
Vol. 47 No. SIG 7(ACS 14) IPSJ Transactions on Advanced Computing Systems May 2006

Regular Paper

Limits of Thread-Level Parallelism in Non-numerical Programs

Akio Nakajima,†,☆ Ryotaro Kobayashi,† Hideki Ando††

and Toshio Shimada†

Chip multiprocessors (CMPs), which recently became available with the advance of LSI
technology, can outperform current superscalar processors by exploiting thread-level paral-
lelism (TLP). However, the effectiveness of CMPs unfortunately depends greatly on their ap-
plications. In particular, they have so far not brought any significant benefit to non-numerical
programs. This study explores what techniques are required to extract large amounts of TLP
in non-numerical programs. We focus particularly on three techniques: thread partitioning
with various control structure levels, speculative thread execution, and speculative register
communication. We evaluate these techniques by examining the upper bound of the TLP,
using trace-driven simulations. Our results are as follows. First, little TLP can be extracted
without both of the speculations in any of the partitioning levels. Second, with the specula-
tions, available TLP is still limited in conventional function-level and loop-level partitioning.
However, it increases considerably with basic block-level partitioning. Finally, in basic block-
level partitioning, focusing on control-equivalence instead of post-domination can significantly
reduce the compile time, with a modest degradation of TLP.

1. Introduction

Chip multiprocessors (CMPs) are expected
to be the major next-generation microproces-
sors. A CMP exploits thread-level parallelism
(TLP) in addition to instruction-level paral-
lelism (ILP) by executing multiple threads in
parallel. Because of the diminishing returns
from investment of resources in the exploitation
of ILP, TLP is expected to be a major source
of performance improvements.

Recently, commercial CMPs have been an-
nounced with expectations of such improve-
ments. However, for now, effective applications
of CMPs are limited. They are principally in-
tended for explicitly parallel applications (e.g.,
independent multiple programs, on-line trans-
action processing (OLTP), and numerical pro-
grams). Although the CMP architecture im-
proves the performance of such applications 4),
it brings little benefit to implicitly parallel ap-
plications, i.e., non-numerical programs, which
form the largest group of computer applica-
tions. Many academic studies have been car-
ried out 2),8),10),12),13),15),16), but unfortunately
the speedup so far confirmed relative to a single
superscalar processor is insufficient.

In general, two approaches are available to

† Department of Electrical Engineering and Com-
puter Science, Nagoya University

†† Department of Computational Science and Engi-
neering, Nagoya University

☆ Presently with Hitachi Ltd.

find solutions to this problem. One is a bottom-
up approach that consists in proposing a tech-
nique and evaluating the amount of TLP in
a particular architecture. The other is a top-
down approach that consists in examining the
amount of TLP contained in a program by im-
posing only constraints associated with a par-
ticular technique and relaxing all other con-
straints. A study of the latter approach is called
a limit study, because the TLP obtained is the
upper bound. A limit study suggests that the
technique is potentially beneficial if the upper
bound is large enough; otherwise, it is definitely
inadequate.

A pioneering investigation of TLP limit stud-
ies for non-numerical programs was carried out
by Lam and Wilson 9). Their study focuses
on control flows when partitioning a program
into threads, and shows that the limit of paral-
lelism becomes much higher than that of single-
thread execution if a program is partitioned
into control-independent threads at the basic
block level. The results of this study are quite
encouraging as regards the possibility of build-
ing a CMP for non-numerical programs, but
there is still scope for further investigation.

We are interested in two aspects of techniques
that can significantly affect the limit of TLP.
One is the level of partitioning. In general,
a compiler partitions a program into threads
based on control structures, and the level of a
control structure for thread partitioning is the
source of TLP. The levels that usually exist

12



Vol. 47 No. SIG 7(ACS 14) Limits of Thread-Level Parallelism in Non-numerical Programs 13

are functions, loops, and basic blocks. Function
and loop levels are often used in traditional nu-
merical parallelizing compilers (e.g., Stanford
SUIF 3)), because parallelism at those levels is
generally abundant in numerical programs. We
question whether those levels also have a suf-
ficient amount of TLP in non-numerical pro-
grams, or whether the compiler must further
search for TLP at a lower level (i.e., the ba-
sic block level). Basic block level partition-
ing is costly in compile time, and it imposes
more overhead related to parallel thread ex-
ecution (e.g., inter-thread communication and
thread creation) because the size of a thread is
small relative to that in the upper levels. Fur-
thermore, it is technically undeveloped, though
some studies have been carried out 6),16). Thus,
loop or function levels may be more desirable if
their upper bound is large enough.

