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Abstract: The concept of t-bonded sets was briefly introduced by the second author in 1976 under the name of d-
connected sets, though it has not received due consideration. This concept is a generalization of the concept of Delone
(r,R)-systems. In light of the developments in the local theory for crystals that occurred since 1976 and demands in
chemistry and crystallography, we believe the local theory for t-bonded sets deserves to be developed to describe mate-
rials whose atomic structures is multi-regular “microporous” point set. For a better description of such “microporous”
structures it is worthwhile to take into consideration a parameter that represents atomic bonds within the matter. The
overarching goal of this paper is to prove that analogous local conditions that guarantee that a Delone set is a regular
(or multi-regular) system also guarantee that a t-bonded set is a regular (or multi-regular) t-bonded system.
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1. Introduction

In this section we present basic definitions related to the math-
ematical concept of crystal in the light of the local theory with
the overarching goal to extend the theory’s results to the broader
class of sets (t-bonded sets, Definition 2.1).

The above mentioned definitions single the family of crystals
out of the family of more general sets, which fulfills the require-
ments for point sets to be uniformly discrete (see the r-condition
below), and relatively dense (the R-condition below). Sets with
these conditions were introduced and studied by B. Delone who
called them (r,R)-systems (Refs. [2], [3]).

Definition 1.1 (Delone Set) A subset X of Euclidean space Rd

is called a Delone set if there are positive numbers r and R such
that the two conditions hold
r-condition: any open ball B(r) of radius r has at most one point
from X (uniform discreteness), and
R-condition: any closed ball B(R) of radius R has at least one
point from X (relative density).

Remark 1.1 A set X with r-condition is called uniformly dis-
crete. In principle, the parameters r and R can be chosen as
the supremum of all numbers for which the set X satisfies r-
condition, and as the infimum of all numbers for which X satisfies
R-condition, respectively.

Definition 1.2 (Regular System) A Delone set X is called a
regular system if for any two points x and y from X there is a
symmetry s of X such that s(x) = y, i.e., if the symmetry group
Sym(X) acts transitively on X.

Remark 1.2 It follows immediately from definition 1.2 that a
regular point set X is an orbit G · x, where x is a point from X, and
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G is, generally speaking, a subgroup of Sym(X). We remind that
G-orbit of x is the set G · x = g(x)|g ∈ G.

Let Iso(d) be the complete group of all isometries of Rd.
Definition 1.3 (Discrete Group) A group G ⊂ Iso(d) is called

a discrete subgroup, if the orbit G · x of any point x ∈ Rd is a
uniformly discrete set.

Definition 1.4 (Fundamental Domain) Let G be a discrete sub-
group of Iso(d). We call a closed domain F(G) in Rd a fundamen-

tal domain of group G if:
(i) for any point x from Rd, the intersection of F(G) and the orbit
G · x is not empty;
(ii) for any point x from Rd, the interior of F(G) contains at most
one point from G · x.

Remark 1.3 For a discrete group G a fundamental domain
does exist. It suffices to take an orbit G · x of a non-fixed point
x with respect to G and construct the Voronoi tessellation for the
G · x. The Voronoi domain is a fundamental domain of the group.
A fundamental domain can be chosen in a non-unique way, some-
times it can be unbounded.

Definition 1.5 (Crystallographic Group) A group G ⊂ Iso(d) is
called crystallographic if any orbit G · x is a discrete set, and the
fundamental domain of G is compact.

Fundamental results for crystallographic groups were obtained
in Refs. [4], [5].

Statement 1.1 A Delone set X is a regular system if and only

if there is a crystallographic group G such that X is a G-orbit of

some point x.

E.S. Fedorov defined crystal as a finite union of regular sys-
tems [6].

Definition 1.6 (Crystal) We say that a subset X of Rd is a
crystal if X is the G-orbit of a finite set X0 = {x1, ..., xk}, i.e.,
X =
⋃k

i=1 G · xi.
The main goal of the local theory for crystals is to develop a

sound mathematical theory that would explain how symmetry of
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crystalline structure can be derived from the pairwise identity of
fragments (clusters, see below) around each atom. However, be-
fore 1970s, there were no rigorously proven mathematical state-
ments in this regard until B. Delone and R. Galiulin put the prob-
lem, and Delone’s students N. Dolbilin, M. Stogrin, and others
(see for instance, Refs. [7], [8], [9], [11], [14], [15]) developed a
mathematically sound local theory of crystals.

