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Abstract: The decision boundary making (DBM) algorithm was proposed by us to induce compact and high perfor-
mance machine learning models for implementation in portable/wearable computing devices. To upgrade performance
of DBM-initialized models, we may use all observed data to retrain the model, but the computational cost is high. To
reduce the cost, we may use the newly observed datum only, but this often degrades the performance of the model.
To solve the problem, we propose on-line training algorithm with guide data (OLTA-GD) in this paper. OLTA-GD
updates the model using only a few guide data along with the newest datum. The guide data are selected from all
available data. Here, guide data selection is a key point. For this purpose, this paper investigates two methods. The
first method is random selection, and the second one is cluster center based. In the second method, the cluster cen-
ters are obtained using k-means algorithm. Experimental results show that, OLTA-GD can upgrade the models more
steadily than backpropagation (BP) algorithm, and the first selection method is better. For the guide data, around 5
data are usually enough to upgrade the performance steadily, and thus the computational cost is basically not increased
compared with the BP.
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1. Introduction

In recent years, portable/wearable computing devices
(P/WCDs) (e.g., smart phones, smart tablets, and smart watches)
are becoming more and more popular. Users can carry P/WCDs
around, and use various applications for different purposes in
their daily lives. In our research, we aim to assist the users using
aware agents (A-agents) embedded in the P/WCD applications
to improve their quality of lives. The A-agents are machine
learning models that can be aware of the information related to
situations, locations, intentions, health, etc., and provide proper
hints for the user to make decisions. To embed various A-agents
in a P/WCD, the implementation costs of the A-agents must be
low because the computing resources are limited. For example,
the CPU can be slower, the memory space can be smaller, and
the battery can be weaker, compared with desk-top machines.

In our early study, we proposed the decision boundary mak-
ing (DBM) algorithm [8] for inducing compact and high accu-
racy machine learning models. High accuracy models generally
require high computational costs while low-cost models usually
do not have high accuracy. To resolve this dilemma, we focused
on the decision boundary (DB) of the given problem. The ba-
sic idea of the DBM algorithm is to reconstruct the DB defined
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by a high accuracy model using a low-cost model. This is real-
ized by generating a new data set first to fit the DB defined by
the high performance model, and then inducing a low-cost model
using the new data. In our study, we use a support vector ma-
chine (SVM) [19] to find the DB, and a single hidden layer mul-
tilayer perceptron (MLP) [7] to reconstruct the DB. Using SVM,
it is possible to approximate the true DB using the support vec-
tors (SVs). However, the number of SVs can be very large if the
training set is large. Using MLP, we can control the size of the
model by fixing the number of hidden neurons. Therefore, if the
MLP can approximate the DB defined by an SVM, we can re-
duce the model size and preserve the performance. This has been
confirmed by our earlier studies [8].

Several techniques have been proposed to reduce the imple-
mentation costs of machine learning models. A typical method
for reducing the cost of an SVM is to reduce the training set
size. It is known that the size of an SVM, or the number of SVs,
is usually proportional to the number of training data [18]. Re-
duced SVM (RSVM) has been proposed based on the training
data reduction [10], [11]. Note that in using RSVM, some im-
portant SVs might be lost in the data reduction step. Therefore,
the performance of the RSVM is theoretically upper-bounded by
the SVM induced from the original training set. Another way for
finding compact SVM is to reduce the number of SVs directly.
Dong et al. proposed a new kernel function for the SVM [5], and
reduced the number of SVs with the kernel function. From the
experimental results, the method could decrease the number of
SVs. However, how to control the model size is still a problem.
Geebelen et al. proposed a method called smoothed separable
case approximation (SSCA) to reduce the SVs by removing or re-
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labeling outliers [6]. The outliers are noisy data for training good
models. However, if there is no outlier data in the given training
set, the method cannot reduce the SVs. Currently, a chip-based
method was proposed to implement large-scale neural networks
in a special-purpose P/WCD [2]. Unfortunately, this method can-
not be used easily in existing P/WCDs.