Another aspect we are interested in is tech-
niques for relaxing control dependence con-
straints. Intuitively, control dependences can
severely limit the amount of available paral-
lelism unless special care is taken, because con-
ditional branches frequently appear in non-
numerical programs. However, their nega-
tive effect can be minimized if the compiler
successfully partitions a program into control-
independent threads with sufficient parallelism.
This study introduces speculative thread execu-
tion and speculative inter-thread register com-
munication as techniques for relaxing control
dependence, and explores their effect on the
TLP limit.

The remainder of this paper is organized
as follows. Section 2 explains the basic as-
sumptions of a multiprocessor and the proces-
sor cores in our simulation. Section 3 models
thread execution associated with thread parti-
tioning levels. Section 4 describes the specula-
tive thread execution and register communica-
tion. Section 5 presents evaluation results. Sec-
tion 6 compares our study with previous work.
Finally, Section 7 concludes the paper.

2. Basic Assumptions

This section describes our basic assump-
tions about processor cores and multiproces-
sors. They are common to any model examined
here in our simulation.

2.1 Processor Core
Each processor core in the multiprocessor

fetches all instructions on the branch-predicted
path simultaneously with infinite bandwidth

until a mispredicted branch is encountered. No
instruction can be fetched until the immedi-
ately preceding mispredicted branch has been
executed. We assume a local-history two-level
branch predictor, PAs 17), with sufficiently large
tables. No branch misprediction penalty is im-
posed. Fetched instructions are stored in an
instruction window of infinite size. Those in-
structions whose data dependences are resolved
are then issued and executed simultaneously.
The latency of any instruction is a single cy-
cle. The number of registers is assumed to be
infinite, and thus all of the anti- and output
dependences are resolved by register renaming.
In addition, memory disambiguation is ideally
removed. The issue width, function units, and
memory ports are assumed to be infinite, and
consequently no resource constraints exist. We
call this model the SP model.

We further define the ORACLE model to find
the upper bound of parallelism in our experi-
ment. It has perfect branch prediction, and the
execution order of its instructions is constrained
only by true data dependences.

2.2 Multiprocessor
An infinite number of threads can be exe-

cuted simultaneously with an infinite number
of processor cores. Memory is shared, with an
infinite number of ports having a single-cycle
access latency. A thread is created at a fork
point with zero-cycle latency. Thread creation
is performed non-speculatively on control de-
pendences unless explicitly described; that is, a
thread is created when the control is guaranteed
to reach its fork point.

Register values are communicated directly,
not via memory, among threads. Note that this
is not a radical assumption in a CMP 7),8),15).
Register communication has a zero-cycle la-
tency with infinite bandwidth, and it is per-
formed non-speculatively on control depen-
dences unless explicitly described; that is, a de-
fined value in a thread is sent to the consumer
threads when the definition is found to reach 1)

the consumer after resolution of control depen-
dences (a detailed discussion will be provided
in Section 4.2). On the other hand, in mem-
ory value communication, the last definition of
a memory variable is assumed to be known a
priori. More generally, memory disambiguation
among threads is assumed to be perfect.



14 IPSJ Transactions on Advanced Computing Systems May 2006

3. Models of Thread Partitioning Lev-
els

This section first describes the definitions of
models associated with thread partitioning lev-
els, and then gives a small example that ex-
plains the models.

3.1 Model Definitions
We define the following four models:
• The FC model partitions a program at the

function level. It attempts to create a new
thread that contains a callee function at
each function call. The current thread con-
tinues beyond the function call.

• The LP model partitions a program at the
loop level. It attempts to create N new
threads at the header of the loop, where
N is the number of loop iterations. Each
thread contains each single-loop iteration
other than the first iteration, and the por-
tion succeeding to the loop; the first iter-
ation is contained in the current thread.
The model knows N a priori, even if it is
determined only dynamically. This implies
perfect speculation regarding the control of
loop iteration, unlike other models. We in-
troduce this perfection to ascertain the up-
per bound of the loop-level partitioning.

