
Energy-Efficient Allocation of Periodic Real-Time Tasks for
Heterogeneous System by Execution-Variance
Yang Qin*, Gang Zeng†, Ryo Kurachi*, Yutaka Matsubara* and Hiroaki Takada*

Abstract--The research of energy-efficient heterogeneous multiprocessor scheduling is becoming
more and more popular today. The problem can be addressed as allocating tasks to the right core
and set the appropriate operating frequency. In this paper, we present a task allocation algorithm
for a single-ISA heterogeneous system consisted of two different types of cores: high-performance
core and energy-efficient core. Based on the execution-variance of two types of cores, a heuristic
that approximate the optimal load distribution is proposed. We experimentally simulate our method
and compare it to state-of-the-art solutions, resulting average in about 20% less energy consumption
(and up to 48% for some cases) with guaranteeing the deadline of all tasks.

1. INTRODUCTION
The energy consumption is a critical issue for real-time

tasks which determines the utility of battery life directly
in embedded system. The breakdown of Dennard Scaling
causes most CPU manufactures to focus on multi-core
processors as an alternative way, while with the diverse
needs for performance, the research on heterogeneous
system becomes more and more popular in recent decades.
A single-ISA heterogeneous multi-core has attracted
much attention as a solution to minimize energy while
improve performance, where all the cores on the chip
share the same instruction set architecture but differ with
power and performance characteristics. A typical
example of single-ISA multi-core is big.Little
architecture, which consists of two different kinds of
cores, i.e. EXYNOS 5 Octa series [1] employ Cortex-A7
as energy-tuned core, which named ‘Little core’, and
choose Cortex-A15 as high-performance core, which
named ‘Big core’.

Several studies have been made on the energy-efficient
scheduling of big.Little architecture, and the most simple
and intuitive scheme is Lower-power First, for which the
lower-power cluster was always first set to run at the
maximum frequency until the tasks violate the deadline.
For example, to fully utilize the lower-power cores, Liu
[2] adopted the task-splitting approach to make little cores
operate at full speed. Besides, according to the algorithm
proposed by Pagani [3], the allocation result derived on

platform EXYNOS 5422 is the same as Lower-power
First.

Honestly, the power consumption of big core is always
higher than little core because of its architecture design,
but in terms of energy consumption for real-time system,
we have to take heterogeneity into consideration. In this
paper, we define a key factor

iB

iL
idif
WCET
WCETr

,

,
, = to illustrate the

execution-variance of two cores, where WCETL,i and
WCETB,i are Worst-Case-Execution-Time of a real-time
task τi	 on little and big cores, respectively. The
contributions of this work are summarized as follows:

1) We extend the previous algorithms to consider each
core is DVFS-Capable based on the single-cluster design
supported by dynamIQ technology, and propose tasks
allocated by the ordering of execution-variance rdif can
reduce system utilization and save more energy.

2) We analyze the properties of execution-variance rdif
and propose a simplified method to calculate the desired
utilization distribution, and based on the calculated result,
we propose a heuristic to approximate the distribution.

2. SYSTEM MODELS
In this section, we present the platform model, task

model, as well as the energy model used in this work.
2.1. Platform Model
 We consider a heterogeneous multi-core system which
consists of two types of processing elements: high-
performance (out-of-order) and efficiency-tuned (in-
order), where both the elements composed with N
number of processors. We use πL and πB to denote the *Graduate School of Information Science, Nagoya University

†Graduate School of Engineering, Nagoya University

組込みシステムシンポジウム2017
Embedded Systems Symposium 2017

ⓒ 2017 Information Processing Society of Japan 43

ESS2017
2017/8/25

cluster composed with little cores and big cores,
respectively. The two types of cores differ by their power
and performance characteristics but share the same ISA.
Based on the single-cluster design supported by next
generation DynamIQ big.Little technology [4], we
assume each core is DVFS-capable. The power
consumption at frequency f is presented as following
formulation [5]:
 βα += kffP)((1)