In this study, we focus on on-line retraining of an existing ma-
chine learning model. The main purpose is to upgrade the model
performance steadily by incorporating new information obtained
from users. The main issue here, again, is to implement the re-
training process with low-cost, because our targets are P/WCD
users. We consider retraining of an existing model here rather
than starting from scratch because a relatively weak initial model
can often be designed off-line using data available from the In-
ternet or from other resources. A compact initial model can be
obtained by using the DBM algorithm. The main point here is to
propose a method for upgrading the model performance steadily
and efficiently.

Actually, there is another aspect of the on-line retraining. For
many applications, the DBs of different users are usually differ-
ent. One way to accommodate the difference is to design a model
fitting to each user. Through off-line training, we can obtain a
“common sense” model, and through on-line retraining, we can
customize the model to each user. This is a kind of transfer learn-
ing [20]. The base knowledge or “common sense” is first ex-
tracted from the data of many users, and is then transferred to
adapt each user.

There are some on-line training algorithms that have low com-
putational costs. K. Crammer et al. proposed online passive-
aggressive algorithm [4]. This is a family of on-line training al-
gorithms for updating the hyperplain. Although the algorithms
can be extended to non-linear cases, the performance may not be
improved steadily through on-line training. Also, too many data
are used for the non-linear cases, therefore it is difficult to imple-
ment in P/WCD applications and learn on-line in a P/WCD en-
vironment. M. Cillins used on-line perceptron algorithm to solve
a highly non-linear tagging problem [3]. It seems that the main
reason of success is using Viterbi decoding, which can absorb the
non-linearity effectively. However, it is not sure that this method
is also good for solving other problems. S. Shai et al. proposed
a primal estimated sub-gradient solver (Pegasos) for SVM [17].
They used a simple stochastic sub-gradient descent algorithm,
then the computational cost for the training is low. However, this
also needs many data for non-linear problems, therefore the com-
putational cost of classification may be high for P/WCDs.

To upgrade an existing model steadily, we propose an on-line
training algorithm with guide data (OLTA-GD). For on-line re-
training, we may use the newest datum only to update the model.
This way, we can reduce the computational cost, but the perfor-
mance of the model can be greatly degraded when some “novel”
data are observed. On the other hand, we may use all data ob-
served so far to retrain the model. This way, we can preserve the
model performance, but the cost will be very large. To make a
compromise, we may use the mini-batch approach, which uses
a block of some new data to retrain the model. However, in
case we want to incorporate the new information in real time, the

mini-batch approach cannot be used. The OLTA-GD proposed in
this study retrains the model using several already observed data
along with the newly observed one. Provided that the guide data
are selected properly, we can upgrade the model both efficiently
and effectively.

There are many methods for guide data selection. In this paper,
we investigate two selection methods. The first method selects the
guide data randomly from a set containing all observed data. The
second method is cluster center based selection. In this method,
the cluster centers are found by using k-means [13]. The basic
idea of the cluster center based method is to select a guide datum
from each cluster. Using OLTA-GD, model retraining will not
depend too much on a single datum.

The structure of this paper is as follows. Section 2 introduces
the DBM algorithm briefly. Section 3 explains the OLTA-GD
with guide data generation methods. Section 4 provides exper-
imental results on several public databases. Finally, Section 5
shows the conclusions and some topics for future work.

2. Decision Boundary Making Algorithm

The DBM algorithm was proposed to induce compact and high
performance machine learning models for P/WCDs. The main
idea of the DBM algorithm is to emulate the DB of a high perfor-
mance machine learning model using a low-cost machine learn-
ing model. We employ an SVM model for the high performance
model, and use a single hidden layer MLP model for the low-cost
model. To reconstruct the DB, we generate a new training set
approximated to the DB of the SVM, and then obtain an MLP
model based on the new training set. The training and classifi-
cation phases are shown in Fig. 1. In the classification phase, we
use only the MLP model, so we do not need to keep the SVM
model after training.

