軍艦島モニタリングシステムの実装とその運用

岡田 隆三^{1,a)} 黒木 琴海¹ 倉田 成人^{2,b)} 濱本 卓司^{3,c)} 富岡 昭浩^{4,d)} 大胡 拓矢⁴ 田村 博規⁴ 河本 満^{5,e)} 大島 純¹ 渡辺 尚⁶ 猿渡 俊介^{6,f)}

概要:筆者らは,軍艦島における崩壊中の建築構造物の映像,加速度,音のデータを収集することで,建 築構造分野に貢献することを目指している.本稿では,崩壊中の無人都市である軍艦島において,筆者ら が2014年から構築してきた軍艦島モニタリングシステムの実装と,この3年間の運用実績について述べ る.電力やネットワークなどのインフラが存在しない軍艦島において,この3年間,様々な問題に直面し ながらシステムを拡張し続けてきた.現在では映像センサ4台,加速度センサ44台,音センサ38台を用 いて軍艦島の3号棟,30号棟,31号棟,65号棟,70号棟,日給社宅をモニタリングしている.2017年7 月の時点において,2.7 TBのデータを取得できている.軍艦島モニタリングで取得したデータは,構造解 析や軍艦島資料館の公開など研究用途や観光用途で利用している.

キーワード:軍艦島モニタリング,センサネットワーク,システム運用

1. はじめに

半導体技術の進歩で実現された廉価な超小型センサを有線・ 無線ネットワークで接続して物理空間をモニタリングする研究 は、分野を問わず国内・国外で活発に行われている.建築構造 の分野においても、安全性や居住性を評価するために、取得し たセンサデータにシステム同定やデータマイニングなどを適用 して損傷検出やヘルスモニタリングを行う基礎的な研究段階が 成熟期を迎えている [1-5]. 今や実建物を対象にした実用化段階 への移行が始まっており、想定している範囲内での損傷検知や ヘルスモニタリングは可能である.

ありとあらゆる建築構造物にセンサが張り巡らされた後に期 待されるのは災害時の崩壊現象の迅速な検出,究極的には事前 の予測である.例えば,災害時にどの建物があとどのくらいで 崩壊するかなどの情報を避難者や救助活動者が取得することが できれば,避難計画や救助計画を安全に遂行することが可能と なる.

しかしながら,2017 年7月現在時点では,実際の建築構造 物においてどのような過程で建築構造物が崩壊するかなどの実 データはほとんど存在しない.建築構造物の崩壊現象自体が極 めて稀な現象であり,崩壊した建物に現時点でセンサが張り巡 らされている可能性はゼロに近いからである.また,実際の建

- 1 静岡大学大学院総合科学技術研究科情報学専攻
- 2 筑波技術大学產業技術学部產業情報学科
- 3 東京都市大学工学部建築学科
- 4 日本航空電子工業
- 5 産業技術総合研究所
- 6 大阪大学情報学研究科
- ^{a)} okada@aurum.cs.inf.shizuoka.ac.jp
- ^{b)} kurata@a.tsukuba-tech.ac.jp
- $^{\rm c)} \quad thama@tcu.ac.jp$
- d) tomiokaa@jae.co.jp
- ^{e)} m.kawamoto@aist.go.jp
- ^{f)} saru@ist.osaka-u.ac.jp

築構造物において崩壊時のデータを取得しようとすると,人命 が危険にさらされる可能性があり,データを取得することがで きない.現在はシミュレーションを用いて人為的に崩壊現象を 発生させているが [6],経年劣化などによる複雑な崩壊現象まで は網羅できていない.

このような問題に対する解決策の1つとして、本稿では、軍 艦島で崩壊現象のビッグデータを収集する軍艦島モニタリング システムについて述べる.軍艦島は、今まさに建築構造物の崩 壊が進んでいる環境であり、経年劣化などによる建築構造物の 複雑な崩壊現象のデータが取得できる.軍艦島モニタリングシ ステムでは、軍艦島において崩壊中の建築構造物の映像、音、 加速度のデータを収集する.軍艦島でデータを取得することで、 建築構造物が経年劣化で朽ちていく過程のデータや、理想的に は実際に崩壊する瞬間のデータを取得することができる.

本稿の構成は以下の通りである.2節で,軍艦島で構造物を モニタリングするための要件について述べる.3節では,現在 の軍艦島モニタリングシステムについて述べる.4節では,軍 艦島モニタリングシステムで取得したデータを閲覧するデータ 閲覧システムについて述べる.5節では,実装したシステムの 評価として消費電力や運用実績について述べる.6節では軍艦 島モニタリングシステムで得られた知見に関して議論し,最後 に7節でまとめとする.