• The PD model partitions a program at the
basic block level. At the top of each basic
block, the model attempts to create new
threads, where each starts from its post-
dominating 18) block. Note that block Y is
said to post-dominate X if Y appears on
any path from X to the EXIT on the con-
trol flow graph. From the definition, the
created threads are control-independent of
the current thread.

• The CE model also partitions a program
into control-independent threads at the ba-
sic block level, like the PD model, but lim-
its the starting point of a new thread to
a control-equivalent 14) block, not a post-
dominating block. Note that block X is
control-equivalent with block Y if X dom-
inates 1) Y and Y post-dominates X. Al-
though there are various situations in par-
titioning of the CE model, typically it par-
titions a program at the IF-THEN-ELSE
level. While the PD model can create a
new thread from any part of the IF, THEN,
and ELSE, the CE model can only create
a new thread from the IF part. Therefore,
the number of candidates of partitioning is

reduced. This makes it possible to reduce
the calculation cost incurred by the com-
piler for selecting beneficial partitioning.

In any model, instructions within a thread
are executed as in the SP model.

In our simulation, we optimally partition a
program by referring to a trace. We first calcu-
late the partitioning candidates associated with
a model. Then, in the order that appears on
the trace, we simulate instruction execution for
each candidate for cases of both partitioned and
non-partitioned programs for sufficient long cy-
cles. If the partitioning is found to be benefi-
cial, the candidate is adopted; otherwise, it is
discarded.

To examine the upper bound, we perform
perfect function inlining; that is, we ignore
dependences caused by the conventions of
register-use and function call. For example,
we ignore all operations of stack frame alloca-
tion and deallocation, and those of saving and
restoring preserving registers. Also, we ignore
loop induction variables, because they severely
limit parallelism as loop-carried dependences,
but can be easily removed by the compiler.

3.2 Example
We explain the ORACLE, SP, FC, LP, and

PD models, using a small-scale example. The
CE model is omitted because it can be easily
understood from the PD model.

Consider a program presented by the con-
trol flow graph shown in Fig. 1a. The program
consists of two functions: func1 and its callee
func2. Assume for the sake of simplicity that
each node representing a basic block has a single
instruction that is numbered, and that there are
no data dependences among the instructions.
The edges represent control flows. Branch pre-
dicted flows are highlighted by bold edges.

Consider the trace of this program shown in
Fig. 1b. A letter a or b is attached to each
instruction number to distinguish the specific
instance if necessary. Mispredicted branch in-
structions are circled.

The execution order in each model is shown
in Fig. 2. The instructions in a rectangle with
a broken outline compose a single thread. The
instructions at the same level are executed si-
multaneously. Here, for the sake of simplicity,
we do not consider the benefit of partitioning,
and instead show all of the partitioning candi-
dates. As explained before, we discard candi-
dates that are not beneficial in our simulation.

The ORACLE model executes all of the in-



Vol. 47 No. SIG 7(ACS 14) Limits of Thread-Level Parallelism in Non-numerical Programs 15

Fig. 1 Example program and trace.

Fig. 2 Execution order.

structions simultaneously, because there are no
data dependences (we omit the figure). The
SP model simultaneously fetches instructions
between mispredicted branches, and executes
them in the order that satisfies data depen-
dences. In this example, because there are no
data dependences, all of the fetched instruc-
tions are executed simultaneously. The FC
model creates a new thread with func2 when
call instruction 2 is fetched. The LP model cre-
ates two new threads when instruction 3a in

the loop head is fetched: the second iteration of
the loop and the instructions succeeding to the
loop. Note that the first iteration is included in
the current thread. The PD model creates new
threads starting from 2, 3a, 6a, 3b, 6b, 7, 8,
and 10 when instruction 0 is fetched, because
the blocks to which these instructions belong
post-dominate the block to which instruction 0
belongs.



16 IPSJ Transactions on Advanced Computing Systems May 2006

4. Relaxation of Control Dependence

This section describes speculative thread exe-
cution and register communication, which relax
control dependences.