We set some parameters for the DBM algorithm to generate
better new training sets. To add data close to the DB, we use sup-
port vectors (SVs) of the SVM model. We generate NDBM data
near each SV, and a parameter ε controls the neighborhood area.
In other words, NDBM data are generated in the ε-neighborhood
of each SV. However, if we add these NDBM data directly into
the new training set without conditions, negative effect data for
obtaining high performance models might be included in the set.
To remove the negative effect data, we set two conditions given in

Fig. 1 Brief flows of the DBM algorithm. There are three steps in the train-
ing phase, and one step in the classification phase. The DBM algo-
rithm first obtains an SVM model, generates a new training set ap-
proximated to the DB of the SVM, and then designs an MLP model
based on the new training set in the training phase. Data are classified
using only the MLP model.
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Eqs. (1) and (2), where fS V M(X) is the output value of the SVM
model for a datum X, δDB is a parameter of the DBM algorithm to
control a negative effect data area, and XS V is the SV correspond-
ing to the generated datum X. If a generated datum X satisfies
Eq. (1) or Eq. (2), the datum X is not added into the new training
set. The new training set finally consists of the newly generated
data, the SVs of the SVM, and the given training data. However,
the given training set may contain some noisy data, and the ob-
tained model may have lower performance. We call these data
outliers. To reduce the negative effect of the outliers, we remove
them from the given training set so that they will not appear in the
new training set. The outlier definition is shown in Eq. (3), where
y ∈ {−1,+1} is the class label of a datum X, and δoutlier is a given
parameter of the DBM algorithm to control the outlier data area.
If a datum in the given training data set satisfies Eq. (3), it is not
added to the new training set.

| fS V M(X)| < δDB (1)

| fS V M(X)| > | fS V M(XS V )| (2)

y × fS V M(X) < −δoutlier (3)

The detailed training phase of the DBM algorithm in the above
discussion is reported in Algorithm 1.

Algorithm 1 Obtaining an MLP model from a given training set
Ω by the DBM algorithm
1: Obtain an SVM model based on the given training set Ω

2: Detect noisy data from Ω by using Eq. (3) as

Uoutlier = {Xoutlier1, . . . , XoutlierNoutlier } (Noutlier is the number of noisy data)

3: Initialize a SV set as US V = {XS V,1, XS V,2, . . . , XS V,NS V } (XS V,i is the i-th

SV of the SVM)

4: Initialize a new training set as Ωnew = US V + Ω − Uoutlier

5: for each XS V in US V do

6: for i = 1 to NDBM do

7: Create a vector V that each element is random value in [−ε, +ε]
8: Xnew = XS V + V

9: if | fS V M(Xnew)| < δDB or | fS V M(Xnew)| > | fS V M(XS V )| then

10: Continue

11: end if

12: Set the label of Xnew by sgn( fS V M(Xnew))

13: Add the datum Xnew into the new training set Ωnew

Ωnew = Ωnew + Xnew

14: end for

15: end for

16: Obtain an MLP model using the new training set Ωnew

3. On-Line Training Algorithm with Guide
Data

To upgrade performance of existing models on P/WCD in real
time, the retraining algorithm should be steady and have low cal-
culation cost. If the retraining algorithm is not steady, sometimes
the model performance can be extremely decreased, and the reli-
ability of the models will be lower. Moreover, the computational
resources of the P/WCD are limited. To retrain the model on
P/WCD, we have to save the calculation cost.

To accommodate the problem, we propose OLTA-GD. The

OLTA-GD updates a model initialized by the DBM algorithm us-
ing an observed datum and some guide data. Note that, the ob-
served datum is a new datum obtained in real time. When an ob-
served datum is received, an average gradient is calculated from
the observed datum and some guide data, and the gradient is used
for updating model. The update equation for an observed datum
Xobserved is given in Eq. (4), where W(t) is the weight vector of the
MLP model at time t, Nguide is the number of guide data, Xguide,i is
the i-th guide datum, and gMLP(X,W) is the objective function of
MLP for a datum X and a weight vector W. To optimize the ob-
jective function, we use the backpropagation (BP) algorithm [16]
to update the model. If we use many data for the guide data, the
influence of the observed datum Xobserved for updating becomes
low and the calculation cost becomes high. However, if we use
too less data for the guide data, effectiveness of the guide data is
reduced. We have to use proper guide data size for steady and
low-cost training.

W(t+1) = W(t) − α

Nguide + 1

⎛⎜⎜⎜⎜⎜⎜⎝
Nguide∑

i=1

∂gMLP(Xguide,i,W(t))

∂W
+

∂gMLP(Xobserved,W(t))
∂W

⎞⎟⎟⎟⎟⎟⎟⎠ (4)

Another problem is how to define the guide data. In this study,
we use all observed data including those generated data in DBM
training, and update the candidate set by adding each observed
datum. However, if we use the whole set for the guide data, the
calculation cost is particularly increased because the new train-
ing set has more data than the original training set. To reduce the
guide data, we propose two guide data selection methods. These
methods are random selection, and cluster center based selection.
In the following sub-sections, we introduce each guide data se-
lection method in detail.