2. 課題

軍艦島モニタリングシステムは以下の3つの課題を解決する 必要がある.1つ目は、ネットワークの提供である.軍艦島モニ タリングにおいて取得するデータは、映像、加速度、音である. 映像は毎秒縦1280 px、横960 px の解像度で取得するため、カ メラ1つあたり120 kbps、加速度は16 bit 1000 Hz サンプリ ングで取得しているため、加速度センサ1つあたりx, y, zの 3 軸で48 kbps、音は16 bit 48 kHz サンプリングで768 kbps **IPSJ SIG Technical Report**

のデータ量が発生する.これらのデータを収集するための仕組 みが必要となる.

2つ目は、システムを駆動するための電力の提供である. 軍艦 島には既設の電力インフラが存在しない. センサやネットワー クを駆動するためには電力が必要であるため、何らかの方法で 電力を供給する仕組みが必要となる.

3つ目は、データを利活用できる仕組みの提供である. 軍艦 島モニタリングシステムで取得するデータは利用目的毎に観光 データと研究データに分けられる. 観光データは軍艦島資料館 で公開するなどと言った観光客向けに利用される. 研究データ は研究者や開発者が構造物の損壊状況を計測するのに使用する.

3. 軍艦島モニタリングシステム

3.1 全体像

図1に軍艦島モニタリングシステムの全体像を示す.軍艦島 モニタリングシステムは,軍艦島に配備したシステムとクラウ ドに存在するサーバで構成されている.軍艦島に配備したシス テムとデータ共有サーバは,固定回線網とLTEを介して通信が 行われる.軍艦島モニタリングに関わる開発者や研究者,一般 ユーザは,軍艦島で取得している映像や加速度などの生データ や軍艦島に配備したシステムの稼働状況を,データ共有サーバ を介して閲覧する.収集したモニタリングデータは,遠隔地に 配備されたバックアップサーバに定期的にバックアップを行っ ている.

図2に軍艦島内の基地局を設置している建物とモニタリング 対象の建物を示す.3号棟は島内で最も高い場所にあるため, 軍艦島モニタリングの中心となる基地局を設置している.3号 棟には映像センサ3台を設置して軍艦島全体を捉えている.

モニタリング対象の建物は,70 号棟,31 号棟,30 号棟,65 号棟,日給社宅 (16 号棟,17 棟,18 号棟,19 号棟,20 号棟) である.各建物には常時微動を計測する加速度センサ,建物の 異常音を取得するマイクロフォンを設置している.加速度セン サとしては,日本航空電子工業の高精度 MEMS 3 軸加速度セ ンサ [7]を用いている.2017年7月現在では70 号棟,65 号棟, 31 号棟,30 号棟,日給社宅に合計で44台の加速度センサを設 置している.30 号棟南には30 号棟を捉えている映像センサを1 台,中ノ島には軍艦島を島外から捉えている映像センサを1 台設置している.

3.2 3 号棟:映像センサ

図3に3号棟のモニタリングシステムの構成を示す [9].3号 棟には、150Wのソーラーパネル2台、バッテリ5台、チャー ジコントローラ2台、DC-ACインバータ2台、本島にある軍 艦島資料館にセンサデータを伝送する高速無線リピータ、映像 センサ3台、スイッチングハブ2台、PoEインジェクタ2台、 雷サージ防護4台、エコタイマーを設置している.ソーラー パネルは so-ra-150、チャージコントローラは Morningstar の SunSaver MPPT、バッテリは容量100 Ah の SEB100、高速無 線リピータは使用周波数帯が25 GHz・上り下り最大同時通信 速度が56 Mbps・通信距離が最大約10 km である日立国際電気

図1 軍艦島モニタリングシステムの全体像

図 2 軍艦島内のモニタリング対象の建物 [8]

の SINELINK 25G,映像センサは Panasonic の BB-SW175A, スイッチングハブはコレガの CG-SW08TXRX, PoE インジェ クタはバッファローの BIJ-POE-4PR, 雷サージ防護には APC の PNET1GB と SANKOSHA の LAN-P60, エコタイマーは REVEX の ET55D を用いている.

