
Electronic Preprint for Journal of Information Processing Vol.25

Invited Paper

Authorization by Documents

Hiroyuki Sato1,a)

Received: December 1, 2016, Accepted: June 2, 2017

Abstract: These days, ICT service environments have dramatically changed in their complexity. Accordingly, related
business logics for business processes such as provisioning, resource limit, conditional authorization and delegation
have grown in its complexity. In this paper, we generalize the idea of access tokens of OAuth, and propose “authoriza-
tion by documents.” In our model, a user submits a document as evidence of privilege claim, and a server verifies the
document to prove the appropriateness of the user’s privilege. A document can be complicated, reflecting some busi-
ness flow in an institution. If the process and result of business flow are expressed by using documents, the evidence
as documents can reflect arbitrarily complex business flow. For this purpose, we formalize documents, and define
document tree logic (DTL) as a variant of CTL* to express the policies associated with documents. Typical business
processes including request and approval, delegation, and approval by document circular are expressed in DTL, and
verified by using documents as evidence.

Keywords: documents, policies, authorization, verification, document tree logic, provisioning, delegation

1. Introduction

These days, ICT service environments have dramatically
changed in their complexity. Particularly, because access federa-
tions have become one of standard service frameworks, restruc-
turing of services has been strongly promoted. In an access fed-
eration, authentication and authorization can separately be served
by dedicated service providers for authentication and for services.
Accordingly, data exchange between servers is required for main-
taining service integrity which was once guaranteed as provid-
ing services by a single “server.” Therefore, the authentication
process has become complicated. Concretely, the data integrity
between the service providers, identity providers and user agents
(Web browsers) is the essential requirement in authentication. We
need guarantee that each data piece cannot be falsified for proving
that an entity actually authenticates. Furthermore, as the autho-
rization logic is sophisticated to represent some complicated pro-
cess such as delegation and resource limit, authorization has also
become complicated. We can say that this complexity is caused
partly by the fact that multiple servers must involve in completing
a single task such as authentication and authorization.

Actually, tasks of a server are not limited to authentication
and authorization. Particularly, provisioning is a basis of service
initiation and authorization. As authorization has begun to in-
clude complicated logics, provisioning becomes even more com-
plicated. Conventionally, when an authority decides to create an
account for a user, its backyard office is responsible for enabling
the user to work on a given set of servers. In short, a workbench
in a server must be provisioned by the backyard by using a sep-
arate path from the access by a user. Figure 1 depicts this sce-
nario. Here, service providers accept the modification request by

1 The University of Tokyo, Bunkyo, Tokyo 113–8658, Japan
a) schuko@satolab.itc.u-tokyo.ac.jp

account/privilege

Authority =⇒ (user)

Data on Authorization
⏐⏐⏐⏐⏐⏐�

�
⏐⏐⏐⏐⏐⏐

Service

Service

Backyard =⇒ Provider

Provisioning

Fig. 1 Role of backyard against a service provider.

a backyard to configure for a user.
Because provisioning has conventionally been considered to be

an offline task of the backyard, its optimization has been out of
scope of ICT, and the heavy load of backyard has not been allevi-
ated. Obviously, this model does not scale. Because the separa-
tion of privileges on the side of four players is not clear, there are
required duplicated processes and backchannel communications.
For instance, when user privileges are decided by an authority,
the related data must be sent both to the user and the backyard.
To improve the service integrity, the task of provisioning must be
optimized so that too much cost is not caused to the backyard.

Let us analyze the task of provisioning. If a server provides
provisioning, it must implicitly communicate with an authority
that gives privileges to a user. A given authority determines users’
privileges, reflecting their roles and tasks in an institution. Fur-
thermore, their privileges granted by an authority must be proved
with a kind of evidence, if the communication between the au-
thority and the server is indirect. This kind of evidence is imple-
mented as assertions in SAML or access tokens in OAuth. Ex-
changing evidence among servers enables the multiple servers to
cooperate for completing authentication or authorization. How-
ever, such assertions assume stateful and complicated transac-

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

document

Authority =⇒ (user)

(claim of privilege with document)
⏐⏐⏐⏐⏐⏐�

�
⏐⏐⏐⏐⏐⏐

Service
. . . (indirect interaction) · · · · · · Service

Provider
Fig. 2 Using documents for service claim – backyard-less approach.

tions to be appropriately processed by the corresponding servers.
For example, in building assertions of SAML, we must take care
so that the request id and the response id are consistent in process-
ing the transaction. Moreover, access tokens of OAuth must be
issued to a resource requester as the result of service registration
and appropriate processing of the relevant request tokens.

However, when complicated logic for provisioning, resource
limit, conditional authorization, and delegation must be consid-
ered, such evidence aforementioned is too simple, and therefore
still causes careful processing by servers.