3.1 Guide Data Generation Based on Random Selection
The random selection picks up guide data randomly from the

candidate set. In this method, the selection process is simple and
the cost is low. This method picks up data directly. The number
of guide data Nguide is a given parameter in the method. After
updating the model, this method adds the newly observed datum
in the candidate set.

As for the guide data, it is affected by the data distribution of
the candidate set. In our proposed method, the initial candidate
set is new training data generated by the DBM algorithm. The
new training set has many data near the DB, the data distribution
is biased to the DB. Therefore, selected guide data set will have
many data near the DB.

3.2 Guide Data Generation by Cluster Center Based Selec-
tion

This method uses a clustering method for the candidate set.
The basic idea is to pick up a datum from each cluster. In this
method, the cluster centers are found by k-means algorithm [13].
Figure 2 shows an example of clustering by k-means algorithm.

Off-line training and on-line training flows are given in Fig. 3.
In the off-line training phase, the partitioning step is proceeded
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Fig. 2 The figure shows an example of clustered candidate set based on k-
means algorithm. To pick up data from each cluster, we get guide
data uniformly from the feature space.

Fig. 3 This figure shows off-line training and on-line training flows of the
DBM algorithm for the cluster center based selection method. The
off-line training phase is based on the training phase of the origi-
nal DBM algorithm (see Fig. 1). One step is added into the off-line
training phase to separate the candidate set into clusters and add the
cluster centers. In the on-line training phase, we generate guide data
set for an observed datum at beginning, update the MLP model by
using the observed datum and the guide data, and then update the
candidate set by adding the observed datum.

at the end for clustering. After obtaining an MLP model, it sep-
arates the candidate set by the k-means algorithm, and adds the
cluster centers into the corresponding clusters of the candidate
set to increase data. And in the on-line training phase, there are
mainly three steps. When an observed datum is coming, it first
generates guide data set by the cluster center based selection, and
updates the MLP model using the guide data set and the observed
datum. After that, it adds the observed datum into the correspond-
ing cluster of the candidate set.

As for the data selection, this method selects k−1 data for guide
data set. It picks up a datum randomly from each cluster, then the
number of picked up data becomes k. However, we remove the
datum of the p-th cluster from the guide data, where the observed

datum Xobserved belongs in p-th cluster. Average gradients are cal-
culated from the observed datum Xobserved and the guide data. If
we use all the picked up data for the guide data, doubled data in
the p-th cluster are included in the average gradients. To make
the uniform distribution of the guide data and the observed da-
tum, the p-th cluster datum is not used for updating the model.
Therefore, the number of guide data Nguide in this method is k−1.

As for the random sampling from each cluster, we do not use
fixed guide data (e.g., use cluster centers) for each model updat-
ing. If we use the same data for each updating, the other data
do not have to be kept in on-line training phase, then the stor-
age space can be conserved. However, we will update models
many times over on-line training times, it means that the models
learn the guide data many times, then the performance will be
decreased because the models fit to the guide data too much. To
avoid it, we pick up a datum randomly from each cluster in each
on-line training.

The detailed flow of the guide data selection using the cluster
center based selection is given in Algorithm 2.

Algorithm 2 Obtaining a guide data set Uguide having k − 1 data
for the observed datum Xobserved by the cluster center based selec-
tion.
1: Initialize the guide data set Uguide

2: Classify the observed datum Xobserved by k-means, and the index of the

cluster is p

3: for i=1 to k do

4: if i=p then

5: Continue

6: end if

7: Pick up a datum Xguide,i randomly from i-th cluster in the candidate set

8: Add the datum Xguide,i into the guide data set Uguide

9: end for

In this method, the data distribution of guide data becomes uni-
form in the feature space.