映像センサ3台は建物の大きな劣化を記録・検出するために 軍艦島全域を捉えている.ソーラーパネルで得た電力はチャー ジコントローラを介してバッテリに蓄電する.スイッチングハ ブと PoE インジェクタへの給電はバッテリから DC-AC イン バータを介して行っている.高速無線リピータと映像センサへ の電力供給は PoE インジェクタを介して PoE 給電で行ってい る.映像は夜は取得できないため,DC-AC インバータの先に エコタイマーを接続して6時から19時間のみ給電するよう に設定している.季節による日の出と日の入り時間の変化に対 してはエコタイマーの設定を手動変更することで対応している. 情報処理学会研究報告 IPSJ SIG Technical Report

3 号棟に設置した映像センサは縦 1280 px,横 960 px の画像 を取得している.映像センサに割り当てられた IP アドレスに 対して HTTP でアクセスすることで画像を取得できる.軍艦 島資料館に設置した PC において, crontab を利用して定期的 にプログラムを動作させることで 1 秒毎と 1 分毎の 2 種類の画 像を取得している.

1分毎の画像データは研究者や開発者が概観をチェックする ために取得している.データ共有サーバ上で動作するウェブイ ンタフェースで閲覧できるように設計した.軍艦島資料館に設 置したサーバで画像を取得した後に,データ共有サーバに対し て HTTP を介して送信している.アップロードに使用するプロ グラムはサーバ,クライアントともに PHP で実装している.1 日の画像は撮影の行われない夜の時間帯に軍艦島資料館のサー バにおいてタイムラプス映像に変換された後,HTTP を介して データ共有サーバに送信・公開される.

1秒毎の画像データは研究者・関係者向けと観光者向けの2 つで利用している.研究者・開発者向けでは,前述した1分毎 のデータを閲覧して崩壊等の現象を観測した後,1秒毎のデー タで詳細に現象を解析する.観光者向けとしては,軍艦島資料 館においてリアルタイム映像を配信している.

3.3 30 号棟南:映像センサ

図4に30号棟の自律モニタリングシステムの構成を示 す[9,10].30号棟の自律モニタリングシステムでは,200Wの ソーラーパネル,バッテリ,チャージコントローラ,映像セン サ,ルータ,PoE給電スイッチングハブ,エコタイマーを設置 している.ソーラーパネルで得た電力はチャージコントローラ を介してバッテリに蓄電する.スイッチングハブへの給電は, バッテリからインバータを介して行っている.映像センサへの 電力供給はPoE給電を用いている.30号棟の自律モニタリン グシステム付近に設置した映像センサでは縦1280px,横960 pxの画像を1秒毎に撮影している.撮影方法は3号棟に設置 した映像センサと同様にHTTPでアクセスすることで取得で きる.データ共有サーバにおいて,crontabを利用して定期的 にプログラムを動作させることによって1秒毎の撮影を実現し ている.

3.4 中之島: 映像センサ

軍艦島から見て北西方向の海上にある中ノ島の中腹に映像セ ンサを設置している [9]. 映像センサには Brinno の BCC100 を 用いている. 映像センサの電源には単 3 形乾電池 4 本を利用し ている. 中ノ島の映像センサでは縦 1280 px, 横 720 px の画像 を1分毎に撮影している. 撮影時間は日中のみと設定している. 1分毎の撮影と撮影時間は映像センサの機能を利用して行って いる. この映像センサで取得したデータは転送を行わず, 定期 的に中ノ島に上陸して電源の交換とデータ収集を行っている.

3.5 70 号棟:加速度・音センサ

図5に70号棟のモニタリングシステムの構成を示す[11,12]. 70 号棟には、100 W ソーラーパネル、チャージコントローラ、 バッテリ, 計測用 PC, ルータ, スイッチングハブ, 加速度セン サ5台,音センサ,DAQ,GPSモジュール,DC-DCコンバータ を設置している. ソーラーパネルは so-ra-100, チャージコント ローラは Tracer-2215BN, バッテリは容量 80 Ah の M24MF, 計測用 PC はオペレーティングシステムとして Windows 8.1 を 搭載した LIVA-C0-2G-64G-W-OS, ルータは LTE 対応の SIM を装着したぷらっとホームの OpenBlocks IoT EX1,加速度セ ンサは日本航空電子工業の JA-70SA, 音センサはサンワサプラ イの MM-MC23, DAQ は National Instruments の USB-6218, GPS モジュールには MikroElektronika の MIKROE-1032 を用 いている. ソーラーパネルで得た電力はチャージコントローラ を介してバッテリに蓄電する. ルータ, 加速度センサへの電力 供給はバッテリから行う. 計測用 PC は入力電圧が5 V であ るため,計測用 PC への電力供給はバッテリから DC-DC コン バータを介して行う. 計測用 PC とルータは Ethernet で接続 されている.