4.1 Speculative Thread Execution
We can easily infer that control dependences

significantly limit TLP in non-numerical pro-
grams, because branches frequently appear.
Thus, speculative thread execution on branches
should have a great benefit. Control spec-
ulation generally relies on branch prediction
to maximize the benefit. Although poten-
tially there are many ways to realize specula-
tive thread execution, we believe that there are
three approaches: One relies on static branch
prediction. The compiler predicts a likely path,
and adequately partitions the path. Another
approach relies on dynamic branch prediction.
The compiler partitions a program into threads
in such a way that a newly created thread has
no control dependences on its fork point. How-
ever, at run time, the new threads are created
and start execution soon after the fork point is
speculatively fetched. The third approach com-
bines both of the approaches described above.

It is difficult to determine which approach is
the best, because the first approach has a disad-
vantage in that it relies on low-accuracy static
branch prediction, the second approach limits
the opportunity for partitioning to static con-
trol independence, and the third approach is
complicated. While this is an important issue,
it is beyond the scope of this study. In our sim-
ulation, we adopt the second approach. That is,
if the fetched predicted path between consecu-
tive mispredicted branches includes fork points,
each immediately and simultaneously creates
new threads.

4.2 Speculative Register Communica-
tion

As explained in Section 2.2, register commu-
nication must wait until the definition is deter-
mined to reach the consumer. We explain this
constraint using the following code example:

i0: r1 = 1;
i1: if (r2)
i2: r1 = 2;
i3: r3 = r1;

Consider that we partition this program into
two threads: (i0, i1, i2) and (i3). Instruction
i3 uses register r1, but which of the register val-
ues defined by i0 and i2 will reach instruction
i3 is unknown before branch i1 is executed.

Consequently, the communication of register r1
will be delayed until the branch execution, con-
straining TLP.

We can relax this constraint by introducing
speculative register communication that relies
on branch prediction. That is, a register value
can be sent if the definition of that register is
found to be the last on the predicted path. In
the example above, assume that branch i1 is
predicted to be untaken. In this case, the value
of r1 is sent immediately after i0 is executed,
without waiting for the execution of branch i1.

In our simulation, if the fetched instructions
on the predicted path between consecutive mis-
predicted branches include a last register def-
inition instruction in the current thread, such
a register is immediately communicated to the
following threads.

5. Evaluation Results

We built a trace-driven simulator for evalua-
tion. The trace is collected using the simulator
from SimpleScalar Tool Set Version 3.0a 5). The
instruction set is the SimpleScalar/PISA, which
is an extension of the MIPS R10000 instruction
set 11). We use eight benchmark programs of
SPECint95.

5.1 Thread Partitioning Levels and
Control-Speculations

This section evaluates the effect of thread
partitioning levels on TLP, with and without
speculative thread execution and register com-
munication.

Figures 3, 4, 5, 6 show the values of TLP
in the LP, FC, PD, and CE models, respec-
tively. We define the speedup or the TLP for
each model as the IPC of the corresponding
model divided by that of the SP model. The
four bars for each benchmark program repre-
sent the TLP with four different speculation
techniques: no speculation, speculative thread
execution only, speculative register communi-
cation only, and both the speculations. As a
reference, Table 1 shows the IPCs for the SP
and ORACLE models as well as the speedup of
the ORACLE model over the SP model.

As shown in Fig. 3, the FC model exhibits
little TLP without the control speculations in
any benchmark program. This is not surpris-
ing, because branches are very frequent in non-
numerical programs, and consequently con-
trol dependence constraints severely limit TLP.
Since functions are often data-independent,
considering the programming abstraction man-



Vol. 47 No. SIG 7(ACS 14) Limits of Thread-Level Parallelism in Non-numerical Programs 17

Fig. 3 TLP of the FC model.

Fig. 4 TLP of the LP model.

Fig. 5 TLP of the PD model.

ner, we expected high TLP if the speculations
were introduced. Surprisingly, however, the
TLP is still low in most benchmark programs.
We believe the reason for this to be that the
overlap executions of multiple functions are lim-
ited because there are many branches between
function calls; branch misprediction sequential-
izes function execution even though data depen-
dences among functions are fairly loose. The
only exceptions are m88ksim and vortex. Those
benchmark programs exhibit high TLP with
both the speculations. This is because many
dominant function calls fortunately depend on
a small number of branches, and also these

Fig. 6 TLP of the CE model.

Table 1 IPCs of the SP and ORACLE models.