3.3 The Calculation Cost
The calculation cost of OLTA-GD is related to the number of

guide data Nguide and the model size. This updates weights by
BP-based method, and the calculation cost for the BP algorithm is
O(NiteNiNh) or O(NiteNhNo), where Nite is the number of training
iterations, Ni is the number of input neurons, Nh is the number
of hidden neurons, and No is the number of output neurons. In
this study, Ni is usually bigger than No, thus the training cost for
the BP is O(NiteNiNh). For the cost of OLTA-GD, we use average
gradients of each observed datum and some guide data, and up-
date models only one time per iteration for each observed datum.
Therefore, the total computational cost is O(NiNhNguide) for each
updating. If we use large model, the calculation cost becomes
very high. However, we use compact model because the back-
ground is to use models for P/WCDs. Especially, we often use
10 hidden neurons, therefore the calculation cost is not so high.
Moreover, if we do not use so many data for guide data, the cost
does not become huge, then we can update model by OLTA-GD
on P/WCDs.
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4. Experiments

In this section, we investigate the accuracy performance and
the steadiness of OLTA-GD with the two guide data selection
methods by experiments using some public databases taken from
the machine learning repository of the University of California
at Irvine [1]. The used databases are statlog german credit data
set (German), Indian Liver patient data set (ILP), mushroom data
set (Mushroom), ozone level detection data set (Ozone), QSAR
biodegradation data set (QSAR) [14], and seismic bumps data set
(Seismic) [12]. In this experiment, we use databases that have
many data in more cases because we would like to investigate the
performance transitions by on-line trainings. Table 1 shows the
parameters of the databases.

For each database, 100 times of 5-fold cross validation [9] was
conducted. The number of training data is Nt = [Nd × 4

5 ], and
the number of testing data is Nd − Nt for each database. For the
result, we calculate the accuracy of a confusion matrix and for
testing data, and it is averaged over 100 × 5 runs. We normalize
the training and testing data by using a rescaling method. The
computer system configuration and environment used in the ex-
periment are shown in Table 2.

4.1 Experimental Design
In this paper, we proposed OLTA-GD with two guide data se-

lection methods. To compare the performance, we defined three
methods with the abbreviations as follows:
• DBM-BP: MLP initialized by DBM algorithm, and updated

on-line by BP [16] algorithm.
• DBM-RS: MLP initialized by DBM algorithm, and updated

by OLTA-GD using the random selection.
• DBM-CCS: MLP initialized by DBM algorithm, and up-

dated by OLTA-GD using the cluster center based selection.
To evaluate the performance, we calculated recognition rate

(RR) based on the confusion matrix for test set and accuracy
reduction counts (ARCs) for several different reduction levels
(RLs). RR was used to measure the overall performance of the
trained models, and ARC was used to measure the steadiness of
the on-line training process. The definition of RR is given in
Eq. (5), and the definition of ARC is Eq. (6), where RR(t) is the

Table 1 Features of public databases from Ref. [1]. These databases have
two classes.

Number
of

Classes (Nc)

Number
of

Features (Nf )

Number
of

Data (Nd)
German 2 24 1,000
ILP 2 10 583
Mushroom 2 22 8,123
Ozone 2 72 2,536
QSAR 2 41 1,055
Seismic 2 18 2,584

Table 2 Machine specifications and environments.

Machine Apple iMac 21.5-inch, Late 2013
OS Mac OS X 10.9.
CPU Intel Core i5 2.7 GHz
Memory 8 GB
Program Language C++
Compiler Apple LLVM version 6.0

RR value at time t. ARC is the number of times that the model
performance is degraded over a special level in the on-line up-
dating. In real applications, the model performance should not
be degraded because it affects to the reliability of applications.
The ARC is a measurement of the performance. In this paper,
we used 1% and 5% for the RL. By RL = 1% setting, we con-
firmed steadiness for a small rate, and we also confirmed the per-
formance for a large rate which is RL = 5%. We investigated the
significance of performance reduction by the two settings. For
RR, the higher values mean the better performance, and for ARC,
the lower values indicate better steadiness. Also, to confirm the
performance of on-line training, we calculated rising or falling
(RF) value for each result, the RF value was computed by Eq. (7),
where tend is the end time of on-line training in each database. If
the RF value is positive, the performance is upgraded by on-line
training.

