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Abstract: Anonymous location data may be correlated with restricted spaces like home and office for subject identi-
fication. This creates significant privacy risks to users when they disclose their location to applications like location-
based services. In this paper, we address this problem with a novel approach named restricted space cloaking. This
scheme cloaks a user’s location only when the location is inside a restricted space. When in non-restricted spaces,
the location is reported as is. We show that this cloaking strategy is capable of full location privacy protection: given
a restricted space, the adversary does not know when its owner was there; given a non-restricted location, the adversary
does not know who has ever visited there. Such protection is not available from the existing cloaking techniques. In
addition to full location privacy protection, the proposed strategy makes it possible for users to cloak their locations
without disclosing accurate locations to either a trusted anonymizer or other users. We discuss the implementation
challenges and present corresponding solutions. The performance of the proposed solutions is evaluated through sim-
ulation.
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1. Introduction

When users disclose their location to applications like location-
based service (LBS), they are subject to two significant privacy
risks: query privacy and location privacy. The former refers
to the fact that the service provider knows who uses the ser-
vices, whereas the latter, a user’s whereabouts. Simply using
pseudonyms for identity protection in service uses does not solve
the problem because anonymous location itself may be correlated
with restricted spaces such as home and office to identification
the subject. A single location may not reveal a user’s real-world
identity, but a time-series sequence of location samples that form
a trajectory will eventually do.

The above problem, referred to as Restricted Space Identifica-

tion [1], has received great research interests in the last decade.
A number of technical solutions have been proposed, among
which the most intensively studied one is location cloaking. The
idea put in a simple way is to reduce location resolution to achieve
a desired level of protection. Instead of reporting their exact posi-
tion, users disclose a cloaking region as their location. The chal-
lenge here is how to compute a cloaking region that can provide
a certain level of guarantee that it cannot be linked to some spe-
cific individual. Existing techniques can be classified into two
categories:
• Neighbor Cloaking [1], [2], [3], [4], [5]: The techniques in

this category ensure that each cloaking region has at least
k users inside it at the time when the cloaking region is re-
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ported.
• Footprint Cloaking [6], [7]: This type of techniques guaran-

tees that each cloaking region contains at least k different
users’ footprints, each defined to be a location sample col-
lected at some historical time point.

While location cloaking has been shown to be effective in pri-
vacy protection, existing techniques fall short in various aspects.
Neighbor cloaking supports only anonymous service uses, but not
location privacy protection. Given a cloaking region that contains
at least k users, an adversary may not know which of these users
requested the service, but knows that all of them were there at the
time when the location was reported. When compared to a sin-
gle user’s location, revealing the presence of a group of people
together in a particular area is even more threatening – it is well
said that “where you are and whom you are with are closely cor-
related with what you are doing” [17]. On the other hand, using
footprints for cloaking was aimed at addressing this problem, but
it can protect a user’s location privacy only at the time dimension.
Given a cloaking region with k visitors’ footprints, an adversary
does not know when they visit the region, but does know that they
have all visited this region. This remains a significant privacy
concern, especially when a cloaking region is part of sensitive
places such as clinic or entertainment centers.

In this paper, we consider the problem of providing full lo-

cation privacy protection to the users of LBS. Given a restricted
space, an adversary shall not know when the corresponding owner
was there; given a non-restricted space, the adversary shall not
know who has ever visited there. We call such protection full
protection because for restricted spaces, the presence of their
owners is considered public knowledge and the best one can do is
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to prevent an adversary from knowing the time of their presence.
We summarize our main contributions as follows:

1) We introduce the concept of full location privacy protec-
tion and show that the existing cloaking techniques fail to provide
such protection.

2) We present a novel cloaking technique called Restricted

Space Cloaking (RSC). This scheme cloaks a user’s location only
when the location belongs to a restricted space. Otherwise, the lo-
cation is submitted as is. We prove that this scheme protects can
provide users full location privacy protection. Moreover, it in-
curs less communication and computation overhead than existing
techniques that cloak a user’s every location.

3) We introduce a new concept called Cloaking Map, which
allows users to cloak their location by themselves. This fea-
ture of self-cloaking is a significant contribution since most ex-
isting techniques require users to disclose their exact location to
either a trusted anonymizer [1], [2], [4], [6], [7] or their current
neighbors [3] to compute their cloaking region. This is problem-
atic because the anonymizer and neighboring nodes may be as
untrustworthy as the provider of LBS. One exception that sup-
ports non-exposure location cloaking is the technique proposed
in Ref. [12]. This scheme, however, relies on secure multiparty
computing techniques, which incur significant computation and
communication overheads among mobile nodes.

4) We have implemented the proposed techniques with a de-
tailed simulator and evaluated their performance from various as-
pects using realistic synthetic data.

