYMMETRY. IB >= JB IS ASSUMED. |
030| !========================================================================== |
031| IF (RANK == 0) RETURN ! DO NOTHING FOR THE NULL TRANSFORMATION. |
032| !-------------------------------------------------------------------------- |
033| ! COMPUTE: A * U ---> P. |
034| !$OMP PARALLEL DO |
035| DO IB = KK+1, NBLK |
036| P(:,1:RANK,IB) = 0.D0 |
037| ENDDO |
038| !$OMP END PARALLEL DO |
039| DO JB = KK+1, NBLK |
040| ! FOR DIAGONAL BLOCK (IB == JB) |
041| CALL DSYMM (’L’, ’L’, BS(JB), RANK, 1.D0, & |
042| A(1,1,INDX(JB,JB)), SIZE(A,1), U(1,1,JB), SIZE(U,1), & |
043| 1.D0, P(1,1,JB), SIZE(P,1)) |
044| ! FOR OFF-DIAGONAL BLOCKS. (IB > JB) |
045| !$OMP PARALLEL DO PRIVATE(TMP) SHARED(RANK,BLKSZ) |
046| DO IB = JB+1, NBLK |
047| CALL DGEMM (’N’, ’N’, BS(IB), RANK, BS(JB), 1.D0, & |
048| A(1,1,INDX(IB,JB)), SIZE(A,1), U(1,1,JB), SIZE(U,1), & |
049| 1.D0, P(1,1,IB), SIZE(P,1)) |
050| CALL DGEMM (’T’, ’N’, BS(JB), RANK, BS(IB), 1.D0, & |
051| A(1,1,INDX(IB,JB)), SIZE(A,1), U(1,1,IB), SIZE(U,1), & |
052| 0.D0, TMP, SIZE(TMP,1)) |
053| !$OMP CRITICAL |
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054| P(:BS(JB),1:RANK,JB) = & |
055| P(:BS(JB),1:RANK,JB) + TMP(:BS(JB),1:RANK) |
056| !$OMP END CRITICAL |
057| ENDDO |
058| !$OMP END PARALLEL DO |
059| ENDDO |
060| !-------------------------------------------------------------------------- |
061| ! COMPUTE: (U^{T} * P) --> G. NOTE, G IS SYMMETRIC SINCE G = U^{T} A U. |
062| G(1:RANK,1:RANK) = 0.D0 |
063| !$OMP PARALLEL DO PRIVATE(TMP) SHARED(RANK,BLKSZ) |
064| DO IB = KK+1, NBLK |
065| CALL DGEMM (’T’, ’N’, RANK, RANK, BS(IB), 1.D0, & |
066| U(1,1,IB), SIZE(U,1), P(1,1,IB), SIZE(P,1), & |
067| 0.D0, TMP, SIZE(TMP,1)) |
068| !$OMP CRITICAL |
069| G(1:RANK,1:RANK) = G(1:RANK,1:RANK) + TMP(1:RANK,1:RANK) |
070| !$OMP END CRITICAL |
071| ENDDO |
072| !$OMP END PARALLEL DO |
073| !-------------------------------------------------------------------------- |
074| ! COMPUTE: (P - U * G) * (-2) --> P. NOTE, THE SYMMETRY OF G IS USED. |
075| !$OMP PARALLEL DO SHARED(BLKSZ,RANK) |
076| DO IB = KK+1, NBLK |
077| CALL DSYMM (’R’, ’L’, BS(IB), RANK, -1.D0, & |
078| G, SIZE(G,1), U(1,1,IB), SIZE(U,1), 1.D0, P(1,1,IB), SIZE(P,1)) |
079| P(:BS(IB),1:RANK,IB) = P(:BS(IB),1:RANK,IB) * (-2.D0) |
080| ENDDO |
081| !$OMP END PARALLEL DO |
082| !-------------------------------------------------------------------------- |
083| ! COMPUTE: A + U * P^{T} + P * U^{T} ---> A. |
084| DO JB = KK+1, NBLK |
085| ! FOR DIAGONAL BLOCK (IB == JB) : |
086| CALL DSYR2K (’L’, ’N’, BS(JB), RANK, 1.D0, & |
087| U(1,1,JB), SIZE(U,1), P(1,1,JB), SIZE(P,1), & |
088| 1.D0, A(1,1,INDX(JB,JB)), SIZE(A,1)) |
089| ! FOR OFF-DIAGONAL BLOCK (IB > JB) : |
090| !$OMP PARALLEL DO SHARED(BLKSZ,RANK) |
091| DO IB = JB+1, NBLK |
092| CALL DGEMM (’N’, ’T’, BS(IB), BS(JB), RANK, 1.D0, & |
093| U(1,1,IB), SIZE(U,1), P(1,1,JB), SIZE(P,1), & |
094| 1.D0, A(1,1,INDX(IB,JB)), SIZE(A,1)) |
095| CALL DGEMM (’N’, ’T’, BS(IB), BS(JB), RANK, 1.D0, & |
096| P(1,1,IB), SIZE(P,1), U(1,1,JB), SIZE(U,1), & |
097| 1.D0, A(1,1,INDX(IB,JB)), SIZE(A,1)) |
098| ENDDO |
099| !$OMP END PARALLEL DO |
100| !-------------------------------------------------------------------------- |
101| ENDDO |
102| END SUBROUTINE BREFLECT |

Fig. 13 Sample block reflection kernel in fortran 90.
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Table 16 Errors of the 100 largest eigenpairs
(random matrix, N = 3600).

b errorth rmax
20 5.9E-15 4.0E-12
40 3.6E-15 4.1E-12
60 9.9E-15 5.1E-12
80 4.1E-15 5.9E-12

100 8.4E-15 6.1E-12

about 1E-11.
• For the random matrix of 100 largest eigen-

pairs, there is also much difference between
Table 8 and Table 16. The errorth is al-
most same level, but rmax is much im-
proved from the level of about 1E-5 to
about 1E-11.

By the above comparisons, the modification
to “INVITR” had an effect to reduce the error
of eigenvectors was shown. (The reason why
the set of eigenvectors solved by the original

INVITR, when the matrix size was large, often
contained not so accurate eigenvectors must be
investigated.)
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