Statement 1.2 For a Delone set X and for any two points x and

x′ ∈ X there is a finite sequence x = x0, x1, . . . , xm = x′ of points

from X such that |xi−1xi| ≤ 2R, i ∈ [1,m].
We call such sequence a 2R-chain and denote it as [x, ..., x′].

Each pair (xi−1, xi) is called a bond of the 2R-chain.
One should note that in proofs of theorems in the local theory

we use Statement 1.2, i.e., the fact that any two points of a Delone
set can be linked by a chain with the length of bonds not greater
than some number t. We note that by Statement 1.2 for a Delone
set t does not exceed 2R. Moreover, the upper bounds for the
size of a cluster of X, which determines a global symmetry of the
structure, depends on the value of t. It follows that the lesser the
value of t the smaller cluster. On the other hand, there are Delone
sets for which the ’bond length’ parameter t is significantly lesser
than 2R as well as there are uniformly discrete sets whose any
two points can be also connected by a t-chain.

These observations inspired us to develop the local theory for
the t-bonded sets. In fact, this concept was introduced in Ref. [1]
under the name of d-connected sets. In the theory of t-bonded
sets we do not require (unless it is stated as a premise) that a set
X under consideration is a Delone set, and therefore these sets
do not possess some properties that were used in developing the
local theory for Delone sets.

2. Definition of t-bonded Sets and Related
Concepts

As we have already mentioned, in this paper we consider sub-
sets (that we denote X,Y ,Z, ...etc.) of d-space Rd that are uni-
formly discrete point sets, i.e. sets which fulfil r-condition in Def-
inition 1.1. Thus X is, generally speaking, not a Delone set. Like
for a Delone set we will choose r as the supremum of all numbers
such that the set X satisfies r-condition.

Definition 2.1 (t-bonded Set) A set X ⊂ Rd is said to be a t-

bonded set in Rd, where t is some positive number if:
(1) any open ball B(r) of radius r has at most one point from X

(r-condition);
(2) affX = Rd, where affX stands for the affine hull of X;
(3) for any two points x and x′ ∈ X there is a t-chain, finite
sequence x0 = x, x1, . . . , xm = x′ of points from X such that
|xi−1xi| ≤ t, i ∈ [1,m].

We say that a pair (xi−1, xi) of points with |xi−1xi| ≤ t is a t-
bond.

It is clear that for a t-bonded set X we have t ≥ 2r. By State-
ment 1.2 for a Delone set we t ≤ R. However, for some Delone
sets the value of t can be less than 2R. For instance, if X = Zd

is the cubic lattice, then t can be chosen as the edge length of the
cube. Since the largest ball empty from points of X is the circum
ball around a cube with the edge length t. Therefore for Zd we
have 2R = t

√
d.

In the local theory the concept of cluster plays a significant
role. In principle, this concept can be introduced by different
ways. In this paper we will consider a version of the cluster which
was used in the local set for Delone sets.

Definition 2.2 (Cluster) For ρ > 0, a ρ-cluster Cx(ρ) centered
at point x ∈ X is defined as a set of all points x′ ∈ X such that
|xx′| ≤ ρ, i.e.,

Cx(ρ) = X ∩ Bx(ρ).

The parameter t in a t-bonded set plays a role similar to that of
the parameter 2R in a Delone set. However, as we will see that
there are essential differences between properties of 2R-clusters
and of t-clusters.

In particular, in a Delone set a 2R-cluster always has the rank,
i.e., dimension of the affine hull of the cluster, equal to d. At the
same time in a t-bonded set the rank of a t-cluster can be arbitrary
between 2 and d.

Later we will introduce some conditions that guarantee that
given cluster has rank d (Theorem 3.1).

Statement 2.2 Given a t-bonded set X, ρ > 0, let X \Cx(ρ) � ∅.
Then there is a point x′ ∈ X such that x′ ∈ Cx(ρ + t) \ Cx(ρ), and

it is connected to the center x by a t-chain contained in Cx(ρ+ t).
Indeed, if we assume the contrary, i.e., we assume that the

spherical layer Bx(ρ + t) \ Bx(ρ) contains no points of X. Since X

is a t-bonded set we get X \Cx(ρ) = ∅.
Here it should be noted that both Cx(ρ) and Cx(ρ + t) are not

necessarily t-bonded set itself. In the spherical layer Bx(ρ + t) \
Bx(ρ), besides x′, generally speaking, there can also be points
x′′ ∈ X that are connected to x just by a ‘long’ t-chain starting at
the center x of the cluster Cx(ρ + t), leaving it, and then coming
back to the cluster Cx(ρ + t) to get eventually connected to x′′.