The rest of this paper is organized as follows. In Section 2, we
give a formal definition of the problem and introduce the basic
idea of the proposed restricted space cloaking. We describe the
implementation challenges and corresponding solutions in Sec-
tion 3 and then evaluate their performance in Section 4. We dis-
cuss more related work in Section 5 and conclude this paper in
Section 6.

2. Basic Idea: Restricted Space Cloaking

In restricted space identification, the adversary uses the re-
stricted spaces to identify the subjects of anonymous location
data. A space S is said to be restricted to (or owned by) a per-
son u if having a service request originating from S reveals the
presence of u in S at the time when the request was sent. No-
tice that u may or may not be the one who requests the service
and a person may own more than one restricted space. Examples
of restricted spaces include house and office which are considered
public domain knowledge (e.g., available from public sources like
the Internet or housing data). If a location is inside or contains
a restricted space, the subject at this location is very likely to be
the owner of the restricted space.

The adversary is interested in location privacy intrusion. Let
ku be the desired level of protection of a user u. We say a privacy
protection protocol P supports Full Location Privacy Protection

if for any location (l, t), where l is the user’s location reported at
time t, the following conditions hold:
1) If l contains a restricted space S owned by u, the probability

that the adversary knows u was in S at time t is no greater
than 1/ku.

Fig. 1 Privacy leak in existing cloaking techniques.

2) If l does not contain any of u’s restricted spaces, the proba-
bility that the adversary knows u has visited l is no greater
than 1/ku.

As mentioned earlier, neither neighbor cloaking nor footprint
cloaking supports full location privacy protection. Their prob-
lem roots from the fact that these techniques cloak a user’s loca-
tion whenever the location is reported. Let (R1, t1) → (R2, t2) →
. . . → (Rn, tn) be an anonymous trajectory. The adversary knows
that this trajectory is computed based on the trajectories from
k different users. If restricted space identification allows the ad-
versary to know any one of these users being a subject of Ri, then
he can further conclude that this user must be a subject of all other
cloaking regions. Figure 1 demonstrates this privacy leak.

In this paper, we present a novel cloaking strategy that cir-
cumvents the above problem. We observe that locations reported
in non-restricted space area such as highway or parking lot can
hardly lead to subject identification because the number of poten-
tial visitors to such locations is usually huge. Thus, to prevent
identity disclosure, a user’s accurate location needs to be cloaked
only when he is inside his restricted space. In light of this, we
propose to cloak a user u’s restricted spaces with the restricted
spaces owned by at least ku − 1 restricted space owned by other
users. The set of users whose restricted spaces are cloaked with
u’s restricted spaces is called u’s cloaking set and the resulted
cloaking regions form a cloaking map. Let U be a cloaking set
that consists of n users {u1, u2, . . . , un}. A cloaking map for U

consists of a number of cloaking regions that is required to sat-
isfy the following properties:
1) Every cloaking region contains at least n restricted spaces,

each owned by a different user in U;
2) For every user in U, each of its restricted space is covered by

at least one cloaking region.
Figure 2 shows a cloaking map that contains four cloaking re-

gions generated from for a cloaking set containing three users.
Given a cloaking map, a user cloaks its location as follows: when
having to report its location for a service, the user simply checks
its position against the cloaking regions in the map. If the location
is inside a cloaking region, the user reports the cloaking region as
its location. Otherwise, it reports its accurate location as is, i.e.,
without being cloaked.

We refer to the above strategy as Restricted Space Cloak-

ing (RSC), alluding to the fact that this scheme cloaks a user’s
location only when the location is inside a restricted space. This
approach has several clear advantages: 1) When a user’s loca-
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Fig. 2 A cloaking map for U = {a, b, c}.

tion is reported as is, best location resolution is achieved, which
benefits both the user (improves quality of service) and the ser-
vice provider (does not need to retrieve/send unnecessary query
results); 2) The cloaking map enables users to cloak their loca-
tion by themselves, without having to disclose accurate location
to any third party; 3) The concept of cloaking map simplifies the
cloaking process since a user does not need to calculate a cloak-
ing region every time he reports location, but simply look up an
appropriate cloaking region in his cloaking map. And the cloak-
ing map does not need to be recalculated unless someone changes
his restricted spaces.

The most important advantage, however, is that this strategy
has the potential to enable full location privacy protection. With-
out loss of generality, let (li, ti) and (l j, t j) be two continuous loca-
tions generated by RSC for a user u with a protection level of ku,
where ti < t j. There are four cases (showed in Fig. 3):
1) Both li and l j are non-cloaked locations. Since such loca-

tions do not belong to any restricted space, any user could be
the subject. As such, the probability of u being at li and l j is
no greater than 1/ku.

2) li is a cloaking region and l j is a non-cloaked location. In
this case, li must contain u’s restricted space and at least
ku − 1 other owners’ restricted spaces. The adversary knows
all these owners have visited li, and for any one of them, the
chance of being there at time t j is 1/ku. The adversary also
knows for sure that one of these users moves from li to l j,
but does not know who does so. So the probability of having
any one of these ku users visiting l j is no greater than 1/ku.