IPC ORACLE
Benchmark SP ORACLE Speedup
compress95 6.4 205.7 32.0
gcc 7.8 275.2 35.5
go 4.5 139.6 31.1
ijpeg 22.7 245.1 10.8
li 8.6 69.5 8.1
m88ksim 6.8 481.9 71.3
perl 10.0 173.2 17.3
vortex 38.3 815.8 21.3
G.M. 10.2 234.6 23.1

Table 2 Weighted average number of loop iterations.

Loop
Benchmark Iterations
compress95 8.2
gcc 2.4
go 2.9
ijpeg 16.8
li 2.4
m88ksim 2.8
perl 3.2
vortex 2.4

branches are highly predictable.
The TLP of the LP model is severely lim-

ited, as shown in Fig. 4. The first reason for
this is that the number of loop iterations is
generally very small. Table 2 shows the av-
erage number of loop iterations, weighted by
the number of times that the control entered
each loop. The only programs for which we
can expect high potential TLP are compress95
and ijpeg. These programs have a few dom-
inant loops that iterate many times (approxi-
mately 50% in the dynamic instruction count),
but they also have many loops with small it-
erations. The fraction of the execution time
with such loops of small iterations limits the
TLP by Amdahl’s law. Moreover, as long as
we look at the dominant loops in these pro-
grams, they have loop-carried dependences that



18 IPSJ Transactions on Advanced Computing Systems May 2006

severely limit the TLP.
Since the PD model can create many control-

independent threads beyond many branches
without a rigid control structure constraint, un-
like the FC and LP models, we expected that
control dependence constraints would have a
weak effect on TLP. Unexpectedly, however,
control-dependence constraints strongly limit
TLP, as in the FC and LP models (see Fig. 5).
The TLP is only 1.7 on average, though it
is larger than that of the FC and LP mod-
els. However, either speculative thread execu-
tion or speculative register communication in-
creases the TLP. Combined, the speculations
significantly further increase the TLP to 10.3
on average. The reason speculative thread ex-
ecution is effective in the PD model is as fol-
lows. The PD model tends to create many new
control-independent threads soon after the cur-
rent thread is created. Considering that there is
no control dependence among the current and
newly created threads, the created threads de-
pend on only a small number of branches. Since
a control path with a small number of branches
is highly predictable with the dynamic branch
predictor, speculative thread execution effec-
tively relaxes the control dependence constraint
on threads. A similar argument can be made for
the effectiveness of speculative register commu-
nication.

As can be seen by comparing Fig. 6 with
Fig. 5, the CE model exhibits a similar amount
of TLP to that of the PD model. The degra-
dation from the PD model is only 11% on av-
erage. On the other hand, the amount of com-
putation the compiler needs to do for partition-
ing is dramatically decreased. Table 3 shows
the number of static partitioning candidates per
basic block in the PD and CE models, and
the percentage reduction realized by use of the
CE model. As shown in the table, the num-
ber of partitioning candidates is significantly re-

Table 3 Number of partitioning candidates per basic
block and percentage reduction.

#Cand./BB %
Benchmark PD CE Reduction
compress95 4.89 0.92 81.2%
gcc 8.07 3.01 62.8%
go 4.48 0.97 78.3%
ijpeg 4.18 1.06 74.8%
li 4.32 1.50 65.2%
m88ksim 30.17 26.90 10.8%
perl 5.44 1.04 80.8%
vortex 4.41 1.88 57.4%

duced in most benchmark programs. Therefore,
partitioning focusing on control-equivalence is
attractive in terms of the extraction of large
amounts of TLP with a short compilation time.

6. Related Work

Olukotun et al. compared the performance
of a CMP with a traditional architecture to
a wide-issue single superscalar processor under
the same die size 12). They found that the par-
allelism achieved by the two processors is com-
parable in non-numerical programs, but they
concluded that the CMP would outperform the
single processor because of the advantage of the
high clock rate. More recently, the Compaq Pi-
ranha project carried out similar performance
comparisons on OLTP by designing a chip 4).
They extrapolated from their ASIC design to a
custom design that a CMP with eight simple
processor cores delivers five times the OLTP
performance of a more complex single super-
scalar processor. Unlike those studies, we ex-
plore the upper bound of the TLP with various
parallel execution techniques in abstract ma-
chines.