Definition 2.4 (Cluster Equivalence) Given a t-bonded set X in
R

d, ρ > 0 and two points x and x′ ∈ X, we say that the ρ-clusters
Cx(ρ) and Cx′ (ρ) are equivalent, if there is an isometry g of Rd,
such that g(x) = x′ and g(Cx(ρ)) = Cx′ (ρ).

In Section 4 we prove two theorems (Theorem 4.1 and The-
orem 4.2) for t-bonded sets that are similar to the Criterion for
Regular (Delone) Systems and Criterion for Crystals (see, e.g.,
Refs. [7], [8], [10], [12], [13], [16]). Though the statements of the
theorems are almost identical for both Delone sets and t-bonded
sets the main challenge of the proofs is related to the rank of the
clusters, which as we have already mentioned is d for 2R-clusters
in Delone sets, however, in case of t-bonded sets it may not be
equal to d for ρ-clusters when ρ is equal to t. The cluster’s rank
naturally affects the structure of the group S x(ρ) of the cluster’s
symmetries. The statements of both theorems, as well as their
proofs, depend on the concept of cluster counting function that
we define below.

For a given ρ > 0, the set of all ρ-clusters Cx(ρ), x ∈ X, is
divided into equivalence classes. If a t-bonded set X is finite the
cardinality of the set of equivalence classes is an integer positive
number. If X is an infinite set then the cardinality of the set of
equivalence ρ-classes, generically saying, can be infinite.

Definition 2.5 (Set of Finite Type) A set X is said to be of finite

type if for any positive number ρ the cardinality of the set of all
classes of ρ-clusters Cx(ρ) is finite. The cardinality in this case

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

defined for all ρ ≥ 0 function which is called the cluster counting

function. denoted by N(ρ).
It is easy to see that for a t-bonded set X of finite type the cluster

counting function N(ρ) is a positive, piecewise constant, integer
valued, monotonically non-decreasing, and continuous from the
left function.

3. The Rank and the Symmetry Group of a
Cluster

In this section we discuss the rank of a cluster, i.e. the dimen-
sion of the affine hull of a cluster. Emphasize again, that there is
an essential difference between 2R-clusters in Delone sets and t-
clusters in t-bonded sets: in a Delone set a 2R-cluster always has
the rank equal to d while in a t-bonded set the rank of a t-cluster
can be arbitrary between 2 and d.

To shorten the notation, we will use dx(ρ) := dim(affCx(ρ)) for
the rank of the cluster Cx(ρ). In all discussions below Πn stands
for the affine hull of a t-bonded set X, n ≤ d.

Lemma 3.1 Let X ⊂ Rd be a t-bonded set, ρ a positive real
number, and x, x′ two points from X such that |xx′| ≤ t, and the
following conditions hold true,

dx(ρ) = dx(ρ + t) and dx′ (ρ) = dx′ (ρ + t) (1)

Then affCx′ (ρ) = affCx′ (ρ + t) = affCx(ρ + t) = affCx(ρ).
Proof. Since |xx′| ≤ t, it follows that Cx(ρ) ⊂ Cx′ (ρ + t)
and Cx′ (ρ) ⊂ Cx(ρ + t)). Hence, affCx(ρ) ⊂ affCx′ (ρ + t)
and affCx′ (ρ) ⊂ affCx(ρ + t). From the premises of the lemma
dx(ρ) = dx(ρ + t) and dx′ (ρ) = dx′ (ρ + t), it follows that
affCx(ρ + t) = affCx(ρ) ⊂ affCx′ (ρ + t), and affCx′ (ρ + t) =
affCx′ (ρ) ⊂ affCx(ρ + t). Therefore, affCx′ (ρ) = affCx′ (ρ + t) =
affCx(ρ + t) = affCx(ρ). �

Using Lemma 3.1 it is not hard to prove the following two the-
orems.