3) Location li is non-cloaked and l j is a cloaking region. This
is similar to case 2. The ku owners identified from l j have an
equal chance of being at li.

4) Both li and l j are cloaking regions. The two cloaking regions
reveal two sets of users. Here we can make sure that the two
sets contain at least ku common users so that the chance of
having any one of them at li at ti and at l j at time t j is no
greater than 1/ku.

So far our discussion follows the same assumption as in ex-
isting researches on the adversary’s background knowledge: it
knows only restricted spaces and their corresponding owners.
Under this assumption, the owners of the restricted spaces cov-
ered in a trajectory have the equal chance to be the subject. In
reality, however, other side information may be available to the
adversary. We now consider a common situation that the adver-
sary uses road network information, such as Google Map, to re-

Fig. 3 Cloaking results of restricted space cloaking.

Fig. 4 Accessibility attack.

fine the cloaking set of a user. Consider two adjacent locations
(li, ti) and (l j, t j) in a trajectory generated for a same user (Fig. 4).
li is a cloaking region with two restricted spaces S1 and S2, and
l j is a non-cloaked location. If there is no road from S1 to l j or it
is impossible for one to move from S1 to l j within a time period
of t j − ti, then the adversary can conclude the owner of S2 is more
likely to be the subject of these two locations.

This attack (which we refer to as Accessibility Attack) arises
when a cloaking region’s exit or entrance point is not accessible
from a restricted space inside the region. To prevent this attack,
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Fig. 5 Exit/entrance points of a cloaking region.

we first introduce the notion of Exit/Enter Point (EP). An EP is
a point where a public road intersects with the border of a cloak-
ing region. In other words, an EP is a point where one can move
into or out of a cloaking region. Figure 5 shows a cloaking region
with three EPs. With the notion of EP in place, we can prevent
the accessibility attack by ensuring that each cloaking region c

has the following Accessibility Requirements:
1) For each restricted space S inside l and each EP of l, there

exists at least one road P from S to EP.
2) All such paths are completely within c.

The two requirements are there to guarantee that every EP of
a cloaking region c is accessible from all restricted spaces inside
it without having to move out of c. As such, given a trajectory
that contains c, any owner of the restricted spaces inside c has an
equal chance of moving into or out of c from or to other locations
on the trajectory.

3. Implementation Details

3.1 System Overview
We now consider how to implement the proposed cloaking

strategy. In general, cellular phone users access the Internet
through their wireless service providers (WSP) such as AT&T
and Verizon. We assume such providers are interested in assist-
ing their clients to preserve their location privacy and therefore
are willing to provide the cloaking map for them as an add-on
value. To compute the cloaking map, the WSP needs to have the
following information: 1) each user’s required level of protec-
tion; 2) each user’s restricted spaces; and 3) road networks. Note
that in computing cloaking maps, the WSP does not require any
location data of users except for the location of their restricted
spaces (which is considered public knowledge), so the WSP does
not have to be trusted. An overview of the system structure is
demonstrated in Fig. 6.

Users can report their desired level of protection and restricted
spaces to the WSP. Here a restricted space can be any location
where a user wants it to be cloaked should a service request is
sent within it. Another way to gather restricted space information
is from public sources like housing data available from city asses-
sor. It is also possible for the WSP to find out restricted spaces by
analyzing the location data they collect from their clients through
signal triangulation. Here we simply assume that the WSP has the
information of restricted spaces of its users without further dis-
cussion on how to acquire this information. As for road networks,
the WSP can acquire from public sources like GIS databases.

We represent road network by an undirected graph Groad,
where a road is represented by an edge while road intersection

Fig. 6 System structure.

points are represented by vertices. Coordinates of an end point or
an intersection point of the road network are stored in the corre-
sponding vertex. As such we can use BFS to find a path between
any two points. To accelerate the process of generating cloak-
ing maps, we also index the roads using a segment tree such that
we can easily compute which roads are inside and/or intersect
a cloaking region.

Let U = {u1, u2 . . . un} be the set of users. A user ui =

<uid, kui,RS(ui)> contains a user’s id, his desired protection
level, and the set of restricted spaces owned by him. Let
S = {s1, s2 . . . sm} be the set of all restricted spaces, where
si = <sid,MBR(si), ri> contains the id of a restricted space, its
minimal bounding rectangle, and the road to which the restricted
space is directly connected, such that a subject leaves or enters
the restricted space exclusively through this road.

The challenge here is how to compute a cloaking map that sat-
isfies a user’s desired protection level and meanwhile, is of good
quality. The quality of a cloaking map can be measured by the
total area of cloaking regions in the map. A smaller area will re-
sult in a higher cloaking resolution, which in turn allows a user
to receive a better quality of service. Moreover, it is likely to in-
cur less computation and communication costs to both the server
and users. This is because when a user is not inside a cloaking
region, he can report his accurate location to the LBS provider.
We propose a two-step approach:
• Step 1. Cloaking Set Selection: Partition the users into

a number of cloaking sets such that each user belongs to one
and only one cloaking set. To satisfy the required protection
level of all users, the cardinality of each cloaking set U must
be no less than ku for any u ∈ U.