RR =
The number of correct data

The number of test data
(5)

ARC =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ARC + 1 (RR(t+1) − RR(t) ≤ −RL)

ARC (otherwise)
(6)

RF = RR(tend) − RR(0) (7)

As for data normalization, the rescaling normalization converts
the range [min(coli),max(coli)] to [Fmin, Fmax] for each feature,
where coli is a set of i-th features in given training set, min(X)
and max(X) return the minimum and maximum values from set
X, and Fmin and Fmax are given parameters (Fmin < Fmax). In our
experiment, the rescaled range was fixed to [−1,+1].

In MLP training, we used the BP algorithm to train the model.
For the BP algorithm, the learning rate was fixed to 0.5. The max-
imum number of training epochs was 1,000. The number of input
neurons of the MLPs was Nf . The number of hidden neurons was
fixed to 10. The number of output neurons was 1.

For DBM parameters, we set ε = 0.1, δDB = 0.1, δoutlier =

0.2, and NDBM = 10. About SVM settings, we used soft-
margin SVM. The training algorithm was sequential minimal
optimization [15]. The kernel function was radial basis function
(κ(x1, x2) = exp(−||x1 − x2||2)), and the training parameter C was
set to 1.

In OLTA-GD, we changed the number of guide data Nguide in
1 to 10 per 1, and specified values 15, 20, 25, and 30. As for
the specified values, we confirmed the performance of too many
guide data settings.

4.2 How to Divide Training Data Sets for Our Purpose
In this study, we compare the performance of on-line training

methods. The on-line training updates a model initialized by an
off-line training algorithm. Therefore, we have to prepare two
training sets from a given training set which is allocated by the
cross validation method. The two training sets are off-line train-
ing set and on-line training set for off-line training and on-line
training respectively. We set No f f−line data for the off-line train-
ing set, and the other data are allocated to the on-line training set.
In this experiment, we set the number of off-line training data
No f f−line to 100, and the other data were assigned to the on-line
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Fig. 4 RR transition graph for each method with Nguide = 5 setting in Ger-
man database.

Fig. 5 RR transition graph for each method with Nguide = 5 setting in ILP
database.

Fig. 6 RR transition graph for each method with Nguide = 5 setting in Mush-
room database. In this figure, DBM-RS/DBM-CCS are almost the
same.

training set because we use many data for on-line training.

4.3 Analysis and Discussion on Performance Comparison of
Comparison Methods

Figures 4–9 reveal averaged RR transition graphs through on-
line training of all methods with Nguide = 5 setting in each
database. For other Nguide settings, the trends are similar to the
results of Nguide = 5 setting. Figures 10–15 show RF values of
all methods by changing Nguide settings in each database. In the
figures, we show RR results of SVMs obtained off-line training

Fig. 7 RR transition graph for each method with Nguide = 5 setting in Ozone
database. In this figure, DBM-RS/DBM-CCS are almost the same.

Fig. 8 RR transition graph for each method with Nguide = 5 setting in QSAR
database.

Fig. 9 RR transition graph for each method with Nguide = 5 setting in Seis-
mic database.

with all training data by some horizontal lines for the upper limits.
The RF value presents the performance improvement of a method
by on-line training. Figures 16–21 indicate ARC value results of
each method and every database by changing Nguide settings. Fig-
ure 22 shows the averaged RF transition graph of all databases
for DBM-RS and DBM-CCS by changing Nguide settings. And
Fig. 23 gives the averaged ARC transition graph of all databases
for DBM-RS and DBM-CCS with all Nguide settings.
4.3.1 Discussion on RR Results

In Figs. 4–9, we use horizontal lines to show the performance
of the SVMs obtained via off-line training. These lines are in
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Fig. 10 RF value transition graph for each method by changing Nguide set-
ting in German database.

Fig. 11 RF value transition graph for each method by changing Nguide set-
ting in ILP database.

Fig. 12 RF value transition graph for each method by changing Nguide set-
ting in Mushroom database.

fact the upper limits for on-line training. From Fig. 4, Fig. 7, and
Fig. 9, we can see that the proposed methods can obtain results
(after on-line training) comparable to or better than off-line SVMs
for the German, Ozone, and Seismic databases. From Fig. 6, we
can see that the proposed method can obtain relatively good re-
sults, and the performance can be close to that of the off-line
SVM if we have more data. From Fig. 5 and Fig. 8, however, we
can see that it is difficult to obtain results comparable to the off-
line SVMs through on-line training. The main reason we think
is that these two datasets may have little redundancy. Usually,
for datasets with little redundancy, it is difficult to obtain a good

Fig. 13 RF value transition graph for each method by changing Nguide set-
ting in Ozone database.