Theorem 3.1 Let X ⊂ Rd be a t-bonded set, assume that there
is some ρ > 0 such that for any point x from X the following con-
dition holds

dx(ρ) = dx(ρ + t). (2)

Then ∀x ∈ X dx(ρ) = dx(ρ + t) ≡ d and affCx(ρ) = affX) = Rd.
Theorem 3.2 Let X ⊂ Rd be a t-bonded set, such that for ev-

ery given ρ ≤ t · (d − 1) the rank of a ρ-cluster at each point of X

is the same (dx(ρ) = d(ρ), ∀x ∈ X ). Then, for any ρ′ ≥ d · t and
any x ∈ X, the rank dx(ρ′) ≡ d.

Remark 3.1 Under the conditions of Theorem 3.2 stabiliza-
tion of the rank of any cluster definitely occurs when ρ ≥ d · t.
However, for some sets it might occur even if ρ ≤ d · t.

Now we are going to discuss symmetries of clusters. We keep
assuming that X is a t-bonded set in Rd which by definition im-
plies affX = Rd. Let us denote by O(x, d) a group of all isometries
of space Rd which leave x ∈ Rd fixed.

Definition 3.1 (The Symmetry of a Cluster) Assume x ∈ X,
then an isometry τ ∈ O(x, d) is called a symmetry of the cluster
Cx(ρ) if τ(Cx(ρ)) = Cx(ρ).

We want to emphasize that since τ ∈ O(x, d), any symmetry τ
of a cluster leaves its center x fixed. We denote by S x(ρ) a group
of all symmetries τ of the cluster Cx(ρ).

Now let affCx(ρ) = Πn
x where Πn

x is an n-dimensional affine
subspace, x ∈ Πn

x, and n ≤ d. We denote by S x(ρ) a group of
all isometries from O(x, n) that leave invariant the affine subspace
Πn

x and the cluster Cx(ρ).
If n = d, then S x(ρ) = S x(ρ). Let n < d, then we denote

the affine hull of Cx(ρ) by Πn
x, and the complementary orthogonal

(d − n)-affine subspace passing through x by Qd−n
x . Let s ∈ S x(ρ)

be a symmetry of the ρ-cluster Cx(ρ). It is clear that any such
symmetry is an orthogonal transformation of the d-space which
is a product of the transformation s̄ ofΠn

x and of an arbitrary trans-
formation g ∈ O(x, d − n) of the complementary affine subspace.

Two lemmas below summarize some facts on the cluster sym-
metry group.

Lemma 3.2 The following statements hold true.
(1) If affCx(ρ) = Πn

x and n < d, then S x(ρ) = S x(ρ) ⊕ O(x, d − n),
where S x(ρ) ⊂ O(x, n), and O(x, d − n) is the full group of isome-
tries of the affine subspace Qd−n

x complementary to Πn
x and pass-

ing through the point x.
(2) The group S x(ρ) is a finite subgroup of O(x, n) . Particularly,
if affCx(ρ) = Rd, then group S x(ρ) = S x(ρ) is a finite subgroup of
O(x, d).
(3) The group S x(ρ) is finite if and only if affCx(ρ) = Rd or
affCx(ρ) = Rd−1.

Lemma 3.3 Assume S x(ρ0) and S x(ρ0 + t) are finite groups
as defined at the beginning of the paragraph for clusters Cx(ρ0)
and Cx(ρ0 + t) respectively. The following statements hold true.
(1) If S x(ρ0 + t) = S x(ρ0), then affCx(ρ0) = affCx(ρ0 + t) = Πn

x,
n ≤ d.
(2) The equality S x(ρ0) = S x(ρ0 + t) is equivalent to S x(ρ0) =
S x(ρ0 + t).

Let us remind that according to Definition 2.4 given a t-bonded
set X in Rd and ρ > 0, the ρ-cluster Cx(ρ) is equivalent to the
ρ-cluster Cx′ (ρ), if there is a space isometry g of Rd, such that
g(x) = x′ and g(Cx(ρ)) = Cx′ (ρ).

The following two statements are easy to prove.
Statement 3.1 Given t-bonded set X ⊂ Rd and ρ0 > 0, if clus-

ters Cx(ρ0) and Cx′ (ρ0) are equivalent, then groups S x(ρ0) and

S x′ (ρ) are conjugate.