In this paper, we generalize the idea of access tokens of OAuth,
and propose “authorization by documents.” In our model, a user
submits a document as evidence of privilege claim, and a server
verifies the document to prove the appropriateness of the user’s
privilege. A document can be complicated, reflecting some busi-
ness flow in an institution. If the process and result of business
flow are expressed by using documents, the evidence as docu-
ments can reflect arbitrarily complex business flow. Thus, the ser-
vice integrity is maintained by this evidence, and the flow of busi-
ness processes including those of backyards is streamlined. Fig-
ure 2 depicts this scenario. The indirect communication between
Authority and Service Provider is implemented as submission of
related documents via user (dotted line in Fig. 2). Compared with
Fig. 1, the flow is streamlined, and the burden of backyard can be
minimized.

The rest of this paper is organized as: Section 2 discusses the
role of documents in business processes. Section 3 formalizes
documents and document tree logic to express the evidence and
policies. Section 4 applies thus defined documents and the logic
to typical business processes. Furthermore, analysis in terms of
expressive power is given. Section 5 surveys related work. Sec-
tion 6 summarizes this paper.

2. Documents in Business Processes

In this section, we see how documents are used in business
processes.

2.1 Publication of Policies of an Institution
Documents have a long history of publication and representa-

tion of policies. They are validated to claim some policies.
Particularly, if a document is published by an institution, it

is regarded as official announcement of an institutional policies.
This scheme is also used in IT services. When an institution pro-
vides a service, it publishes related policies such as a service pol-
icy and a privacy policy. A user or client validates the published
policies, and subscribes to the service if the policy matches the
client’s requirement. In PKI, publication of certificate polices and

certification practice statements (CP/CPS) plays a significant role
in establishing trust.

Furthermore, there have been proposed mechanical validation
schemes of policies such as P3P and Ref. [29] on the assumption
that policies are digitally published.

2.2 Documents as Audit Trail
For audit, chronological records of documents that represent

some sequence of activities are called “audit trail.” It has a deci-
sive power in verifying that some decision is appropriately made
by following the policies of a given institution. The idea of au-
dit trail is now widely applied to financial transactions, scientific
research process together with traditional accounting. It is now
a central topic in digital forensics. For trails, it is important that
the sequence is chronologically correct so that one can prove that
transactions are processed, following the policies of the institu-
tion. This also means that if a given trail is successfully verified,
we can say that the related transaction is valid for a given policy.

2.3 Embedding Time in Documents
Traditionally, it was very hard to prove the chronological cor-

rectness of generated documents. Traditional forensics focused
on direct or indirect evidence of time information in a given doc-
ument. As modern forensics is being supported by modern in-
formation technologies, the objectivity has been much improved.
Here, time-stamp and time-stamp certificates are the source of
authority. Furthermore, if we do not care the precision of date
and time, digital signature can verify the order of generation of
documents. If a digital signature A is given to a document that
has a digital signature B, we can say that signature A is given
after signature B. Thus specified sequence is significant in de-
termining the sequence of documents, which is essential in audit
trail. Because chronologically correctness is essential in business
processes and business transactions, we can say that digital sig-
natures are very useful for sequencing the documents.

3. Documents and Document Tree Logic

As we have discussed so far, documents have the role of ev-
idence for policies and trail. Evidence is validated for a given
policy. Hereafter, we consider documents with digital signatures.
They are shown to be very useful for representing the character-
istics of policies and trail in a business transaction. In this paper,
based on the notations of Ref. [27], we formalize documents with
digital signatures and the related logic that represents the business
processes.

3.1 Documents
Definition 1 We define terms in a document as:
person p ::= p1, p2, · · ·
fieldname f ::= f1, f2, · · ·
text t ::= t1, t2, · · ·
val v ::= person|text
document name D ::= D1,D2, · · ·
document form did ::= D0[f0, · · · , fn0],D1[f0, · · · , fn1], · · ·
The D part of a document form represents its name. Its f part

represents the arity of a document form.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Given a document form D[f0, · · · , fn] together with field names
f0, · · · , fn, documents and their contents are defined as below.
First, documents doc is defined as:

Definition 2

doc ::= D[f0, · · · , fn] : C(f0 ,···, fn)

Content is defined as below.
Definition 3 Content C(f0 ,···, fn) of a document is defined as:

C(f0 ,···, fn) ::= fi = v

| fi = doc (0 ≤ i ≤ n)
| C(f0 ,···, fn) signed by p

| (C(f0 ,···, fn), · · ·, C(f0 ,···, fn))
| doc

The form (C(f0 ,···, fn), · · · ,C(f0 ,···, fn)) represents the concatenation
of documents C(f0 ,···, fn)’s. In summary, a document is labeled with
its name, meaning its intended use. Furthermore, a document
contains content in which all values have their field name, mean-
ing their intended use, and may contain a digital signature that
will be used to represent its related workflow.

3.2 Document Tree Logic
In an institution, for a given policy for processing a document,

the related document form is written and processed according to
them. Thus written document is used as evidence of this business
process. We observe the role of documents as follows: first, a
set of document forms is determined by an embracing institution.
Given a form, its objectives and intended use must be determined.
Concretely, a form is understood to have request(s), and due pro-
cess of its approval.

When a requester fills a form with some request, the filled form
is processed according to the rules of approval. When the docu-
ment is approved, then the document claims something that is au-
thorized by an approver. The requester can claim some authority
if one has the (approved) document, (and properly authenticates).
In this meaning, a process of business workflow is embedded in a
document.