70 号棟に設置している PC には, DAQ を介して加速度セン サが,マイク入力端子に音センサが,USB 接続により GPS モ ジュールが接続されている.2時間毎に2分間計測用 PC が起動 して計測を行う.Web サーバへ,HTTP 通信の POST メソッ ドを利用してアップロードしている.アップロードに使用する プログラムは,サーバ側を PHP,クライアント側を C 言語で 実装している.計測用 PC にはリモートアクセス用のプログラ ムが動作しており,遠隔操作によって計測間隔や計測時間を変

情報処理学会研究報告

IPSJ SIG Technical Report

音センサ

加速度センサ

音センサ

31号棟

30号椎

「情報

電力

加速度センサ ••• PC (30)

PC (31)

バッテリ

DC-DC

図 6 31 号棟, 30 号棟のモニタリングシステム 図 7 65 号棟のモニタリングシステム

Vol.2017-MBL-84 No.20 Vol.2017-CDS-20 No.20 2017/8/30

更することができる.

3.6 31 号棟・30 号棟:加速度・音センサ

図6に31号棟と30号棟のモニタリングシステムの構成を示 す[12,13].31号棟には,100Wソーラーパネル,チャージコ ントローラ,バッテリ,計測用PC,ルータ,加速度センサ6 台,音センサ,DAQ2台,GPSモジュール,DC-DCコンバー タを設置している.30号棟には,100Wソーラーパネル2台, チャージコントローラ,バッテリ,計測用PC,加速度センサ9 台,マイクロフォンアレイ2台,DAQ2台,GPSモジュール, DC-DCコンバータを設置している.30号棟は崩壊の可能性が 最も高いため,より詳細な音情報を取得できるように河本が研 究開発したマイクロフォンアレイ[14]を設置している.その他 の機器とソフトウェアは70号棟と同様である.

LTE

ルーら

スイッチングハブ

チャージコントローラ

ソーラーパネル

3.7 65 号棟:加速度センサ・音センサ

図7に65号棟のモニタリングシステムの構成を示す[12,15]. 65号棟には、100Wソーラーパネル2台、チャージコントロー ラ、バッテリ2台、計測用PC2台、ルータ、スイッチングハブ、 加速度センサ8台、音センサ2台、DAQ2台、GPSモジュー ル2台、DC-DCコンバータを設置している.各機器とソフト ウェアは70号棟と同様である.

3.8 日給社宅:加速度センサ・音センサ

図8に日給社宅のモニタリングシステムの構成を示す [12,15]. 日給社宅には、150 W ソーラーパネル2台、チャージコント ローラ、バッテリ2台、計測用 PC3台、ルータ、スイッチン グハブ、加速度センサ16台、音センサ2台、DAQ4台、GPS モジュール3台、DC-DCコンバータを設置している.各機器 とソフトウェアは70号棟と同様である.

4. データ閲覧システム

3節に示した軍艦島モニタリングシステムで取得したデータ を研究者や関係者,観光客向けに公開するシステムを実装した.

4.1 研究者・関係者向けインターフェース

管理用インタフェースは研究者や関係者が軍艦島モニタリン グシステムの運用状況や取得したデータを閲覧するためのイン タフェースである. データ共有サーバ上に PHP で実装してい る. 管理用インターフェースでは,日ごとの加速度と音データ 取得状況ページ,PC ごとの加速度と音データ取得状況ページ, 全ての加速度と音データ取得状況ページを提供している.

図9に日ごとの加速度と音データ取得状況ページの例を示す. 日ごとの加速度と音データ取得状況ページは,任意の日付にお いてどの PC で加速度データ,音データが取得できているかを 確認するために使用する.主に建築構造の研究者が特定の日の 加速度データを取得する際に利用する.取得状況は0時から24 時の1時間刻みで,取得できた場合は緑色,取得できていない 場合は赤色で表示する.加速度データなしは,その1日間で加 速度,音データが取得できていないことを示す.軍艦島モニタ リングシステムは全て太陽光発電でエネルギーを得ているため, 稼働状況の参考として天気概況と日照時間[h]を表示している. 気象データは気象庁ホームページ [16]より取得している.

図 10 に PC ごとの加速度, 音データ取得状況ページの例を 示す. PC ごとの加速度, 音データ取得状況ページでは PC ご とに 1 ヶ月の加速度, 音データの取得状況が確認できる. モニ タリングシステム管理者がシステムの稼働チェックに利用する ことを想定している.取得状況は 0 時から 24 時の 1 時間刻み で,取得できた場合は緑色,取得できていない場合は赤色で表 示する.参考に気象データとして天気概況と日照時間 [h] を表 示している.このページは任意の PC でどのくらい連続した期 間データが取得できているかの確認に使用する.