As mentioned in Section 1, Lam and Wilson
did pioneering work in a TLP limit study 9).
They found that high TLP can be achieved if a
program is partitioned into control-independent
threads. Unlike their study, ours explores the
effectiveness of various thread partitioning lev-
els and control speculations.

7. Conclusions

In this paper, we have measured the limits of
TLP in non-numerical programs to determine
the effectiveness of three techniques: thread
partitioning with various control structure lev-
els, speculative thread execution, and specula-
tive register communication. We found that,
without the control speculations, little TLP is
extracted from the loop and function levels,
though a small amount is extracted from the
basic block level. On the other hand, with the
control speculations, although their effective-
ness is limited at the loop and function levels,
a large amount of TLP is obtained from the
basic block level. In other words, basic block-
level partitioning with the control speculations
is essential to obtain high TLP.

Multithreading at the basic block level is im-
mature, unlike that at the function and loop
levels. In real systems, there are many hur-
dles to overcome in all areas, from compilers



Vol. 47 No. SIG 7(ACS 14) Limits of Thread-Level Parallelism in Non-numerical Programs 19

to hardware. One of the issues is the large
overhead related to parallel thread execution
including thread creation and inter-thread com-
munication. The size of a thread at the basic
block level usually becomes small in compar-
ison with that at the conventional levels, im-
plying that the overhead is frequently imposed.
With the advantage of integration into a sin-
gle chip, CMP implementation can allow this
overhead to be small in comparison with tra-
ditional on-board implementation, but further
architectural research must be carried out to
boost performance to a satisfactory level.

Another issue of concern is the mispredic-
tion penalty of control speculations. Because
we focused on investigating the upper bound,
we did not take misprediction penalties into ac-
count. However, in real systems, misprediction
penalties considerably degrade performance un-
der high TLP execution. To decrease the mis-
prediction penalty, we must find branch pre-
dictors with higher accuracy, along with meth-
ods of recovering from misprediction with very
small penalties.

From a software point of view, compile time
is a concern. The compiler must optimally se-
lect beneficial partitions from a vast number of
partition candidates, and the compile time in-
creases according to the number of candidates.
In this study, we have described a method that
focuses on control-equivalence rather than post-
domination. This method significantly reduces
the size of the candidate set with a modest
degradation of TLP.

References

1) Aho, A.V., Sethi, R. and Ullman, J.D.:
Compilers: Principles, Techniques, and Tools,
Addison-Wesley Publishing Company, Read-
ing, MA (1986).

2) Akkary, H. and Driscoll, M.: A Dynamic Mul-
tithreading Processor, Proc. 31st Int. Symp. on
Microarchitecture, pp.226–236 (1998).

3) Amarasinghe, S., Anderson, J., Lam, M. and
Tseng, C.: The SUIF Compiler for Scalable
Parallel Machines, Proc. Seventh SIAM Conf.
on Parallel Processing for Scientific Computing
(1995).

4) Barroso, L.A., Gharachorloo, K., McNamara,
R., Nowatzyk, A., Qadeer, S., Sano, B., Smith,
S., Stets, R. and Verghese, B.: Piranha: A Scal-
able Architecture Based on Single-Chip Mul-
tiprocessing, Proc. 27th Int. Symp. Computer
Architecture, pp.39–51 (2000).

5) Burger, D. and Austin, T.M.: The Sim-

plescalar Tool Set, Version 2.0, Technical Re-
port CS-TR-97-1342, University of Wisconsin-
Madison (1997).

6) Kasahara, H., Honda, H., Mogi, A., Ogura,
A., Fujiwara, K. and Narita, S.: A Multi-grain
Parallelizing Compilation Scheme for OSCAR
(Optimally Scheduled Advanced Multiproces-
sor), Proc. Fourth Int. Workshop on Languages
and Compilers for Parallel Computing, pp.856–
864 (1991).

7) Keckler, S.W., Dally, W.J., Maskit, D.,
Carter, N.P., Chang, A. and Lee, W.S.: Ex-
ploiting Fine-Grain Thread Level Parallelism
on the MIT Multi-ALU Processor, Proc. 25th
Int. Symp. on Computer Architecture, pp.306–
317 (1998).

8) Kobayashi, R., Iwata, M., Ogawa, Y., Ando,
H. and Shimada, T.: An On-Chip Multiproces-
sor Architecture with a Non-blocking Synchro-
nization Mechanism, Proc. 25th EUROMICRO
Conference, pp.432–440 (1999).