• Step 2. Cloaking Map Generation: For each cloaking set,
generate a cloaking map. Because of the criteria for users to
be in a cloaking set, this map can be distributed to and shared
by all users in the cloaking set to cloak their location.

Note that the above two steps only need to be performed once
for a given set of users and their restricted spaces, which usu-
ally do not change frequently. In the next subsections, we dis-
cuss these two steps in detail. To make it easy to follow, we will
discuss how to perform Step 2 first.
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Fig. 7 Cloaking map for U = {a, b, c}.

3.2 Cloaking Region Generation
Given a cloaking set, a naı̈ve way to create corresponding

cloaking map is to generate a cloaking region that contains all
restricted spaces of these users. Figure 7 (a) illustrates this ap-
proach. This approach is easy to implement, but can result in
poor cloaking resolution since the cloaking region can be very
large.

Here we present a more advanced approach. Let U =

{u1, u2 . . . uk} be a cloaking set and S = {s1, s2 . . . sn} the set of
all restricted spaces owned by the users in U. To generate quali-
fied cloaking regions, our idea is first divide the set into smaller
subsets. We partition S into m subsets {S1, S2 . . . Sm} such that⋃m

i=1 Si = S and Si ∩ S j = ∅ ∀i, j. Given a subset Si, we can then
use the minimal bounding rectangle of the restricted spaces in Si

as its cloaking region. The problem here is how to make sure that
the generated cloaking regions have the minimum area. A parti-
tion is said to be optimal if the area of the corresponding cloaking
regions is smallest. Note that when partitioning S into m subsets
{S1, S2 . . . Sm}, we need to guarantee that every subset Si contain
at least 1 restricted space of each user. This approach could result
in better cloaking resolution because we are able to cloak nearby
restricted spaces together with m smaller regions as demonstrated
in Fig. 7 (b).

We formulate the above optimization problem as follows.
Given the cloaking set U = {u1, u2 . . . uk}, we first define the fol-
lowing variables:

Oi j =

⎧⎪⎪⎨⎪⎪⎩
1 if si belongs to u j

0 otherwise
(1)

The above variable Oi j indicates the ownership of each restricted
space. Note that here we assume each restricted space can only
belong to one user, thus, the following condition holds at any
time:
∑k

j=1
Oi j = 1 i ∈ {1, 2 . . . n} (2)

Pi j =

⎧⎪⎪⎨⎪⎪⎩
1 if si is in S j

0 otherwise
(3)

This variable reflects which subset a restricted space is assigned
to. In reality a restricted space can belong to multiple owners. To
deal with this situation, we can represent such a restricted space
as multiple restricted spaces with the same location, each belongs
to one owner. Let xi and yi ∈ N denote the x and y coordinates of

restricted space si. The area of a cloaking region (i.e., the mini-
mal bounding rectangle) generated for subset S j can be calculated
by:

MBR(S j) =
[
maxn

i=1(Pi jxi) −minn
i=1(xi/Pi j)

]
×

[
maxn

i=1(Pi jyi) −minn
i=1(yi/Pi j)

]
(4)

For convenience of computation, we simple define 1/Pi j to be
a very large positive number when Pi j = 0. To find the optimal
partition of a given cloaking set, the following optimization prob-
lem need to be solved for Pi j:

Minimize :
∑m

j=1
MBR(S j) (5)

Subject to :∑m

j=1
Pi j = 1 i ∈ {1, 2 . . . n} (6)

∑n

i=1
Oi jPil ≥ 1 j ∈ {1, 2 . . . k}, l ∈ {1, 2 . . .m} (7)

Oi j, Pi j ∈ {0, 1} ∀i and j (8)

Equation (6) requires that a restricted space must be assigned to
exactly one cloaking region. While Eq. (7) requires that each
cloaking region must contain at least 1 restricted space of each
user. Note that these two restrictions guarantee that property 1
and 2 are satisfied for each cloaking region generated in this step.
Here, Oi j, xi, and yi are given as input.