図 11 に全ての加速度と音データ取得状況ページの例を示す. 全ての加速度と音データ取得状況ページでは全 PC における全 期間の加速度,音データの取得状況が確認できる.システム全 体の稼働状況を把握するのに利用することを想定している.取 得状況は月ごとに1日刻みで,取得できた場合は緑色,取得で きていない場合は赤色で表示している.

図 12 に 1 分間のタイムラプス映像生成状況ページの例を示 す. このページでは映像センサごとに 1 ヶ月の 1 分間のタイム ラプス映像の取得状況が確認できる.カレンダー形式で取得で きた場合は〇,取得できていない場合は×を表示する. 〇×は 1 分間のタイムラプス映像へのリンクになっている.

4.2 観光客向けインタフェース

観光客向けインタフェースは軍艦島資料館に来客した観光客 に軍艦島モニタリングシステムで取得したデータを提供するた

情報処理学会研究報告

IPSJ SIG Technical Report

加速度・音データ 日ごと

日付選択 2017-06-26				
日村: 2017-06-26	諷訳			
2017/06/26	天気概況 (06:00-18:00)	天気概況 (18:00-30:00)	日照時間 [h]	
	🌰 後時々 🏷	•	0.2	
1888.00 詳細版				
マシ 加速度取得状況 (0:00 ン	0-23:00)			
16A	加速度データなし			
16B	加速度データなし			
16C	加速度データなし			
30	加速度データなし			
31				
65A				
658				
70	加速度データなし			
	気象データは、気象庁ホームページ(http://www.data.jma	i.go.jp/obd/stats/data/mdrr/synopday/)を加工して作成		

図 9 日ごとの加速度,音データ取得状況ページ

加速度・音データ PCごと

図 10 PC ごとの加速度,音データ取得状況ページ(31 号棟の計測 用 PC 31 の例)

加速度・音データ 全て

 図 11 全ての加速度,音データ取得状況ページ(31 号棟の計測用 PC 31 の例)

めのインタフェースである.図13に軍艦島資料館で流れている 映像を示す[9].軍艦島資料館では3号棟に設置された3台の映 像センサの現在の映像と前日の1分間タイムラプス映像を順に 流している.この映像はWebページとしてPHPとJavaScript を利用して実装している.軍艦島資料館に来館した観光客がこ の映像を閲覧することができる.

5. 評価

5.1 消費電力

表1に軍艦島モニタリングシステムで使用している機器の消費 電力を示す. SINELINK 25G の最大消費電力は12.95 W, Open-Blocks IoT EX1 の最大消費電力は3.3 W, CG-SW08TXRX の 映像データ 1分間のタイムラプス映像

図 12 1分間のタイムラプス映像生成状況ページ(映像センサ3号 棟北東の例)

図 13 軍艦島資料館で流れている映像

表1 機器の消費電力

機器	型番	消費電力 [W]
高速無線リピータ	SINELINK 25G	12.95
ルータ	OpenBlocks IoT EX1	3.3
スイッチングハブ	CG-SW08TXRX	5.0
PoE インジェクタ	BIJ-POE-4PR	66
映像センサ	BB-SW175A	6.2
計測用 PC	LIVA-C0-2G-64G-W-OS	14.9
加速度センサ	JA-70SA	0.17
DAQ	USB-6218	1.25
GPS モジュール	MIKROE-1032	0.33

最大消費電力は 5.0 W, BIJ-POE-4PR の最大消費電力は 66 W, BB-SW175A の最大消費電力は 6.2 W, LIVA-C0-2G-64G-W-OS の最大消費電力は 14.9 W, JA-70SA の最大消費電力は 0.17 W, USB-6218 の最大消費電力は 1.25 W, MIKROE-1032 の最大消費電力は 0.33 W となっている.

5.2 映像センサの運用実績

2017 年 7 月現在, 軍艦島モニタリングシステムにおいて映像 データは 2673 GB 取得できている.内訳は映像センサ 3 号棟北 東が 424 GB, 映像センサ 3 号棟北西が 849 GB, 映像センサ 3 号棟南西が 1194 GB, 映像センサ 30 号棟南が 206 GB である.

図 14 に映像センサ 3 号棟北東の,図 15 に映像センサ 3 号 棟北西の,図 16 に映像センサ 3 号棟南西の,図 17 に映像セン サ 30 号棟南の画像データ取得状況を示す.縦軸が取得データ 量 [GB],横軸が日数である.日数 0 が 2015 年 2 月 24 日を意 情報処理学会研究報告

IPSJ SIG Technical Report

図 17 映像センサ 30 号棟南の画像データ取得状況

味している. 300 日を過ぎたあたりで勾配が変わり,その後安 定動作していることが分かる. これは 2016 年 2 月にバッテリ を増設したことに起因している.