The document tree logic (DTL) is defined to represent inten-
tion of the documents. DTL is a subset of CTL* (superset of
CTL (computation tree logic) and LTL (linear temporal logic))
and built on persons and texts. We list their definitions in Def-
inition 4. Let a finite set F of field names be given. For each
field name fi ∈ F, we define a unary predicate Fi(·). we denote
such a predicate by field predicate. Let a set FP of field predi-
cates be fixed. Moreover, we introduce a predicate Signed(·) for
representing signing.

Definition 4 A Formula φ of DTL is defined as:

φ ::= true | f alse

| P(t0, · · · , tn, p0, · · · , pm)(primitive formulas)
| Fi(t) (Fi ∈ FP)
| Signed(p)
| φ ∧ φ |φ ∨ φ |φ→ φ

| ∀X.φ |∃X.φ

| φ < φ|φ<̇φ
| Eφ|Aφ
| ←E φ| ←A φ.

The formulas φ < ψ and φ<̇ψ represents (Eφ)Uψ (there is a
path that φ is true until ψ becomes true), and φ ∧ nextψ in CTL*,
respectively. Because our focus is on the order of fields and signa-
tures, and we consider distinguished paths corresponding to sig-
natures, we simply use the notation < and <̇ in DTL.

Next, we define a document tree associated to a given docu-
ment.

Definition 5 Let a document d ≡ D[f0, · · · , fn] : C(f0 ,···, fn) be
given. We define its associated document tree [d], a variant of
Kripke structure as follows:
(1) If C(f0 ,···, fn) is of the form fi = v, we have a node [d] ≡

[D[f0, · · · , fn] : fi = v].
(2) If C(f0 ,···, fn) is of the form fi = doc, we have a node [d] ≡

[D[f0, · · · , fn] : fi = doc], [doc], and nodes and paths corre-
sponding to doc. Moreover, we have the path [d]←− [doc].

(3) If C(f0 ,···, fn) is of the form C(f0 ,···, fn) signed by p, we have a
node [d] ≡ [D[f0, · · · , fn] : C(f0 ,···, fn) signed by p] and nodes
and paths corresponding to [D[f0, · · · , fn] : C(f0 ,···, fn)]. More-
over, we have the path [d]←− [D[f0, · · · , fn] : C(f0 ,···, fn)]. We
call this single path component a signing path component.

(4) If C(f0 ,···, fn) is of the form (C0,(f0 ,···, fn), · · · ,Cm,(f0 ,···, fn)), we have
a node [d] ≡ [D[f0, · · · fn] : (C0,(f0 ,···, fn), · · · ,Cm,(f0 ,···, fn))]
together with nodes corresponding to [D[f0, · · · , fn] :
Ci,(f0 ,···, fn)](i = 0, · · · ,m), and paths [d] ←− [D[f0, · · · , fn] :
Ci,(f0 ,···, fn)](i = 0, · · · ,m).

(5) If C(f0 ,···, fn) is of the form doc, we have a node [doc] to-
gether with nodes and paths corresponding to [doc] and a
path [d]←− [doc].

Naturally, the nodes and paths constructed as above form a tree.
The root node corresponds to the whole document d, and nodes
corresponding to fi = t are leaves. We call this tree a document
tree associated with d.

Definition 6 In a document tree, we call a path that contains
at least one signing path component a signing path.

Signing paths are associated with the sequence of document
construction.

3.3 Document as Evidence Relation
Next, we define the interpretation d |= P for a document d and

a DTL formula P, meaning a document d is evidence to P. The
interpretation is based on the Kripke semantics of CTL*. The
(only) substantial difference is that a signing path is significant.

Kripke semantics on a partial order is constructed in the way as
assigning a model to each node, and a transition between models
to each arrow. To a document d, we assign a node [d]. To each
node, we assign a model in which (set-theoretic) interpretations
of primitive formulas P’s are fixed.

Definition 7 Let us assume that the interpretations of primi-
tive formulas are given. Then, given a document d and a path p

in the document tree of d, we define the model relations d |= and
p |= in the following way.
As for state formulas,
• d |= true iff true.
• Never d |= f alse.
• d |= P(t1, · · · , tn, p1, · · · , pm) iff

P(t1, · · · , tn, p1, · · · , pm) is true in the given interpretation of P

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

in [d].
• d |= Fi(v) iff d is of the form D[f0, · · · , fn] : fi = v(i =

0, · · · , n).
• d |= Signed(p) iff d is the form

D[f0, · · · , fn] : C(f0 ,···, fn) signed by p.
• d |= φ0 ∧ φ1 iff d |= φ0 and d |= φ1.
• d |= φ0 ∨ φ1 iff d |= φ0 or d |= φ1.
• d |= φ0 −→ φ1 iff if d |= φ0, then d |= φ1.
• d |= Eφ iff for some path p starting from [d], p |= φ.
• d |= Aφ iff for all paths p starting from [d], p |= φ.

• d |=←E φ iff for some path p ending with [d], p |= φ.

