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Abstract--The research of energy-efficient heterogeneous multiprocessor scheduling is becoming 
more and more popular today. The problem can be addressed as allocating tasks to the right core 
and set the appropriate operating frequency. In this paper, we present a task allocation algorithm 
for a single-ISA heterogeneous system consisted of two different types of cores: high-performance 
core and energy-efficient core. Based on the execution-variance of two types of cores, a heuristic 
that approximate the optimal load distribution is proposed. We experimentally simulate our method 
and compare it to state-of-the-art solutions, resulting average in about 20% less energy consumption 
(and up to 48% for some cases) with guaranteeing the deadline of all tasks. 

 

1. INTRODUCTION 
The energy consumption is a critical issue for real-time 

tasks which determines the utility of battery life directly 
in embedded system. The breakdown of Dennard Scaling 
causes most CPU manufactures to focus on multi-core 
processors as an alternative way, while with the diverse 
needs for performance, the research on heterogeneous 
system becomes more and more popular in recent decades. 
A single-ISA heterogeneous multi-core has attracted 
much attention as a solution to minimize energy while 
improve performance, where all the cores on the chip 
share the same instruction set architecture but differ with 
power and performance characteristics. A typical 
example of single-ISA multi-core is big.Little 
architecture, which consists of two different kinds of 
cores, i.e. EXYNOS 5 Octa series [1] employ Cortex-A7 
as energy-tuned core, which named ‘Little core’, and 
choose Cortex-A15 as high-performance core, which 
named ‘Big core’. 

Several studies have been made on the energy-efficient 
scheduling of big.Little architecture, and the most simple 
and intuitive scheme is Lower-power First, for which the 
lower-power cluster was always first set to run at the 
maximum frequency until the tasks violate the deadline. 
For example, to fully utilize the lower-power cores, Liu 
[2] adopted the task-splitting approach to make little cores 
operate at full speed. Besides, according to the algorithm 
proposed by Pagani [3], the allocation result derived on 

platform EXYNOS 5422 is the same as Lower-power 
First. 

Honestly, the power consumption of big core is always 
higher than little core because of its architecture design, 
but in terms of energy consumption for real-time system, 
we have to take heterogeneity into consideration. In this 
paper, we define a key factor
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execution-variance of two cores, where WCETL,i and 
WCETB,i are Worst-Case-Execution-Time of a real-time 
task τi	 on little and big cores, respectively. The 
contributions of this work are summarized as follows: 

1) We extend the previous algorithms to consider each 
core is DVFS-Capable based on the single-cluster design 
supported by dynamIQ technology, and propose tasks 
allocated by the ordering of execution-variance rdif can 
reduce system utilization and save more energy. 

2) We analyze the properties of execution-variance rdif 
and propose a simplified method to calculate the desired 
utilization distribution, and based on the calculated result, 
we propose a heuristic to approximate the distribution.  

2. SYSTEM MODELS 
In this section, we present the platform model, task 

model, as well as the energy model used in this work. 
2.1. Platform Model 
  We consider a heterogeneous multi-core system which 
consists of two types of processing elements: high-
performance (out-of-order) and efficiency-tuned (in-
order), where both the elements composed with N 
number of processors. We use πL and πB to denote the *Graduate School of Information Science, Nagoya University 
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cluster composed with little cores and big cores, 
respectively. The two types of cores differ by their power 
and performance characteristics but share the same ISA. 
Based on the single-cluster design supported by next 
generation DynamIQ big.Little technology [4], we 
assume each core is DVFS-capable. The power 
consumption at frequency f is presented as following 
formulation [5]: 
            βα += kffP )(               (1) 

Where the first term is the frequency-dependent power 
consumption and the second term is the frequency-
independent power consumption. 
2.2. Task Model 

We model a real-time application by considering a 
task set Γ consists of n independent periodic real-time 
tasks },...,,{ 21 nτττ . Task Γ∈iτ is characterized by 
{WCETL,i, WCETB,i, Ti, Di}, where Ti is period time, 
which is assumed to be equal to its relative deadline Di, 
i.e. ii DT = . The utilization of task τi	allocated to core j is 
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, . As we consider two types of cores only in this 

paper, core j is either big core or little core. 
2.3. Task Model 

Considering different tasks may have different periods, 
the energy consumption of system can be calculated 
within the minimum repeating interval, hyperperiod time 
L, where }):({ Γ∈= iiTLCML τ . With the assumption of 
system and task model above, the energy consumption of 
a core over the interval L is the sum energy in active mode 
and idle mode, which can be calculated as follows:  
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Where, fj,MAX is the maximum frequency, Uj is the 
computational of Γ, Pidlej is the idle power. 