Fig. 14 RF value transition graph for each method by changing Nguide set-
ting in QSAR database.

Fig. 15 RF value transition graph for each method by changing Nguide set-
ting in Seismic database.

model using a small part of the data.
To see all of RR transition graphs given in Figs. 4–9, the per-

formance improvement of our proposed methods are comparable
to or better than DBM-BP. In some cases, DBM-BP is better than
the proposed methods in early on-line training stages, or equiva-
lent to the proposed methods. However, DBM-BP performance is
often fluctuated or decreased through on-line training. In Seismic
database, DBM-BP performance is a little better than the pro-
posed method in the early stage of on-line training, but DBM-BP
performance is decreased and/or fluctuated over on-line training
in QSAR, and ILP databases. In comparison between Seismic

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 16 ARC value transition graph for each method by changing Nguide set-
ting in German database.

Fig. 17 ARC value transition graph for each method by changing Nguide set-
ting in ILP database.

Fig. 18 ARC value transition graph for each method by changing Nguide set-
ting in Mushroom database.

and ILP databases, the difference is the difficulty for on-line train-
ing. For easy data sets, we can improve the model steadily even
if we do not use guide data. Actually, the guide data set is a
“damper” for on-line training. On the other hand, for difficult
data sets such as ILP database, it is necessary to use a relatively
strong damper to control the training process, to make it better
steady. However, in the Seismic database, the proposed methods
increase the performance gradually, and the RR difference be-
tween DBM-BP and the proposed methods is less than 1% by the
end of on-line training. The performance of the proposed meth-
ods may become better than DBM-BP if we continue to update

Fig. 19 ARC value transition graph for each method by changing Nguide set-
ting in Ozone database.

Fig. 20 ARC value transition graph for each method by changing Nguide set-
ting in QSAR database.

Fig. 21 ARC value transition graph for each method by changing Nguide set-
ting in Seismic database.

the models. We expect that the performance of OLTA-GD is up-
graded steadily, so the result is one of our expectations. The BP
algorithm only sometimes decreases the performance by on-line
training in real time, and the OLTA-GD can improve the perfor-
mance gradually from the results. The amounts of increasing the
performance are different by databases, for example, the amount
is around 2% in German database, and is around less than 1% in
ILP database. The amounts are shown in Figs. 10–15 by RF val-
ues. In many cases, such as ILP, Mushroom, Ozone and Seismic
databases, the differences are less than 1%. However, in the other
cases, the performance of DBM-RS/DBM-CCS with proper set-
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Fig. 22 RF transition graph of averaged all database results by changing
Nguide setting for DBM-RS and DBM-CCS methods.

Fig. 23 ARC transition graph of averaged all database results by changing
Nguide setting for DBM-RS and DBM-CCS methods.

ting shows higher than 1% compared with DBM-BP. Therefore,
the proposed methods have equivalent or better performance than
the BP algorithm only.
4.3.2 Discussion on Steady Performance Improvement

The steadiness of DBM-RS/DBM-CCS is better than DBM-
BP, and these are almost the same from Figs. 16–21. In RL = 5%
setting, the proposed methods are better than DBM-BP in all
cases. This means that the performance of the proposed methods
are not decreased too much many times compared with DBM-
BP. In RL = 1% setting, if we use few guide data, sometimes
the proposed methods are worse than DBM-BP. However, the
proposed methods are better when Nguide is increased. Thus, we
can get better results when we use a proper Nguide setting for the
proposed methods. In comparison between DBM-RS and DBM-
CCS, these between the ARC values less than 1 in many cases,
although sometimes the difference is more than 1 depends on the
Nguide setting. For an example, in German database, DBM-RS
and DBM-CCS have almost the same ARC values when Nguide is
set around 5. However, when Nguide is increased, the ARC dif-
ference is also increased. In this sense, DBM-CCS is better than
DBM-RS. To see the averaged results of all databases, in Fig. 23,
the averaged ARC values are almost the same when Nguide is more
than 10. If we use more data for guide data, the ARC values
can be reduced further. However, to save calculation cost, we
should avoid using too many guide data. Therefore, if we use
Nguide ≤ 10, the steadiness of DBM-RS and DBM-CCS are al-