Solving the above linear programming is known to be NP-hard.
For a small number of restricted spaces, one could iterate through
all possible partitions of S to find the optimal partition that will
result in minimal area of restricted spaces. This approach we will
refer to as Optimal Cloaking Region Generation algorithm. Ex-
haustive search like this, however, is computational-infeasible as
the total number of partitions grows exponentially to |S|. Alter-
natively, we propose an Heuristic Cloaking Region Generation

algorithm with running time linear to the size of the cloaking set.
Pseudo code of this algorithm is given below:

Algorithm 1. Generate CMap(U, S)

1 CMap← ∅
2 u∗ ← the user with least number of restricted spaces.
3 m← the number of restricted spaces of u∗

4 For each restriced space si of u∗, do
5 Si ← si

6 For each u ∈ U and u � u∗, do:
7 Su = the set of restricted spaces of u.
9 Allocate Su into {S1, S2 . . . Sm} such that each subset

contains at least 1 restricted space in Su.
10 For each subset Si ⊂ S, do
11 Compute the area of the Minimal Bounding

Rectangle of all restricted spaces in Si.
12 While there exists other allocation scheme of Su

13 Allocate restricted spaces in Su into {S1, S2 . . . Sm}
with the optimal allocation scheme

14 For each subset Si, do
15 Add the Minimal Bounding Rectangle of restricted

spaces in Si into CMap.
16 Return CMap
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Our proposed algorithm, as showed in Algorithm 1, starts with
a pivot user u∗ who has the least number of restricted spaces.
Suppose u∗ has m restricted spaces. We first generate m sub-
sets {S1, S2 . . . Sm} such that each subset contains exactly one re-
stricted space of u∗. These subsets are used as the initial partition.
Then, for each user u, we try to allocate his restricted spaces into
{S1, S2 . . . Sm} such that 1) each subset Si is assigned at least 1 re-
stricted space of u; and 2) each subset’s cloaking region is min-
imally expanded. To this end, we compare all the possible ways
to assign u’s restricted spaces to m subsets, which is substantially
smaller than the number of all possible partitions of S. We per-
form this greedy allocation for users one by one, until all users’
restricted spaces are allocated into exactly one of the subsets.

Algorithm 2. Expand CRegion(c,Groad)

1. For each restricted space s inside c, do
2. For each exit point EP of c, do
3. Path← the shortest path from s to EP in Groad.
4. If Path = ∅ or is not totally inside c, then:
5. Expand c to fully contain Path.
6. Go back to step 1 and repeat.
7. Return c

Recall that cloaking regions must also satisfy the accessibility
property to prevent accessibility attack. In order to do so, we rec-
tify all raw cloaking regions generated by Algorithm 1 through an
expanding process as showed in Algorithm 2. In this algorithm,
we take an intuitive approach by keep expending the cloaking
region to include more roads and road intersections until the re-
quirement is satisfied. Since the whole road network is assumed
to be connected, this process will guarantee to create cloaking re-
gions that satisfy the property. Note that the cloaking regions gen-
erated by the above algorithms may overlap with each other. To
avoid cloaking regions being refined by the adversary, we require
the user to randomly choose a cloaking region to report if his cur-
rent location falls into multiple overlapped cloaking regions.

3.3 Cloaking Set Partition
We now consider how to perform cloaking set selection.

A cloaking set basically is a set of users whose restricted spaces
are cloaked together. Similarly, given the original set of users, we
can use exhaustive search to find the optimal partition of cloak-
ing sets such that the average cloaking resolution of their corre-
sponding cloaking maps is minimized. Let {U1,U2 . . .Um} denote
a partition of U. The area of cloaking regions generated for a user
set Ui is represented by:

AREA(Ui) = MBROpt(S), (9)

where MBROpt(S) is the minimal sum of MBRs as in the target
function (5) achieved by solving the 0-1 integer linear program-
ming in previous section. Here, S is the set of restricted spaces
owned by users in Ui. Define the following variable:

Xi j =

⎧⎪⎪⎨⎪⎪⎩
1 if ui belongs to U j

0 otherwise
(10)

The variable indicates which cloaking set a user has been allo-

Fig. 8 Quadtree partition of the network domain.

cated to. The optimal partition can be found by solving:

Minimize:
∑m

j=1
AREA(U j) (11)

Subject to:∑m

j=1
Xi j = 1 i ∈ {1, 2 . . . n} (12)

|U j| ≥ maxn
i=1(Xi jkui) j ∈ {1, 2 . . .m} (13)

Xi j ∈ {0, 1}, ∀i and j (14)

Exhaustive search for the optimal solution is infeasible in this
case since the running time is exponential to the total number of
restricted spaces owned by all users, which can be very large.
Again, to circumvent the computational infeasibility, we propose
a Heuristic Cloaking Set Partition algorithm with quadratic worst
case running time to the number of restricted spaces.

To minimize cloaking resolution, the users in a same cloaking
set should have a similar number and distribution of their cloaking
regions. In light of this, we introduce the Restricted Space Fea-

ture Vector (RSFV) as a coarse indicator of both the number and
distribution of restricted spaces of a user. Specifically, we first
partition the network domain into a grid of n × m homogeneous
cells, and then designate each cell a unique index from (1, 1) to
(n,m). A user u’s RSFV is defined as:

Vu = <V(1,1),V(1,2) . . .V(2,1) . . .V(n,m)> (15)

where

V(i, j) =

⎧⎪⎪⎨⎪⎪⎩
1 if u has restricted spaces overlaped cell(i, j)
0 otherwise

(16)

This vector can be considered a spatial down sampling of
a user’s restricted spaces, so it reflects the spatial feature of these
restricted spaces in a rough way. Users with similar feature vec-
tors should be selected into the same cloaking set. We recur-
sively partition the network domain using a quadtree of t-levels,
as demonstrated in Fig. 8. At every level of the quad tree, we
compute the RSFV for each user, representing his restricted space
distribution in this level of resolution. We now present a Feature
Vector-aided cloaking set partition algorithm, showed in Algo-
rithm 3 and 4.