• d |=←A φ iff for all paths p ending with [d], p |= φ.
As for path formulas, for a path p,
• p |= φ0 < φ1 iff p is a signing path of the form d0 −→ d1 −→
· · · −→ dn, d0 |= φ0, and dn |= φ1.

• p |= φ0<̇φ1 iff p is a signing path of the form d0 −→ d1 −→
· · · −→ dn, and only d(n−1) −→ dn is a signing path component
in a path p, d0 |= φ0, and dn |= φ1.

• Otherwise, p |= φ iff p is a path of the form d0 −→ · · ·, and
d0 |= φ.

We denote by d |= P that “a document d is evidence to a policy
P.”
<̇ is used typically in the case below:
Property 1 Let d ≡ D[· · · , fi = t, · · ·] : (· · · , fi =

t, · · ·) signed by p. Then,

d |= Fi(t) < Signed(p).

The proof is clear. From the node [D[· · · , fi = t, · · ·] : fi = t],
we have one and the only one path to [D[· · · , fi = t, · · ·] :
(· · · , fi = t, · · ·) signed by p].

Property 2 If d contains fi = t or Signed(p) as a component

of d, we have d |=←E (Fi(t)) or d |=←E Signed(p), respectively.
This says that in the document tree associated with d, there is a

path from each document component to d, the whole document.
Property 3 If a document d has d′ as d’s component, then for

all φ, if d′ |= φ, then d |=←E φ.

3.4 Institutional Support
Our goal is to use documents in authorization in an institution.

A document must be associated with its form because a policy
in an institution must be associated with a document form. Who
must sign a document, what must be filled in the form, and who
must approve the document are all specified as a policy of an in-
stitution, and represented in a document form.

Specifically, associated with a document form D, there is a set
of axioms that validates an authority claimed by a document of
the form. This represents a policy related to the document form.

Institutions Users
document form D ←→ document D : C

⏐⏐⏐⏐⏐⏐⏐⏐�
Associate

⏐⏐⏐⏐⏐⏐⏐⏐�
Submit

policy P ←→ Verify D : C |= P
by Service Provider

Fig. 3 Policies, documents and authorization.

We also denote it by D.
Figure 3 depicts this relation among policies, documents and

authorization.

4. Applications and Analysis

4.1 Request and Grant
By using DTL, we can represent significant part of business

workflow, including the cycle of request, approval, and execu-
tion. First, we show this simple scenario. In this scenario, fund
managers can concentrate on grant. They do not need to interact
with backyard servers. The interactions are indirectly performed
by using the documents that the fund managers issue to an appli-
cant.

Example 1 In this example, DTL is augmented with ordinary
arithmetic.
Let document forms
sbudget[applicant, budget, applyamount, offeramount]

and
lbudget[applicant, budget, applyamount, offeramount]

be given. They are intended so that an applicant applies for
budget budget with amount applyamount. An applicant
expects that this document is approved by an authority with
the amount offeramount. An applicant has right to withdraw
offeramount if the document is appropriately filled with con-
tent, and the application with the document is approved. Within
an institution, this form is used to process the application for a
fund. The logic for processing this form is defined as the policy
that claims that if the application is for Type S, and the amount
of offer is less than $1K, Bob can approve this application.
Otherwise, it needs approval by a fund manager and finally by
President. Figure 4 illustrates this scenario. Here, the role of
backyard is minimized, corresponding to Fig. 2. This policy is
represented as

∀X.∀Y.∀Z.∀W.FUND(X,Y,Z,W),

where
FUND(apply, applicant, budget, applyamount, offeramount) ≡
SBudget(applicant, budget, applyamount, offeramount) ∨
LBudget(applicant, budget, applyamount, offeramount)
−→ PermitWithDraw(applicant, offeramount),

Fig. 4 Document as evidence of apply-grant – fund management.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

SBudget(applicant, budget, applyamount, offeramount) ≡
Applicant(applicant) ∧ Budget(TypeS) ∧
←
E Applyamount(applyamount) ∧ applyamount < $1K ∧
←
E Offeramount(offeramount) ∧
offeramount ≤ applyamount ∧ offeramount < $1K ∧
←
E Signed(Bob) ∧
←
E (Offeramount(offeramount) <̇ Signed(Bob)),
and
LBudget(applicant, budget, applyamount, offeramount) ≡
∃ Wp. (Applicant(applicant) ∧ ¬Budget(TypeS) ∧
←
E Applyamount(applyamount) ∧
←
E Offeramount(offeramount) ∧
←
E Signed(Wp) ∧ ←EAppoint(Wp, FundManager) ∧
←
E (Offeramount(offeramount) <̇ Signed(Wp)) ∧
←
E (Offeramount(offeramount) < Signed(President)).

Here, PermitWithDraw(Y,Z) is a primitive formula that repre-
sents the grant that Y can withdraw the amount of Z from the
accounting server. If the amount of budget is large, the policy re-
quires the signatures of the fund manager and the president. Fur-
thermore, the fund manager must be appointed as a fund manager
(represented by Appoint(Wp, FundManager)).
In the institution, let us suppose that the policy
Appoint(person, role) for processing the content in document
form appoint[person, role] is defined as:

Appoint(person, role) ≡
←
E (Role(role) < Signed(President))∧
←
E (Person(person) <̇Signed(President)).