most the same.
4.3.3 Discussion on Guide Data

For OLTA-GD using the DBM algorithm, random selection is
enough to obtain good guide data set for upgrading the model
performance steadily. To see the averaged RR results in Fig. 22,
the performance of two selection methods are almost the same
when Nguide is less than 10. However, over Nguide = 10, the per-
formance of them becomes worse. Therefore, if we set larger
value to Nguide, model performance improvement is degraded. In
comparison among the two methods, the performance of the ran-
dom selection is little better than the cluster center based selec-
tion when Nguide is more than a certain value. The differences of
selected data may be the data distributions. The random selec-
tion picks up data randomly, then the distribution is related to the
data distribution of the candidate set. The candidate set has many
data near the DB, then the most selected data will be near the
DB. On the other hand, the cluster center based selection picks
up a datum from each cluster, so the distribution is related to the
clusters. The clusters are found by k-means algorithm, then the
distribution is uniform the feature space. To upgrade the model
performance steadily, data close to the DB should be used. Thus,
the random selection is better for updating performance. Also to
see the steadiness in Fig. 23, these are almost the same, but are
different when we use many data for guide data set in RL = 1%
setting. The cluster center based selection is better for the situa-
tion, but we should use less data to save the calculation cost for
updating. When we use less than 10 data, the steadiness and the
accuracy performance are almost the same in both methods, and
the calculation cost of the random selection is less than the cluster
center based selection. Therefore, the random selection is better
for our purpose from the experimental results.
4.3.4 Discussion on Better Nguide Setting

As for the number of guide data, we recommend to use Nguide =

5 for our purpose. From Fig. 22, the performance are almost the
same when we set less than 10 for Nguide. On the other hand,
to see Fig. 23, the difference of RL = 1% between Nguide = 5
and 10 is around 1-2. However in RL = 5%, the ARC value is
almost converged when Nguide = 5. In addition, the calculation
cost of Nguide = 10 is almost double compared with Nguide = 5
setting. We update models on P/WCDs, thus the calculation cost
should be conserved. From these reasons, we should use around
five data for guide data to upgrade model performance steadiness
in our purpose.
4.3.5 Overall Discussion

From the above discussions, the OLTA-GD using the random
selection with Nguide = 5 setting is good for our purpose. The
OLTA-GD can upgrade the model performance steadily. For
guide data selection, random selection can select good enough
data for the guide data set. When we use five data for the
guide data set, the steadiness is almost converged. Therefore, the
method using the setting is the best method among the compari-
son methods.

5. Conclusions

In this paper, we have proposed OLTA-GD to retrain exist-
ing models initialized by the DBM algorithm and investigated
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the performance. For the guide data set, we proposed two guide
data selection methods; namely random selection and cluster cen-
ter based selection. The random selection picks up guide data
randomly from candidate set which contains all available data.
The cluster center based selection partitions the candidate set into
some clusters by k-means algorithm in off-line phase, and picks
up a guide datum from each cluster. From experimental results,
the OLTA-GD could upgrade model performance more steadily
than BP algorithm, and the random selection is good enough
method for the guide data selection. For guide data setting, we
should use around five data for the random selection method.

As for future work, we would like to improve the performance
of OLTA-GD. In the experimental results, OLTA-GD performs
poorly for some cases. To improve the performance, we will fo-
cus on updating candidate set. In current study, we add observed
data into the candidate set without conditions. Sometimes, noisy
data may be added into the set. In the random selection, the ef-
fectiveness is influenced by the data distribution of the candidate
set. By avoiding data that are noisy or far from the DB, the ef-
fectiveness of updating model may be improved. We will find
proper conditions for this purpose. We also would like to apply
the OLTA-GD to real applications. In this paper, we focus on
theoretically part of on-line training algorithms. Customizing to
each user using real problems on P/WCDs is also one of our pur-
poses. We will investigate the model transition for each user by
on-line training in the future study.
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