30 号棟南の映像センサでは 700 日付近で勾配が変化した後, 800 日付近でデータが取得できなくなっている. 700 日以前で は 20 W のソーラーパネルを用いていたが,発電量が足りず, 安定動作していなかった. ソーラーパネルとバッテリを大容量 の物に交換することで,安定した動作が得られるようになった. 800 日付近からデータが取得できていないのはソフトウェア的 な不具合であったのではないかと考えている. 2017 年 8 月 2 日 に現地に調査に行った所,ハードウェア的には問題はなく,シ ステムを全てリセットすると動作を再開した.

5.3 加速度センサと音センサの運用実績

2017 年 7 月現在, 軍艦島モニタリングシステムにおいて加速 度データと音データは 67.9 GB 取得できている. 図 18 に計測 用 PC 70 の, 図 19 に計測用 PC 31 の, 図 20 に計測用 PC 30 の, 図 21 に計測用 PC 65A の, 図 22 に計測用 PC 65B の, 図 23 に計測用 PC 16A の, 図 24 に計測用 PC 16B の, 図 25 に計 測用 PC 16C の加速度データ取得状況を示す. 縦軸が取得デー タ量 [GB], 横軸が日数である. 日数 0 が 2015 年 2 月 24 日を 意味している. 計測用 PC 31, 30, 65A, 65B は安定して計測 が行えているが, 70 号棟, 31 号棟, 30 号棟, 65 号棟, 日給社 宅に関しては最大で 6 ヶ月ほどの期間で計測が行えていない期 間がある.

図 25 日給社宅の計測用 PC 16C の加速度データ取得状況

計測できていない期間の発生は以下の2つが原因である.1 つ目は、電力の問題である.軍艦島には電源が存在しないため、 太陽光発電で得たエネルギーでモニタリングを行っている.得 た電力はバッテリに蓄電しているが、天候の悪い日が続くとエ ネルギーが尽きてしまい計測が行なえなくなる.また、エネル ギーを効率よく利用するため、一部の計測 PC では計測を行わな い期間はスリープ状態に移行している.これらの PC が計測の

図 26 台風前の 70 号棟

図 27 台風後の 70 号棟

ため起動する際に何らかの原因で正常に起動が行えず,応答不能になってしまうことがある.この状態では遠隔でソフトウェ アリブートを行うことができず,軍艦島に赴いてハードウェア リブートをする必要があるため,長期間計測が行えなくなって しまう.

2つ目は,機器の故障である.軍艦島は夏になると高温にな るため,軍艦島に設置した機材は長時間高温に晒されることと なる.機材の使用温度範囲内であっても,長期間使用している と故障する場合がある.これまでに故障と考えられるシステム の停止が複数回起こり,システムの交換や回収を行っている.

5.4 センサデータの解析結果

これまで得られたデータから建築構造物の様々な情報が抽出 できている.3号棟で取得した映像データでは、2015年6月に 台風が発生した際に屋根が崩壊していることが確認できている. 図 26,27に台風前後の70号棟の屋上の映像を示す.図26が 台風前,図27が台風後である.図26,27を比較すると台風後 には赤丸で囲まれた崩れている部分が大きくなり、緑丸で囲ま れた部分が凹んでいることが分かる.その他にも、加速度セン サ、音センサ、映像センサから様々な情報を抽出することに成 功している [7,9–13,15,17,18].

6. 議論

図 28 に軍艦島モニタリングシステムのプロトコルスタック を示す.図 28 と 3 節のシステム構成から分かる通り,軍艦島 モニタリングシステムは多様な技術を組み合わせた複雑なシス

図 28 軍艦島モニタリングシステムのプロトコルスタック

テムとなっている.複雑となった要因は以下の3点である.

1つ目の要因は、計測器をツールとして扱う研究者・技術者 はWindows ベースでシステムを構築する傾向にあることであ る.軍艦島モニタリングプロジェクト開始時の予定では、計測 システムは、リモートからコマンドラインベースで作業できる こと、長期稼働時の安定性の観点から Linux 主体で構築したい と考えていた.しかしながら、計測システムを扱う研究者・技 術者はWindows 上、特に LabVIEW を用いて計測システムを 構築する傾向がある.計測機器のドライバ自体もWindows し か対応していないことが多い.結果として、計測システム側は Windows 主体で、ネットワーク側は Linux 主体で構築するこ ととなった.