3. TASK ALLOCATION  
3.1 Desired Utilization Division 

For a given task set, the task allocation for the 
big.Little platform can be concluded as dividing the total 
utilization U into two parts U1 and U2, where U1 denotes 
the utilization capacity of tasks that allocated to the little 

cluster ∑
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,1 , and U2 denotes the utilization 

allocated to the big cluster ∑
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previous method DL-CAP [6], the optimal distribution is 
formulated as a convex optimization problem by dividing 
the load into as many fragments as cores and splitting 
each fragment into as many sub-fragments as tasks. As 
their solution has to be solved by specified toolbox, the 
tasks are generated in the condition that the optimal 
division is known in advance, which makes their method 
not general. We propose a simplified solution for the 
convex optimization problem by using execution-
variance rdif. 

Theorem 1 If a platform consists of two different 
cores, assigning tasks with large rdif to big core and tasks 
with small rdif to little core guarantees the minimum 
system utilization. 

Proof. Suppose that, U1 and U2 are optimal utilization 
distribution for a given task set. If part of the utilization 
Uy from big core is picked out to switch to little core, 
where for Uy the corresponding execution-variation is ry; 
In this case, we choose to switch Ux from little core to big 
core, where Ux=Uyry, to guarantee the utilization of little 
core equals U1. Considering Ux is selected from little core, 
we can get the execution-variance rx meeting: yx rr ≤ . 

The variation of system utilization after switching can 

be presented as: )()(' xy
x
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rUrU +  is the additional utilization, the 

second term )( xy UU + is the removed utilization. As 
yyx rUU = , by replacing Ux with Uyry, U’ can be simplified 

as: y
x

yy U
r
rUU −=' . As yx rr ≤ , we can get U’≥0, which 

means, switching tasks that violate the ordering rule of rdif 
must increase the total system utilization.■ 

According to previous work, load-balance has been 
proven to be most energy efficient for homogeneous 
system, combined with the above theorem, the desired 
utilization distribution of a task set ranked in increasing 
order of rdif can be calculated as follows:  
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Where n is the number of tasks, m is the first m tasks 
selected to allocate to little cluster, x is the partition of the 
first m+1 task divided to little cluster. All possible m and 
x, with minimum step of 0.01, are tested to find the most 
energy-efficient division of utilization. Consider that, 
after the utilization is divided into two parts, each cluster 
is executed at a single voltage/frequency, specifically, the 
Single Frequency Approximation (SFA) scheme [7] 
which aims at finding the minimum frequency can be 
used for calculating the operating frequencies f1 and f2 for 
little and big clusters, respectively. 
3.2. Proposed Task Allocation Algorithm 

As part 3.1 has introduced the calculation method of 
desired utilization distribution, in this section, we 
describe how the tasks are allocated to heterogeneous 
systems by DL-EVBA (Desired-Load Execution- 
Variance- Based Algorithm).  
Algorithm 1: DL-EVBA 
Input: task set Γ, platform П； 

Output: task allocation queue Θ and frequency settings of each 

core Q; 
1: Function DL-EVBA (П,Γ) 

2: order tasks in order of increasing rdif 
3: (U1,U2,f1,f2)<--Utilization-Division-Calculation (П, Γ)                   
4: (Θ and Q)<--m-pwr(Γ, f1,f2)                     
5:  if Θ!= ∅ 

6：    (Θ and Q)<--m-pwr(Γ, fL,MAX, fB,MAX)   

7:  end if          
8: return Θ and Q   
9: end Function       

 Algorithm 1 gives a general description of our 
heuristic method, denoted by DL-EVBA. Tasks are first 
ordered by their execution-variance in line 2, then desired 
utilization division and minimum operating frequencies 
in line 3 are calculated as part 3.1. Available capacities of 
each cluster are first set as f1 and f2 as line 4, but if tasks 
cannot be finished allocating, the capacities are restored 
to the maximal frequencies fL,MAX and fB,MAX as line 6. In 
this paper, to make fair comparison to DL-CAP, 
algorithm m-pwr is chosen to allocate tasks between the 
same cores in line 4 and 6, for which the minimum power 
consumption core is always selected for each task [6].  
 