Where the first term is the frequency-dependent power
consumption and the second term is the frequency-
independent power consumption.
2.2. Task Model

We model a real-time application by considering a
task set Γ consists of n independent periodic real-time
tasks },...,,{ 21 nτττ . Task Γ∈iτ is characterized by
{WCETL,i, WCETB,i, Ti, Di}, where Ti is period time,
which is assumed to be equal to its relative deadline Di,
i.e. ii DT = . The utilization of task τi	allocated to core j is

,
,

j i
j i

i

WCETu
T

= , and the sum utilization of a task set is

∑
Γ∈

=
ji

ijj uU
τ

, . As we consider two types of cores only in this

paper, core j is either big core or little core.
2.3. Task Model

Considering different tasks may have different periods,
the energy consumption of system can be calculated
within the minimum repeating interval, hyperperiod time
L, where }):({ Γ∈= iiTLCML τ . With the assumption of
system and task model above, the energy consumption of
a core over the interval L is the sum energy in active mode
and idle mode, which can be calculated as follows:

])1()([),(,,
j

j

MAXjj
jj

j

MAXjj
jj Pidle

f
fUfP

f
fULUfE −+= (2)

Where, fj,MAX is the maximum frequency, Uj is the
computational of Γ, Pidlej is the idle power.

3. TASK ALLOCATION
3.1 Desired Utilization Division

For a given task set, the task allocation for the
big.Little platform can be concluded as dividing the total
utilization U into two parts U1 and U2, where U1 denotes
the utilization capacity of tasks that allocated to the little

cluster ∑
Γ∈

=
Li

iLuU
τ

,1 , and U2 denotes the utilization

allocated to the big cluster ∑
Γ∈

=
Bi

iBuU
τ

,2 . According to

previous method DL-CAP [6], the optimal distribution is
formulated as a convex optimization problem by dividing
the load into as many fragments as cores and splitting
each fragment into as many sub-fragments as tasks. As
their solution has to be solved by specified toolbox, the
tasks are generated in the condition that the optimal
division is known in advance, which makes their method
not general. We propose a simplified solution for the
convex optimization problem by using execution-
variance rdif.

Theorem 1 If a platform consists of two different
cores, assigning tasks with large rdif to big core and tasks
with small rdif to little core guarantees the minimum
system utilization.

Proof. Suppose that, U1 and U2 are optimal utilization
distribution for a given task set. If part of the utilization
Uy from big core is picked out to switch to little core,
where for Uy the corresponding execution-variation is ry;
In this case, we choose to switch Ux from little core to big
core, where Ux=Uyry, to guarantee the utilization of little
core equals U1. Considering Ux is selected from little core,
we can get the execution-variance rx meeting: yx rr ≤ .

The variation of system utilization after switching can

be presented as:)()(' xy
x

yy
yy UU

r
rUrUU +−+= , where the

first term)(
x

yy
yy

r
rUrU + is the additional utilization, the

second term)(xy UU + is the removed utilization. As
yyx rUU = , by replacing Ux with Uyry, U’ can be simplified

as: y
x

yy U
r
rUU −=' . As yx rr ≤ , we can get U’≥0, which

means, switching tasks that violate the ordering rule of rdif
must increase the total system utilization.■

According to previous work, load-balance has been
proven to be most energy efficient for homogeneous
system, combined with the above theorem, the desired
utilization distribution of a task set ranked in increasing
order of rdif can be calculated as follows:

Minimize)]()([2,21,1 fUEfUENE += (3)

s.t.
N
UUU =+ 21

 1,

0

,1 +

=

+=∑ mL

m

i
iL xuuU

 1,

2

,2)1(+

+=

−+= ∑ mB

n

mi
iL uxuU

 nm ≤≤0 , m is integer
 10 ≤≤ x

組込みシステムシンポジウム2017
Embedded Systems Symposium 2017

ⓒ 2017 Information Processing Society of Japan 44

ESS2017
2017/8/25

Where n is the number of tasks, m is the first m tasks
selected to allocate to little cluster, x is the partition of the
first m+1 task divided to little cluster. All possible m and
x, with minimum step of 0.01, are tested to find the most
energy-efficient division of utilization. Consider that,
after the utilization is divided into two parts, each cluster
is executed at a single voltage/frequency, specifically, the
Single Frequency Approximation (SFA) scheme [7]
which aims at finding the minimum frequency can be
used for calculating the operating frequencies f1 and f2 for
little and big clusters, respectively.
3.2. Proposed Task Allocation Algorithm

As part 3.1 has introduced the calculation method of
desired utilization distribution, in this section, we
describe how the tasks are allocated to heterogeneous
systems by DL-EVBA (Desired-Load Execution-
Variance- Based Algorithm).
Algorithm 1: DL-EVBA
Input: task set Γ, platform П；

Output: task allocation queue Θ and frequency settings of each

core Q;
1: Function DL-EVBA (П,Γ)

2: order tasks in order of increasing rdif
3: (U1,U2,f1,f2)<--Utilization-Division-Calculation (П, Γ)
4: (Θ and Q)<--m-pwr(Γ, f1,f2)
5: if Θ!= ∅

6： (Θ and Q)<--m-pwr(Γ, fL,MAX, fB,MAX)

7: end if
8: return Θ and Q
9: end Function

 Algorithm 1 gives a general description of our
heuristic method, denoted by DL-EVBA. Tasks are first
ordered by their execution-variance in line 2, then desired
utilization division and minimum operating frequencies
in line 3 are calculated as part 3.1. Available capacities of
each cluster are first set as f1 and f2 as line 4, but if tasks
cannot be finished allocating, the capacities are restored
to the maximal frequencies fL,MAX and fB,MAX as line 6. In
this paper, to make fair comparison to DL-CAP,
algorithm m-pwr is chosen to allocate tasks between the
same cores in line 4 and 6, for which the minimum power
consumption core is always selected for each task [6].

4. EXPERIMENTAL EVALUATION

In this section, we present the evaluation results of

proposed method compared to two state-of-the-art related
approaches: Lower-power First which aims at allocating
more tasks to energy-efficient cores by Largest-Task-
First (LTF) strategy [2,3], and DL-CAP which uses a
heuristic to approximate the load distribution [6].

In the experiment, the power parameters are obtained
from [6], where they tested the experiments based on real
platform ODROID XU-3, and the energy consumption is
measured as a function of two task set factors: the
execution-variance rdif and the total utilization U on little
core. rdif is the reflection of the difference between two
types of cores and U is a measurement of the workload.
The task generation procedure is summarized as follows:
l rdif is selected from a uniform random distribution

in the range of [2.8, 4.2], which is calculated from
the performance variance between Cortex-A7 and
Cortex-A15 [1].

l When the total utilization U is fixed, the utilization
of each task on little core uL,i is generated in the
range of [0.01, MTU] one by one, where MTU is the
maximum utilization of each task. Then the
utilization of the same task on big core can be

computed as:
idif

iL
iB
r
uu

,

,
, = .

l For each task, period Ti is randomly generated using
a uniform distribution in the interval [1, 1000] [8],
then the WCET is computed as: WCETL,i=TiuL,i,
WCETB,i=TiuB,i.

All the experimental results are plotted as Figure 1 and
2. We generate 100 task sets and calculate the average
normalized energy consumption for each experiment.