Algorithm 3. Find CloakingSet(Pivot, S,U)

1 CSet ← {Pivot },
2 Remove Pivot from U.
3 For level = t to 1, do
4 For each u ∈ U, do
5 If Vu = VPivot at level and ku ≤ kpivot then
6 Add u into CSet. Remove u from U

7 If |CSet| ≥ kpivot, then go to step 12
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8 Else, for each u ∈ U, do
9 If Close(Vu,VPivot, level) and ku ≤ kpivot then
10 Add u into ASet. Remove u from U

11 If |CSet| ≥ kpivot, then go to step 12
12 Return ASet

Algorithm 4. Is Close(Vu,Vu, level)

1 Vmask ← < 0, 0, . . . 0> at level

2 For each Vu
(i, j) in Vu at level, do

3 If Vu
(i, j) = 1, then

4 Vmask
(i, j) , Vmask

(i−1, j), Vmask
(i+1, j), Vmask

(i, j−1), Vmask
(i, j+1) ← 1

5 For each Vv(i, j) in Vu at level, do
6 If Vv(i, j) = 1 and Vmask

(i, j) = 0, then
7 Return FALSE.
8 Return TRUE.

The algorithm starts from the t-th level the quadtree. First, we
randomly choose a user as a pivot form the set of users who do
not have a cloaking set yet. Then, we try to find at least kpivot − 1
other users to formulate a cloaking set with him. These users
should satisfy two conditions: 1) their desired protection level
must be no higher than kpivot, and 2) their RSFV equals Vpivot at
this level. If there is no enough user satisfying condition 2), we
try to add users whose RSFV is “close” to Vpivot. Two users’
RSFV are said to be close to each other if all of their restricted
spaces are located in the same cell or in adjacent cells. If still
not enough users are found, we move up the quadtree to the t − 1
level until reach level 1. This process is repeated until all users
are grouped into their cloaking sets. If at certain point, the num-
ber of remaining users is less than kpivot−1, we then try to allocate
the remaining users into existing cloaking sets. For a remaining
user u, we can allocate him into any cloaking set as long as the
number of users in that set is no less than ku. And adding u into
the cloaking set will not threaten existing users in that set since
it will only increase the protection level of this cloaking set. We
assume the highest protection level required by a user is less than
the total number of users; otherwise it is impossible to achieve
such a level of protection.

4. Performance Evaluation

We have implemented a detailed simulator that allows us to
evaluate the performance of the proposed strategy from various
aspects. The performance of cloaking based techniques can be
measured by the average resolution of user-reported locations (the
smaller the better), which reflects not only the quality of service,
but also the potential communication cost. In restricted spaces
cloaking, a user cloaks its location based on its cloaking map, so
we are also interested in the quality of the cloaking map produced
by our approaches. We measure the quality of cloaking map by
the proportion of non-cloaking area (area in which the user’s loca-
tion is reported as is) to the area of the whole network domain. In
general, the larger this proportion is, the more accurate locations
are likely to be reported.

To evaluate the proposed techniques in a real world scenario,
we simulate an area of 12 km×12 km (144 km2), which is the size
of the city of Ames, IA, USA, based on the GIS data [14] pro-

Fig. 9 Synthetic data for performance evaluation.

Table 1 Compared algorithms.

vided by the city authority. Residential areas are added accord-
ing to the 2010 census and household data published by the US
Census Bureau [15] and the housing density data acquired from
[14], [16]. Figure 9 shows the simulated area comparing to Ames
urban area as seen on the GIS Map. The area is partitioned into
50 m× 50 m cells using quadtree. Since restricted spaces are usu-
ally house and office, we randomly allocate them in residential
and commercial zones.

We implement three algorithms, including Heuristic Cloaking

Set Partition, Heuristic Cloaking Region Generation, and Opti-

mal Cloaking Region Generation. The optimal cloaking set parti-
tion was not implemented since its running time is exponential to
the total number of restricted spaces of all users, which is beyond
the computational power of our experimental platform. In order
to compare performance of the proposed strategy against state-
of-the-art cloaking techniques, we also implemented the footprint

cloaking algorithm proposed in Ref. [6]. When a user is not in-
side any cloaking region and needs to report location as is, we as-
sume the accurate location has a resolution of 5 meter, which can
be achieved by consumer-grade GPS [25] as equipped on most
smartphones. We group these algorithms into three categories for
comparison (Table 1).