4. EXPERIMENTAL EVALUATION 

In this section, we present the evaluation results of 

proposed method compared to two state-of-the-art related 
approaches: Lower-power First which aims at allocating 
more tasks to energy-efficient cores by Largest-Task-
First (LTF) strategy [2,3], and DL-CAP which uses a 
heuristic to approximate the load distribution [6]. 

In the experiment, the power parameters are obtained 
from [6], where they tested the experiments based on real 
platform ODROID XU-3, and the energy consumption is 
measured as a function of two task set factors: the 
execution-variance rdif and the total utilization U on little 
core. rdif is the reflection of the difference between two 
types of cores and U is a measurement of the workload. 
The task generation procedure is summarized as follows: 
l rdif is selected from a uniform random distribution 

in the range of [2.8, 4.2], which is calculated from 
the performance variance between Cortex-A7 and 
Cortex-A15 [1]. 

l When the total utilization U is fixed, the utilization 
of each task on little core uL,i is generated in the 
range of [0.01, MTU] one by one, where MTU is the 
maximum utilization of each task. Then the 
utilization of the same task on big core can be 

computed as: 
idif
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l For each task, period Ti is randomly generated using 
a uniform distribution in the interval [1, 1000] [8], 
then the WCET is computed as: WCETL,i=TiuL,i, 
WCETB,i=TiuB,i.   

All the experimental results are plotted as Figure 1 and 
2. We generate 100 task sets and calculate the average 
normalized energy consumption for each experiment. 

1) Impact of Execution-Variance: In the first 
experiment, as Fig.1, we fix the total utilization U as 10, 
MTU as 0.3 and vary the upper bound of rdif interval. Here 
U=10 is randomly selected, as the same results can be 
obtained when U is different. As we can see, compared to 
Lower-power First, both the normalized energy of DL-
CAP and DL-EVBA are decreased because of larger rdif. 
Actually, When rdif is from [2.8, 3.5], the average saved 
energy is 14.6%, while when rdif is from [3.5, 4.2], the 
average saved energy is up to 23.1%. The reason of more 
saved energy is that larger rdif contributes to better 
performance of big core. Briefly, when rdif is increased, 
the execution time for the same task operated on big core 
is shortened, in that case, Lower-power First becomes 
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energy wasting. Besides, DL-EVBA algorithm separates 
tasks into two sections in the first phase which effectively 
utilizes the priorities of rdif and reduce the system 
utilization, as a result, when the value of rdif increases, 
DL-EVBA saves more energy.  

2）Impact of Per-Core-DVFS Assumption: In this 
experiment, we compare our method DL-EVBA to well 
performed DL-CAP. We fix the range of rdif as [2.8,4.2], 
MTU as 0.3 and vary the total utilization U. Fig.2 shows 
that regardless of the workload, Per-Core-DVFS 
assumption (“different f”) is always more energy-
efficient than Per-Cluster-DVFA assumption (“fixed f”). 
Besides, rdif-based ordering does not save energy for the 
case of “fixed f”, but saves energy for “different f”. The 
reason is that utilization-based allocation makes 
workload more balanced, while rdif-based allocation 
guarantees less system utilization. When the frequency of 
the cluster is fixed, frequency is determined by the 
maximum utilization, as a result, balanced-workload is 
more energy-efficient. But when we assume frequency is 
different, frequency of each core is determined by their 
own utilization, in this case, less utilization makes less 
energy.     

  
Figure 1. Normalized energy with respect to Lower-power First  

 
Figure 2. Normalized energy with respect to DL-CAP  

 
5.CONCLUSION 

The Desired-Load Distribution method [6] is studied 
in this work to efficiently schedule real-times tasks in 
heterogeneous system. We simplify the calculation 
method by using execution-variance and propose the DL-
EVBA algorithm to allocate tasks. In contrast to existing 
allocation approaches, we propose to order tasks by rdif 

based on the assumption that frequencies of the cores 
from one cluster could be different. The experimental 
results show the efficiency of our proposed method. For 
the future work, an alternative approach AMBFF [9] will 
be used for further comparison and task migration will be 
considered to make improvements.   
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