Let us suppose that someone submits a document below:
sbudget[applicant, budget, applyamount,

offeramount]:

(applicant = Alice, budget = TypeS ,

applyamount = $500 signed by Alice).

Then, Bob returns it with his signature as document DS ≡
sbudget[applicant, budget, applyamount,

offeramount]:

((applicant = Alice, budget = TypeS ,

applyamount = $500 signed by Alice),

offeramount = $300) signed by Bob,

When one submits document DS , then with simple inference,
we have

DS |= PermitWithDraw(Alice, $300),

and Alice acquires the right to withdraw $300. Note that the doc-
ument DS faithfully embeds the result of the workflow meaning
that Alice applies to a fund, and Bob approves the application.
In an institution, document forms are fixed for use in workflow.
If a form is filled in a valid way, the document is considered to
be evidence of the grant in the workflow. In this meaning, a set
of document forms and their associated policies is essential in a
business workflow of an institution.

Next, let us consider the document DL below that validates
larger fund. This time, Alice is granted for a budget of TypeL. In

this case, Alice attaches the additional document that Charlie, the
signer is appointed to the FundManager.
lbudget[applicant, budget,applyamount,offeramount]:

(((applicant = Alice, budget = TypeL,

applyamount = $1000 signed by Alice),

offeramount = $800) signed by Charlie

signed by President,

appoint[person,role]:

(person=Charlie, role=FundManager)

signed by President).

With simple inference, we have
appoint[person,role]:(person=Charlie,

role=FundManager) signed by President)

|= Appoint(Charlie, FundManager),

and hence
←
E Appoint(Charlie, FundManager) in lbudget, and

hence LBudget(Alice, TypeL, $1000, $800). Therefore, DL |=
PermitWithDraw(Alice, $800), and Alice has the right to with-
draw $800.

In Fig. 5, we show the document tree of DL and the process of
inferring PermitWithDraw(Alice, $800).

4.2 Delegation
We consider delegation of privileges of user A to user B.
Example 2 Suppose that Charlie likes to delegate his Board-

Member role to access a document d. Let us suppose that Charlie
already has a document D1 ≡
appoint[appointee, role]:

(appointee=Charlie, role=BoardMember)

signed by President

Charlie issues a document D2 ≡
delegate[delegater, delegatee, role]:

(delegater=Charlie,delegatee=Dave,role=BoardMember)

signed by Charlie,

Figure 6 illustrates this scenario. The document server grants
access to Dave by verifying the evidence submitted by Dave.
Suppose that the institution has already defined the policy on del-
egation as
Delegate(delegater, delegatee, role) ≡
←
E Appoint(delegater, role) ∧
Role(delegater, role) ∧
←
E(Delegatee(delegatee) <̇ Signed(delegater)) ∧
←
E(Delegatee(role) <̇ Signed(delegater))
−→ Role(delegatee, role).
Let us suppose that the institution allows access to a document d

from a person that has role BoardMember, which is represented
as the policy:

∀Xp.(Role(Xp,BoardMember) −→ AllowReadAccess(Xp, d)).

To claim the privilege AllowReadAccess, document D2 is not
enough. By attaching D1 to D2, that is, by using the document
D3 ≡
delegate[delegater, delegatee, role]:

((delegater=Charlie, delegatee=Dave,

role=BoardMember)

signed by Charlie, D1),

with simple inference, D3 |= Role(Dave,BoardMember) and

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 5 Inference of PermitWithDraw with document DL.

Fig. 6 Workflow of delegation from Charlie to Dave.

hence D3 |= AllowReadAccess(Dave, d).
Note that the delegation by using attribute certificates [12] can

also be represented by this scheme. The privileges are delegated
by the staff that the privileges are originally given to without cen-
tralized control. An institution can control delegation only by
specifying the roles that can be delegated. The idea is very sim-
ilar to issuing access tokens in OAuth(2), where once issued, an
access token works as a delegation of privilege.

The point here is that an applicant collects evidence documents
for one’s authorization. The documents reflect the business pro-
cess of request, approval and grant. The service side validates the
evidence, and infers the privilege by using the service policies.

4.3 Sequencing of Signatures in Business Processes
In the definition of business processes, sequencing of transac-

Table 1 Activities of WS-BPEL.

Basics <invoke>, <assign>, <empty>, <sequence>,
<pick>, <extensionActivity>

Message Exchange <receive>, <reply>

Flow Control <throw>, <exit>, <if>, <while>, <repeatUntil>,
<forEach>, <flow>, <rethrow>, <wait>

Others <scope>, <compensate>, <compensateScope>,
<validate>

tions is one of the most significant processes.
There have been proposed a number of schemes for specifying

business processes. Among those, we use the one used in WS-
BPEL [23].

In WS-BPEL, three types of interactions between two pro-
cesses are defined: sequencing, concurrent sequence, and syn-
chronization across concurrent processes. WS-BPEL defines a
business process as UML-like graph representation of compo-
nent processes and message exchange between processes. The
flow (<flow>) is defined, within which processes are invoked
(<invoke>) and sequenced (<sequence> and <wait>). Flow
control by using <if>, <while>, <forEach> is enabled. The
message exchange is modeled as receive (<receive>) and re-
ply(<reply>). We list in Table 1 the collection of activities of
processes in WS-BPEL.