1) Impact of Execution-Variance: In the first
experiment, as Fig.1, we fix the total utilization U as 10,
MTU as 0.3 and vary the upper bound of rdif interval. Here
U=10 is randomly selected, as the same results can be
obtained when U is different. As we can see, compared to
Lower-power First, both the normalized energy of DL-
CAP and DL-EVBA are decreased because of larger rdif.
Actually, When rdif is from [2.8, 3.5], the average saved
energy is 14.6%, while when rdif is from [3.5, 4.2], the
average saved energy is up to 23.1%. The reason of more
saved energy is that larger rdif contributes to better
performance of big core. Briefly, when rdif is increased,
the execution time for the same task operated on big core
is shortened, in that case, Lower-power First becomes

組込みシステムシンポジウム2017
Embedded Systems Symposium 2017

ⓒ 2017 Information Processing Society of Japan 45

ESS2017
2017/8/25

energy wasting. Besides, DL-EVBA algorithm separates
tasks into two sections in the first phase which effectively
utilizes the priorities of rdif and reduce the system
utilization, as a result, when the value of rdif increases,
DL-EVBA saves more energy.

2）Impact of Per-Core-DVFS Assumption: In this
experiment, we compare our method DL-EVBA to well
performed DL-CAP. We fix the range of rdif as [2.8,4.2],
MTU as 0.3 and vary the total utilization U. Fig.2 shows
that regardless of the workload, Per-Core-DVFS
assumption (“different f”) is always more energy-
efficient than Per-Cluster-DVFA assumption (“fixed f”).
Besides, rdif-based ordering does not save energy for the
case of “fixed f”, but saves energy for “different f”. The
reason is that utilization-based allocation makes
workload more balanced, while rdif-based allocation
guarantees less system utilization. When the frequency of
the cluster is fixed, frequency is determined by the
maximum utilization, as a result, balanced-workload is
more energy-efficient. But when we assume frequency is
different, frequency of each core is determined by their
own utilization, in this case, less utilization makes less
energy.

Figure 1. Normalized energy with respect to Lower-power First

Figure 2. Normalized energy with respect to DL-CAP

5.CONCLUSION

The Desired-Load Distribution method [6] is studied
in this work to efficiently schedule real-times tasks in
heterogeneous system. We simplify the calculation
method by using execution-variance and propose the DL-
EVBA algorithm to allocate tasks. In contrast to existing
allocation approaches, we propose to order tasks by rdif

based on the assumption that frequencies of the cores
from one cluster could be different. The experimental
results show the efficiency of our proposed method. For
the future work, an alternative approach AMBFF [9] will
be used for further comparison and task migration will be
considered to make improvements.

REFERENCES
[1] P. Greenhalgh, Big. little processing with arm

cortex-a15 and cortex-a7. White Paper, 2011.
[2] D. Liu et al, Energy-efficient scheduling of real-

time tasks on heterogeneous multicores using task
splitting. IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2016.

[3] S. Pagani, A. Pathania et al, Energy efficiency for
clustered heterogeneous multicores. IEEE
Transactions on Parallel and Distributed Systems,
2017.

[4] ARMDeveloper,
“http://developer.arm/technologies/dynamiq.”

[5] J.-J. Chen and C.-F. Kuo, Energy-efficient
scheduling for real-time systems on dynamic
voltage scaling (DVS) platforms. IEEE
International Conference on Embedded and Real-
Time Computing Systems and Applications, 2007.

[6] A. Colin, A, A. Kandhalu, R. R. Rajkimar,
Energy-efficient allocation of real-time
applications onto single-ISA heterogeneous multi-
core processors. Journal of Signal Processing
Systems, 2015.

[7] V. Devadas, H. Aydin. Coordinated power
management of periodic real-time tasks on chip
multiprocessors. In Proceedings of International
Conference on Green Computing (GREENCOMP’
10).

[8] R. Davis and A. Burns. Improved priority
assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time
systems. Real-Time Systems, 2011.

[9] G. Zeng, T. Yokoyama and H. Takada, Practical
energy-aware scheduling for real-time
multiprocessor systems. IEEE International
Conference on Embedded and Real-Time
Computing Systems and Applications, 2009.

組込みシステムシンポジウム2017
Embedded Systems Symposium 2017

ⓒ 2017 Information Processing Society of Japan 46

ESS2017
2017/8/25