Note that restricted space cloaking supports full location pri-
vacy protection and self-cloaking, the two features not available
from existing cloaking techniques. As such, we only compare
the quality of service that they can provide. We simulate a 12
hours duration of service usage of a set of users. The number
of queries is set to 30 per user per hour to simulate continuous
service uses like navigation. We are interested in how the perfor-
mance of these techniques is impacted by factors including the
number of restricted spaces, the distribution of restricted spaces
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Fig. 10 Experimental results.

Table 2 Default settings.

among users, the number of users, and users’ desired protection
level. We use two performance metrics which reflect the Quality
of Service (QoS) of LBS. The Average Cloaking Resolution is
the average diameter of all reported cloaking regions (recall that
we use round cloaking regions). A smaller diameter indicates
a higher resolution and thus likely to result in higher QoS. The
Public Area Proportion is the percentage of non-cloaking areas
on the whole cloaking map. A larger public area proportion could
mean less cloaking is needed. Note that this proportion is always
0 for the footprint cloaking strategy, due to the fact that this strat-
egy requires the user’s location to be cloaked at any time. The
default experiment parameters are showed in Table 2.

4.1 Effect of Number of Restricted Spaces
In order to simulate the regular moving pattern of human, users

are simulated to move randomly between their restricted spaces
and detour to random public locations like supermarket and shop-
ping mall. The number of public locations visited by each user
is normally distributed with a mean of 3 and standard devia-
tion of 1.5. The footprint data used in footprint cloaking is also
simulated this way by accumulating users’ continuous movement

for 36 hours following the same pattern. The number of restricted
spaces owned by each user is normally distributed with a standard
deviation (δ) of 0.5 and then rounded to the nearest integer. We
adjust the mean number of restricted space from 1/user to 3/user
while using default value for other parameters. The result is plot-
ted in Fig. 10 (a) and (e). The proposed methods significantly
outperform the footprint cloaking strategy, which is generally
not affected by the number of restricted spaces. Note that the
performance of the cloaking strategy with heuristic algorithm is
very close to the one with optimal algorithm, indicating that the
proposed heuristic algorithm is very effective in generating high
quality cloaking regions.

When each user owns 1 restricted space the performance of
our strategy is the best, since it very easy to find users whose re-
stricted spaces are close to each other and generate small cloaking
regions. But as the number of restricted spaces increases, the per-
formance drops. This is due to the fact that it becomes harder and
harder to find a set of users with similar distribution of restricted
spaces. However, the proposed strategy outperforms the footprint
cloaking strategy regardless of the number of restricted spaces.

4.2 Effect of Distribution of Restricted Spaces
In general, the number of restricted spaces owned by each user

is vastly different. A very small number of people may own
more properties than the majority. This experiment is to evalu-
ate how this unevenness of ownership impacts on the cloaking
performance. Here we fix the mean number of restricted space
to 3/user while adjust the standard deviation (δ) from 0 to 0.8.
Default value is used for other parameters. In other words, the
standard deviation of the number of restricted spaces in a par-
ticular area represents the degree of user diversity in terms of
restricted spaces ownership. Figure 10 (b) and (f) illustrate the
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performance of the compared techniques. The experiment result
shows that the proposed strategies achieved the highest map qual-
ity when the deviation is small. In other words, the proposed
strategy prefers regions where users basically have similar num-
ber of restricted spaces. Similarly, in this experiment the heuristic
algorithm demonstrates good performance even comparing with
the optimal algorithm.

It is interesting that the quality of map reduces as the owner-
ships become more skew, but the decrease is not as dramatic as
affected by factors studied in the other sections. This indicates
that the proposed strategy is not highly sensitive to diversified
users under the settings of this experiment, at least not as sensi-
tive as to the other three factors. Again, the proposed strategy
outperforms the footprint cloaking significantly.

4.3 Effect of Number of Users
In this study, we increase the number of users from 5,000 to

25,000 to simulate the impact of the number of users on the pro-
posed strategy. The default settings are used for other parame-
ters. Figure 10 (c) and (g) show that when the number of users
increases, the performance of all these cloaking-based strate-
gies improves including the proposed algorithm and the footprint
cloaking. This can be explained by the fact that having more users
means a better chance to find users with similarly distributed tra-
jectories as well as restricted spaces. Again, the proposed strat-
egy outperforms footprint cloaking due to the fact that even us-
ing footprint may generate smaller cloaking regions, but using
restricted spaces cloaking, a large portion of locations can be re-
ported as is with highest accuracy.