In our model, document trees and DTL express this interac-
tions as the sequencing of signatures and inclusion of documents.
First, let us suppose that a signature is given when a process is
completed.
sequencing The requirement that a process A with signature S A

must be followed by B with signature S B is represented as

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 7 A simple business process workflow in Ref. [23].

Signed(S A) < Signed(S B) in DTL. Documents satisfying
this requirement show the sequencing of signatures from S A

to S B.
concurrent sequencing There is no requirement in DTL. Doc-

uments satisfying this requirement show that all the subdoc-
uments representing the target activities are included in any
order.

synchronization The requirement that a process A with signa-
ture S A must synchronize with a process B with signature
S B can be represented as the sequencing of signatures from
S A to S B, that is Signed(S A) < Signed(S B). Moreover, the
documents must be formed so that A is included in B. If a
policy A is associated with a process A, this is represented as
←
E (A < Signed(S B) ∧ Signed(S A) < Signed(S B)).

Note that the requirement on order of processes is expressed
as a partial order. Because signatures in a document trees form a
partial order, we can flexibly express the sequencing of business
processes.

Example 3 Let us consider the case of Fig. 7 that appears in
the first example of a business process in Ref. [23]. When we sup-
pose when each task x is completed, a document x is produced
and signed by X. Both the documents D1 ≡
((((a signed by A, ((b1 signed by B1, b2 signed

by B2, b4) signed by B4, b5 signed by B5), b3

signed by B3), b6 signed by B6))signed by B, c)

signed by C

and D2 ≡
((((a signed by A, ((b1 signed by B1, b2 signed

by B2, b4) signed by B4, (b3 signed by B3, b5

signed by B5), b6 signed by B6))))signed by B, c)

signed by C

can be used as evidence for the formula that the task is completed
according to Fig. 7.
In this case, the sequence of signatures represents the order of
tasks. Furthermore, the concurrent sequencing allows freedom
on topological sorting of the order of documents.

Example 4 Let us consider approval by document circular.
The requirement is that all the related staff approves a given doc-
ument. In the approval, the order of signatures does not matter.
This process is expressed by using the partial order of signatures
in DTL.
Let us assume that the staff at concern is specified by Staff. Then,

the requirement that approval by document circular is successful
for the policy D is expressed as DocCircD:
DocCircD(Staff) ≡
←
E D ∧ ∀X ∈ Staff.

←
E (D < Signed(X)),

meaning that there is a node (=component of document) that rep-
resents the policy D, and all the staff members gives their sig-
nature for the document. The order of signing does not matter
here.
Let us suppose Staff = {A, B, C}. Because the order of signa-
ture does not matter, we see that for a document d for D, both
d1 ≡ d signed by A signed by B signed by C and d2 ≡ d
signed by A signed by C signed by B satisfy {d1 | d2} |=
←
E D ∧ ∀X ∈ Staff.

←
E D < Signed(X).

4.4 Similarity to Blockchain
Although our scheme assumes institutions’ predefined policies

for processing documents, a transaction can be processed only
by a claimant and server because the claimant submits evidence
(document) to claim one’s privilege, and the server has only to
validate the submitted evidence, and does not have to wait for
provisioning by a higher section. In this meaning, the transac-
tion is decentralized within an institution. In the evidence, all the
related transactions are recorded to be verified.

Blockchain [18] is another example of decentralized database.
It also records all the transactions in the past so that a given chain
of blocks is validated. The verification process is decentralized,
and in this sense, similar to our scheme.

4.5 Authentication and Authorization
The model of submitting and verifying evidence, and giving

grant works effectively in a variety of service frameworks. In
general, servers provide service to a user with the verification
of the claimant (authentication) and the verification of the privi-
lege (authorization). This model is a solution to the authorization
problem. The authentication must be accompanied to complete
the service providing. The session of the authentication process
must be managed separately by service providers.

This is similar to the motivation of the proposal of OpenID
Connect [26] along with OAuth2*1.

5. Related Work

There are several approaches in the type of logics. Modal
logic and its variants are used to express the requirements of au-
thentication and authorization [2], [10], [16]. Use of other type
of logic includes linear logic (logic for resources) [9], [20], ex-
ecutable Horn-like logics [25], [32], [33], explicit time [6], and
multi-valued logic [4].

This work is classified as a logical approach to access con-
trol [1], [5], [11], [17], [27]. In a logical approach, evidence is
carried along with a claim on authorization. They carry proofs of
a given claim as evidence, while our work carries documents as
evidence. Receivers of evidence verify its correctness, and grants
privileges according to a predefined policy.

*1 http://www.thread-safe.com/2012/01/
problem-with-oauth-for-authentication.html

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

There have been proposed several practical approaches for
managing policies.