9) Lam, M.S. and Wilson, R.P.: Limits of Control
Flow on Parallelism, Proc. 19th Int. Symp. on
Computer Architecture, pp.46–57 (1992).

10) Marcuello, P., Gonzales, A. and Tubella, J.:
Speculative Multithreaded Processors, Proc.
1998 International Conference on Supercom-
puting, pp.13–17 (1998).

11) MIPS Technologies, Inc.: MIPS R10000 Pro-
cessor User’s Manual, Version 2 (1996).

12) Olukotun, K., Nayfeh, B.A., Hammond, L.,
Wilson, K. and Chang, K.: The Case for a
Single-Chip Multiprocessor, Proc. Seventh Int.
Conf. on Architectural Support for Program-
ming Languages and Operating Systems, pp.2–
11 (1996).

13) Park, I., Falsafi, B. and Vijaykumar, T.N.:
Implicitly-Multithreaded Processors, Proc. 30th
Int. Symp. Computer Architecture, pp.39–51
(2003).

14) Smith, M.D., Horowitz, M.A. and Lam, M.S.:
Efficient Superscalar Performance through
Boosting, Proc. Fifth Int. Conf. on Architec-
tural Support for Programming Languages and
Operating Systems, pp.248–259 (1992).

15) Sohi, G.S., Breach, S.E. and Vijaykumar,
T.N.: Multiscalar Processor, Proc. 22nd Int.
Symp. on Computer Architecture, pp.414–425
(1995).

16) Vijaykumar, T.N. and Sohi, G.S.: Task Selec-
tion for a Multiscalar Processor, Proc. 31st Int.
Symp. on Microarchitecture, pp.81–92 (1998).

17) Yeh, T-Y. and Patt, Y.: Two-Level Adap-
tive Branch Prediction, Proc. 24th Int. Symp.
and Workshop on Microarchitecture, pp.55–61
(1991).

18) Zima, H. and Chapman, B.: Supercompilers



20 IPSJ Transactions on Advanced Computing Systems May 2006

for Parallel and Vector Computers, Addison-
Wesley Publishing Company, Inc., New York,
NY (1991).

(Received September 21, 2005)
(Accepted December 2, 2005)

Akio Nakajima was born in
1978. He recieved the B.E. and
M.E. degrees from Nagoya Uni-
versity in 2002 and 2004, respec-
tively. Since 2004, he has been
engaged in research and develop-
ment on disk array subsystems

at Systems Development Laboratory, Hitachi,
Ltd.

Ryotaro Kobayashi received
his B.E., M.E., and D.E. de-
grees from Nagoya University in
1995, 1997, and 2001, respec-
tively. Since 2000 he has been
a research assistant in Nagoya
University. His research inter-

ests include computer architecture and multi-
threaded architecture. He is also a member of
IEEE and IPSJ.

Hideki Ando received the
B.S. and M.S. degrees in elec-
tronic engineering from Osaka
University, Suita, Japan, in 1981
and 1983, respectively. He re-
ceived the Ph.D. degree in infor-
mation science from Kyoto Uni-

versity, Kyoto, Japan, in 1996. From 1983
to 1997 he was engaged in the research and
development of digital signal processors for
ISDN, microprocessors for inference machines
of the Japanese fifth-generation computer sys-
tems project, and general-purpose VLIW ma-
chines at the LSI Research and Development
Laboratory, Mitsubishi Electric Corporation,
Itami, Japan. From 1991 to 1992 he was
a visiting scholar of Stanford University. In
1997 he joined the faculty of Nagoya University,
Nagoya, Japan, where he is currently a Profes-
sor in the department of computational science
and engineering. His research interests include
computer architectures and compilers.

Toshio Shimada received his
B.S. and M.S. degrees in Mathe-
matical Engineering and Instru-
mentation Physics in 1968 and
1970 respectively from Tokyo
University. He received his
Ph.D. degree in Information Sci-

ence and Technology in 1992 from Tokyo Uni-
versity. He had worked at Electrotechnical Lab-
oratory from 1970 to 1992. He is currently a
professor at Nagoya University. Dr. Shimada’s
research interests involve low power consump-
tion processors and special purpose LSI.