4.4 Effect of Desired Protection Level
We adjust user’s desired protection level (k-value) from 10 to

50 while use default value for other parameters. As argued in Sec-
tion 2 and 3, user’s protection level determines the size of their
cloaking sets. A larger set guarantees a higher degree of protec-
tion, but it tends to result in larger cloaking regions. And the
large the cloaking set is, the hard it is to generate smaller cloak-
ing regions for the set. This dilemma is confirmed in Fig. 10 (d)
and (h). The performance of all algorithms deteriorates as the
level of protection increases. However, the decrease of average
location resolution using our strategy is far below that of the foot-
print cloaking, which drops almost linearly to the protection level.

The above experiments show that the proposed strategy outper-
forms footprint cloaking in terms of average location resolution
under our experiment settings. Based on this result, we conclude
that the proposed restricted space cloaking can not only achieves
full location privacy protection and support user self-cloaking
without relying on any trusted third party, but also provides user
with higher quality of service than existing techniques.

5. Related Works

Privacy-aware uses of Location-based Services have been in-
tensively studied in the past decade. There are two different types
of privacy concern, anonymous service uses (also called query

privacy in some literature) and location privacy. The former is
to prevent the user of a service from being identified, whereas

the latter, the subject inside a disclosed location from being iden-
tified. These proposed techniques can be classified into a few
categories:

1) Location Cloaking [1], [2], [3], [4], [5], [6], [7]. Most tech-
niques in this category are design to support anonymous uses of
services, which we have discussed in Section 1. Location cloak-
ing achieves privacy protection at the cost of location resolution,
but it is still regarded as a highly practical solution due to its
simplicity and effectiveness. The proposed RSC technique com-
plements the existing location cloaking research in enabling full
location privacy protection and self-cloaking without requiring
users to disclose their location to a central server or nearby users
for cloaking.

2) Trajectory Perturbation. A user’s time-series locate updates
create a trajectory. One can associate each update with a differ-
ent pseudonym, but successive location samples are highly cor-
relative and could be re-linked using trajectory tracking methods
(e.g., Multi-Target Tracking [18]). The work [19] first considered
this problem and proposed a concept called mix zone.

A mix zone is a spatial region in which a mobile node does
not report its location in order to confuse potential adversaries.
Nodes in a mix zone exchange their pseudonyms to make it hard
for an adversary to link incoming and outgoing paths of these
nodes. While this approach relies on pre-defined spatial regions
for pseudonym exchange, the path confusion technique [20] al-
lows nodes to switch their pseudonyms when their paths are
within some threshold. These approaches reduce, but cannot pre-
vent, location privacy risks. A partial trace, or just a single loca-
tion sample, can be sufficient for an adversary to identify a user,
thus knowing his/her whereabouts.

Another track of work aimed at trace hiding is using fake lo-
cations or trajectories, i.e., dummies (e.g., Refs. [8], [9], [10],
[21], [22]). For each location submitted to a service provider,
it is accompanied by certain false dummies, which are generated
to simulate the movement of mobile nodes. By making certain
faked traces, the trace of a service user is under K-anonymity
protection. This approach does not guarantee that a service user
cannot be identified. For example, the adversary can identify the
dummy trace as a fake if a sample false dummy is located inside
a non-habitant region such as a lake, or the trace passes through
multiple spatial regions that exclusively belong to different users.
Under these circumstances, a faked trace is compromised and the
real-world identity of a user might be revealed.

3) Non-location exposure approaches [12], [13], [23]. This
type of techniques lets users download location-based informa-
tion from a server without having to report their location. Such
techniques usually apply the theory of Private Information Re-
trieval (PIR) [24] to prevent an adversary from deriving the user’s
location based on the downloaded data. This strategy protects
a user’s location privacy to its maximum extent, but in general
users need to download a large amount of data, the amount of
which may be prohibitively expensive to mobile users. For ex-
ample, the technique [23] requires a user to download the square
root of the total number of data items stored at the server.
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6. Conclusion

Restricted space identification is arguably the most realistic
way for an adversary to discover the real-world identities of the
users of location-based services. As a practical solution to this
privacy threat, location cloaking has been studied intensively in
the past decade. In this paper, we show that existing location
cloaking techniques do not give users full location privacy pro-
tection and this problem arises from the fact that these schemes
cloak every location users report. Protecting every location makes
it possible for an adversary to link a set of users to a sequence of
locations or trajectories, which is an even more serious privacy
leakage.

In contrast to existing techniques, we propose to cloak a user’s
location only when the location belongs or is close to a restricted
space. If a user is inside a public region such as high way and
shopping mall which cannot be directly linked to a small set of
individual, the user’s location can be safely reported as is. We
prove that this approach, by not cloaking a user’s every loca-
tion, achieves full location privacy that is not available from ex-
isting techniques. With this basic idea in place, we consider the
problem of allowing users to cloak their location by themselves,
without relying on any trusted third party such an anonymizer,
and propose the concept of cloaking map to support such self-
cloaking. We have also discussed in details the challenges and
solutions of producing cloaking map with high quality. The per-
formance of these solutions is evaluated through simulation with
realistic synthetic data, and compared with state-of-the-art cloak-
ing technique.
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