2つ目の要因は、軍艦島内では、無線ネットワーク技術が使 い辛いことである. 軍艦島モニタリングプロジェクト開始時の 予定では、できるだけ共通の仕組みで軍艦島モニタリングシス テムを構築する予定であった.具体的には、1) 各センサ拠点か ら3号棟に対して IEEE 802.11 あるいは IEEE 802.15.4 でデー タを配送、2)3号棟から軍艦島資料館に無線アクセスシステム で広帯域伝送の2層構造でネットワークを構築することを想 定していた.しかしながら、軍艦島は建物が密集している上に 中央が丘状になっている特殊な地形であるため、水平方向にお ける完全な見通しでの通信ができる状況が少ない.見通しが得 られない環境では、距離的には数十メートルであっても IEEE 802.11 や IEEE 802.15.4 では通信できない状況が多く発生し た [19]. 無線 LAN を部分的に用いることも検討したが,安定 して動作させることはできず,最終的には3号棟は高速無線リ ピータ,有線で通信できるところは無理してでも Ethernet, そ れ以外の場所は LTE を用いることとなった.

3つ目の要因は、電力の制約である.前述した通り、当初の予 定は各センシング拠点毎にソーラーパネルを具備して、各セン シング拠点同士は無線で自律的なネットワークを構築すること を想定していた.しかしながら、崩壊中である軍艦島ではソー ラーパネルを設置する場所を見つけるのも一苦労であり、常に 理想的な場所にソーラーパネルを設置できるとは限らなかった. また、ソーラーパネルを設置するのにも膨大な労力を必要とし た.例えば 200 W のソーラーパネルは約 1.6 m × 0.8 m で重 さ 16 kg と大きい.さらに、バッテリに関しても 100 Ah のも

情報処理学会研究報告

IPSJ SIG Technical Report

のは 32 kg である. 軍艦島への渡航は漁船で行っているが,漁 船への荷積み,漁船からの荷卸しをしなければならない. 瓦礫 の中の運搬やエレベータの無い老朽化した建物の屋上に持って 上がる必要もある. ソーラーパネルが台風等で飛ばないように するためにはある程度の重量も必要であるため,軽量な商品で は解決できない点も障害となった.

以上の要因によって複雑化したシステムによって,問題が生 じた際に問題箇所の切り分けが難しくなった.一度軍艦島に設 置した後は,データがアップロードされていることでしか動作 確認ができない.しかしながら,問題の原因は多様であり,遠隔 から分かることは限られている.例えば,悪天候が続いてバッ テリ切れを起こしてシステム全体が動作不能となったり,ソー ラーパネル・アンテナ・センサがおそらく塩害の影響で故障し たり,ネットワーク機器が熱暴走で故障したり,当初グローバ ル IP を提供していた某社の LTE 回線が何の前触れもなくプラ イベート IP に切り替えられたりするなど様々な要因がデータ 収集の障害となった.

最も多発した問題は計測装置がスリープ状態から復帰しない ことであった.軍艦島モニタリングにおいてソーラーパネルを 増設するのには膨大な労力が発生するため,計測装置を間欠動 作させることで消費電力を節約する仕組みを導入することとし た [20,21].しかしながら,前述した Windows ベースの計測シ ステムにおいて,スリープからの復帰に失敗する事象が多発し た.スリープから復帰することに失敗すると遠隔からはリセッ トをすることができなかったため,結果として計測できない期 間が長期化することとなった.

また,当初は軍艦島モニタリングで取得したデータをクラウ ドサービスで蓄積することを想定していたが,現状のクラウド サービスは膨大な量のセンサデータの蓄積には向いていないこ とが分かった.2017 年7月時点で2.7 TBのデータが取得でき ている.これらのデータは今後も増え続けることが予想される. もしこれらのデータ量をクラウドサービスで蓄積すると,月当 たり数万円の利用料が発生する.クラウドサービスでは蓄積し たデータが数+GB程度であれば月当たり数千円で利用可能で あるため,十倍以上のコストが発生することは予想外であった. データ蓄積に要する費用を抑えるために,現在はLinuxサーバ と NAS を組み合わせて大学内にバックアップシステムを構築 している.

7. おわりに

本稿では,軍艦島モニタリングシステムの実装とその運用に ついて述べた.現在はシステムの安定化に向けた検討をさらに 進めている.

謝辞

本研究は科学研究費補助金(26289194,代表:濱本卓司)と 科学研究費補助金(17KT0042,代表:猿渡俊介)の助成を受け たものである.本研究の遂行をサポートして下さった長崎市世 界遺産推進室に感謝致します.