Publication of policy documents plays a central role in es-
tablishing trust in the Internet services. Its typical scenarios
include trust frameworks. In a trust framework, service poli-
cies are defined, and parties participate in the trust framework
by agreeing with the predefined policies. Control of identity
trust frameworks by policy documents is proposed and docu-
mented [21]. Standards such as ISO 29115 and NIST SP 800-
63-2 have also been defined for control of identity trust frame-
work. Today, we can see several deployment of trust frame-
works. US FICAM provides trust framework provider adoption
process (TFPAP) [8] for a trust framework provider to operate
a trust framework under the policies of US FICAM. GakuNin
(http://www.gakunin.jp) is a Japanese nation-wide academic trust
framework provider, partly participating in US FICAM via Kan-
tara (https://kantarainitiative.org/). Furthermore, a number of
nation-wide academic federations are operated as trust frame-
works. Furthermore, the trust frameworks for IoT is studied [28]
and practically discussed [24] in addition to the one for identities.

Deployment of policies on servers is another concern. In cloud
environments, it is commonly seen that multiple stakeholders are
enrolled in services. In such environments, provisioning is one
of the most troublesome tasks in harmonization among stake-
holders. Recent work concentrates on the incorporation among
service providers [3], [7], [19]. Moreover, SCIM [15] has been
specified as a standard of provisioning.

Another scenario is the CP/CPS publication in PKI. The tem-
plate of CP/CPS has been defined in Ref. [13]. Privacy related
policies are also important to make decisions on access to Web
sites. P3P is defined in Ref. [31] to allow Web browsers to assess
the policies of Web sites. What is significant is that the privacy
policies are given in the form of XML so that its evaluation by
a program is made possible. The approach of Ref. [29] general-
izes this idea. Furthermore, the XML template of RFC 3647 is
designed in Ref. [30].

There are a number of proposals for specifying business pro-
cesses. WS-BPEL [23] gives a UML-like definition of business
processes. It has some extensions such as BPEL4People to ex-
press real business scenarios.

OAuth 2.0 [14] is a protocol for delegating authorization. In
this framework, once a client acquires an access token, it can
access a specified resource of the resource server within the
scope of the access token. Protocols used in access federations
are intended so that multiple servers incorporate to complete a
specific service such as authentication and authorization. OAuth
is widely adopted by major companies such as Facebook (https://
developers.facebook.com/docs/facebook-login/access-tokens),
Twitter (https://dev.twitter.com/oauth), MS Azure (https://
docs.microsoft.com/en-us/azure/active-directory/develop/active-
directory-protocols-oauth-code) and Google (https://developers.
google.com/identity/protocols/OAuth2). SAML [22] and
OpenID-Connect [26] are designed for authentication, while
OAuth is designed for authorization.

Blockchain [18] is based on the idea that users can verify given
data if the data contains the whole transaction trail with tamper-

proof techniques such as digital signatures. There are proposed
and implemented augmented logics on blockchain such as col-
ordcoins (http://coloredcoins.org/).

6. Concluding Remarks

In this paper, we have proposed a new scheme “Authorization
by Document.” We have first analyzed the roles of documents.
Next, we have given the formal definitions of documents and
DTL. DTL is a simplified CTL* originally used in the verifi-
cation of programs. In DTL, documents are used as evidence to a
given policy written in DTL. We have shown their applications to
typical business processes such as apply and grant, delegate, and
approval by circular, and shown that they can be applied to wide
variety of scenarios.

As the process of authorization grows in its complexity, we
need a scheme that can represent such complexity. We have
adopted the logic for program verification. This shows that our
approach is extensible to more complicated processes. Extending
our scheme to a wider scenario can be considered. In this paper,
we assume that policies are managed and controlled by an insti-
tution that users belong to. If the policies are managed between
institutions or managed as a contract between an institution and a
consumer, scenarios in B2B or B2C are also feasible.

References

[1] Appel, A. and Felien, E.: Proof-carrying authentication, Proc. 6th Int’l
Conf. Computer and Communications Security, pp.52–62 (1999).

[2] Bai, Y.: A modal logic for authorization specification and reasoning,
Proc. 2009 Int’l Conf. Intelligent Computing and Intelligent Systems,
Vol.1, pp.264–268 (2009).

[3] Bousquet, A., Briffaut, J., Caron, E., Dominguez, E., Franco, J.,
Lefray, A., Lopez, O., Ros, S., Rouzaud-Cornabas, J., Toinard, C. and
Uriarte, M.: Enforcing Security and Assurance Properties in Cloud
Environment, Proc. Utility and Cloud Computing (UCC), pp.271–280
(2015).

[4] Bruns, G. and Huth, M.: Access-Control Policies via Belnap Logic:
Effective and Efficient Composition and Analysis, Proc. 21st Com-
puter Security Foundations Symposium, pp.163–176 (2008).

[5] Chin, S.-K. and Older, S.: Access Control, Security, and Trust: A Log-
ical Approach, CRC Press (2010).

[6] DeYoun, H., Garg, D. and Pfenning, F.: An Authorization Logic With
Explicit Time, Proc. 21st Computer Security Foundations Symposium,
pp.133–145 (2008).

[7] Ertl, B., Stevanovic, U., Hayrapetyan, A., Wegh, B. and Hardt, M.:
Identity harmonization for federated HPC, grid and cloud services,
Proc. High Performance Computing & Simulation (HPCS), pp.621–
628 (2016).

[8] FICAM, Trust Framework Provider Adoption Process (TFPAP) for
Levels of Assurance 1,2,3 and 4, V1.1.0 (2013).

[9] Garg, D., Bauer, L., Bowers, K.D., Pfenning, F. and Reiter, M.K.:
A linear logic of authorization and knowledge, Proc. 2006 Euro-
pean Symp. Research in Computer Security (ESORICS), pp.297–312
(2006).

[10] Genovese, V., Rispoli, D., Gabbay, D.M. and van der Torre, L.: Modal
Access Control Logic – Axiomatization, Semantics and FOL Theorem
Proving, Proc. 5th Starting AI Researchers’ Symposium, pp.114–126
(2010).

[11] Hirsch, A. and Clarkson, M.: Belief semantics of authorization
logic, Proc. 2013 Int’l Conf. Computer and Communications Security,
pp.561–572 (2013).

[12] IETF, An Internet Attribute Certificate Profile for Authorization, RFC
3281 (2002).

[13] IETF, Internet X.509 Public Key Infrastructure Certificate Policy and
Certification Practices Framework, RFC 3647 (2003).

[14] IETF, The OAuth 2.0 Authorization Framework, RFC 6749 (2012).
[15] IETF, System for Cross-domain Identity Management: Protocol, RFC

7644 (2015).
[16] Kosiyatrakul, T., Older, S. and Chin, S.-K.: A modal logic for role-

based access control, Proc. 2005 Mathematical Methods, Models, and

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Architectures for Computer Network Security (MMM-ACNS) (LNCS
3685), pp.179–193 (2005).

[17] Lesniewski-Laas, C., Ford, B., Strauss, J., Morris, R. and Kaashoek,
M.F.: Alpaca: Extensible Authorization for Distributed Services,
Proc. 14th Conf. Computer and Communications Security, pp.432–
444 (2007).

[18] Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System
(2008), available from 〈https://bitcon.org/bitcon.pdf〉.

[19] Ngo, C., Membrey, P., Demchenko, Y. and de Laat, C.: Policy and
Context Management in Dynamically Provisioned Access Control
Service for Virtualized Cloud Infrastructures, Proc. Availability, Re-
liability and Security (ARES), pp.343–349 (2012).

[20] Nigam, V.: On the Complexity of Linear Authorization Logics, Proc.
27th Symposium on Logic in Computer Science, pp.511–520 (2012).

[21] NIST, Developing Trust Frameworks to Support Identity Federations,
NISTIR 8149 (draft) (2016).

[22] OASIS, Security Assertion Markup Language (SAML) V2.0 (2005).
[23] OASIS, Web Services Business Process Execution Language, Version

2.0 (2007).
[24] Online Trust Alliance: IoT Trust Framework (2017).
[25] Ruan, C. and Shahrestani, S.: Logic Based Authorization Program and

Its Implementation, Proc. 4th Int’l Conf. Security of Information and
networks, pp.87–94 (2011).

[26] Sakimura, N., Bradley, J., Jones, M.B., de Medeiros, B. and
Mortimore, C.: OpenID Foundation: OpenID Connect Core 1.0
(2014).

[27] Sato, H.: Analyzing Semantics of Documents by Using a Program
Analysis Method, Proc. 2009 33rd Annual IEEE International Com-
puter Software and Applications Conference (COMPSAC ’09), Vol.1,
pp.373–382 (2009).

[28] Sato, H., Kanai, A., Tanimoto, S. and Kobaysshi, T.: Establishing
Trust in the Emerging Era of IoT, Proc. IEEE Int’l Conf. Service-
Oriented System Engineering 2016, pp.398–406 (2016).

[29] Sato, H., Tanimoto, S. and Kanai, A.: A Policy Consumption Archi-
tecture that enables Dynamic and Fine Policy Management, Proc. 3rd
ASE International Conf. CyberSecurity (2014).

[30] Sato, H., Tanimoto, S. and Kanai, A.: XMLed Service Policy Docu-
ments for Access Control, Computer Security Symposium 2014, 1D4-
1 (2014). (in Japanese).

[31] W3C, The Platform for Privacy Preferences 1.1 Specification (2006).
[32] Zhang, M., Chen, W., Wang, Y. and Zhang, M.: Flexible Authoriza-

tions with Logic Program, Proc. 2009 Int’l Conf. Networks Security,
Wireless Communications and Trusted Computing, Vol.2, 259–262
(2009).

[33] Zhang, M., Wang, Y. and Ma, X.: Specifying Flexible Features in
Authorization Using Logic Program, Proc. Seconf WS on Education
Technology and Computer Science, Vol.1, pp.578–581 (2010).

Hiroyuki Sato Associate Professor in the
University of Tokyo. Received B.Sc.,
M.Sc. and Ph.D. from the University of
Tokyo in 1985, 1987, 1990, respectively.
Majoring: Computer Science and Infor-
mation Security. He is a member of ACM,
IEEE, IPSJ and JSSST.

c© 2017 Information Processing Society of Japan