参考文献

- Natke, H. G., Tomlinson, G. R. and Yao, J. T. P.: Safety Evaluation Based on Identification Approaches, Vieweg (1993).
- [2] Natke, H. G. and Cempel, C.: Model-Aided Diagnosis of Mechanical Systems, Springer (1997).
- [3] Haldar, A.: Health Assessment of Engineered Structures, World Scientific (2013).
- [4] 濱本卓司:建築物の耐震性能評価のためのモニタリング技術, 計測自動制御学会 計測と制御, Vol. 46, No. 8, pp. 605–611 (2007).
- [5] 濱本卓司:建築物の構造ヘルスモニタリング,基礎工 特集基礎工におけるモニタリングとその活用, Vol. 43, No. 11, pp. 17-20 (2015).
- [6] 金裕錫,壁谷澤寿海,松森泰造,壁谷澤寿一:E-ディフェン スによる実大6層鉄筋コンクリート耐震壁フレーム構造の破 壊過程究明に関する解析的研究,日本建築学会構造系論文集, Vol. 74, No. 641, pp. 1327–1334 (2009).
- [7] 富岡昭浩,濱本卓司,倉田成人,猿渡俊介:軍艦島モニタリン グプロジェクト(その2)長期振動計測システム,2016年度 日本建築学会大会(2016).
- [8] 軍艦島モニタリングプロジェクト, https://www-int.ist. osaka-u.ac.jp/battleship/.
- [9] 濱本卓司,倉田成人,猿渡俊介,富岡昭浩:軍艦島モニタリン グプロジェクト(その9)視覚センシングと聴覚センシングと の融合,2017年度日本建築学会大会(2017).
- [10] 倉田成人,濱本卓司,猿渡俊介,富岡昭浩:軍艦島モニタリン グプロジェクト(その4)日本最古の鉄筋コンクリート造集合 住宅30号棟の画像モニタリング,2016年度日本建築学会大 会(2016).
- [11] 関根明日香,濱本卓司,富岡昭浩,倉田成人,猿渡俊介:軍艦 島モニタリングプロジェクト(その3)長期モニタリングに基 づく軍艦島70号棟の動的挙動に関する考察,2016年度日本 建築学会大会(2016).
- [12] 富岡昭浩,濱本卓司,倉田成人,猿渡俊介:軍艦島モニタリン グプロジェクト(その6) MEMS 加速度センサネットワーク の構成,2017年度日本建築学会大会(2017).
- [13] 関根明日香,鶴岡湧,濱本卓司,倉田成人,猿渡俊介,富岡昭 浩:軍艦島モニタリングプロジェクト(その7)30号棟の振動 計測と劣化調査,2017年度日本建築学会大会(2017).
- [14] 河本満,幸島明男,車谷浩一:音環境理解を基にした音環境模様のモニタリング技術,電子情報通信学会論文誌,Vol. J99-D, No. 10, pp. 1089–1093 (2016).
- [15] 鶴岡湧,関根明日香,濱本卓司,倉田成人,猿渡俊介,富岡昭浩 :軍艦島モニタリングプロジェクト(その8)日給社宅と65号 棟の振動計測と劣化調査,2017年度日本建築学会大会(2017).
- [16] 気象庁:最新の気象データ, http://www.data.jma.go.jp/ obd/stats/data/mdrr/synopday/.
- [17] 濱本卓司,倉田成人,猿渡俊介,富岡昭浩:軍艦島モニタリン グプロジェクト(その1)研究計画と予備計測/長期計測,2015 年度日本建築学会大会(2015).
- [18] 鶴岡湧,崔井圭,濱本卓司:軍艦島モニタリングプロジェクト (その5)ウェアラブルカメラとドローンを用いた軍艦島 30号 棟の劣化調査,2016年度日本建築学会大会(2016).
- [19] 岡田隆三,小寺志保,富岡昭浩,倉田成人,濱本卓司,猿渡俊介 :軍艦島全域センサネットワーク構築に向けた検討,第78回 全国大会講演論文集,Vol. 2016, No. 1, pp. 229–230 (2016).
- [20] 黒木琴海,小寺志保,倉田成人,濱本卓司,猿渡俊介:環境発電 型センサシステムのためのデータ中心型タスクスケジューリン グ方式,情報処理学会論文誌, Vol. 57, No. 11, pp. 2475–2488 (2016).
- [21] Kuroki, K., Kodera, S., Kurata, N., Hamamoto, T. and Saruwatari, S.: Poster: Data-Centric Task Scheduling for Battleship Island Monitoring, *Proceedings of the 13th* ACM Conference on Embedded Networked Sensor Systems (SenSys '15), ACM, pp. 417–418 (2015).