Statement 3.2 Let X be a t-bonded set in Rd, and there is a

point x ∈ X and ρ0 > 0 such that S x(ρ0) = S x(ρ0 + t). If the clus-

ter Cx(ρ0 + t) is equivalent to a centered at some point x′ cluster

Cx′ (ρ0 + t), then S x′ (ρ0) = S x′ (ρ0 + t).
Now we will prove a theorem which plays an important role in

proving theorems of the local theory.
Theorem 3.3 (t-extension) Assume in the t-bonded set X for

two points x and x′ ∈ X and some ρ0 > 0, clusters Cx(ρ0 + t) and
Cx′ (ρ0 + t) are equivalent, and the groups S x(ρ0) and S x(ρ0 + t)
coincide:

S x(ρ0) = S x(ρ0 + t). (3)

Then any isometry g ∈ Iso(Rd) such that g(x) = x′ and that maps
Cx(ρ0) onto Cx′ (ρ0) (i.e., g(Cx(ρ0)) = Cx′ (ρ0)) also maps (ρ0 + t)-
cluster Cx(ρ0 + t) onto Cx′ (ρ0 + t) (i.e., g(Cx(ρ0 + t)) = Cx′ (ρ0 + t).
Proof. By the assumption of the theorem, clusters Cx(ρ0 + t)
and Cx′ (ρ0 + t) are equivalent. Therefore there is an isometry
g ∈ Iso(d) such that g(x) = x′ and g(Cx(ρ0 + t)) = Cx′ (ρ0 + t).
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Let f be an arbitrary isometry that maps ρ0-cluster Cx(ρ0) onto
ρ0-cluster Cx′ (ρ0). Let us take the composition f −1 ◦ g. Then we
have

( f −1 ◦ g)(Cx(ρ0)) = f −1(g(Cx(ρ0)) = f −1(Cx′ (ρ0)) = Cx(ρ0).

(4)

From Eq. (4) it follows that f −1 ◦g ∈ S x(ρ0). Hence, by condition
(3.3) of Theorem 3.3 f −1 ◦ g ∈ S x(ρ0) = S x(ρ0 + t). Let us put
f −1 ◦ g := s, s ∈ S x(ρ0 + t). Thus, f = g ◦ s−1. Since g maps
Cx(ρ0+ t) onto Cx′ (ρ0+ t) and s−1 maps Cx(ρ0+ t) onto Cx(ρ0+ t),
we conclude that f maps Cx(ρ0 + t) onto Cx′ (ρ0 + t). �

4. Criteria for Regular and Multi-regular t-
bonded Systems

Let us remind that by Definition 2.5 a cluster counting func-
tion N(ρ) is equal to the cardinal number of equivalence classes
of clusters with radius ρ provided the cardinal number is finite.

Definition 4.1 (Regular t-bonded System) A t-bonded set X is
called a regular t-system if for any two points x and y from X

there is a symmetry g of X such that g(x) = y, i.e., if the symme-
try group Sym(X) acts transitively on X.

Theorem 4.1 Given t-set X in Rd, assume that there is ρ0

such that the following two conditions hold:
(1) N(ρ0 + t) = 1;
(2) for some point x0 ∈ X, S x0 (ρ0) = S x0 (ρ0 + t).
Then:
(1) Group G ⊂ Iso(Rd) of all symmetries of X acts on X transi-
tively.
(2) For any point x ∈ X aff(Cx(ρ0)) = affCx(ρ0 + t) = affX = Rd.
Proof. First of all, note that because of Statement 3.2 and Condi-
tion (1) of Theorem 4.1 (any two (ρ0 + t)-clusters are equivalent),
Condition (2) holds true not only for the point x0, but for any
point x ∈ X (S x(ρ0) = S x(ρ0 + t)).

Let us prove that the subgroup G ⊂ Iso(Rd) of all symmetries
of X acts on X transitively.

By condition (1) of the theorem for any two points x and x′

from X, there exists g ∈ Iso(Rd) such that g maps Cx(ρ0 + t) onto
Cx′ (ρ0 + t) and g(x) = g(x′). We will prove that g maps X onto X.

Let us take an arbitrary point z ∈ X and connect x to z by a
t-chain x = x0, x1, . . . , xn = z. We will show that g-images of all
points of the chain starting with x1 and ending with xn = z belong
to X.

Since |xx1| ≤ t, it follows that Cx1 (ρ0) ⊂ Cx(ρ0 + t) and
g(Cx1 (ρ0)) = Cy1 (ρ0) where y1 = g(x1) ∈ Cy1 (ρ0 + t) ⊂ X. By
Theorem 3.3 g(Cx1 (ρ0 + t)) = Cy1 (ρ0 + t).

Hence we proved that g(Cx1 (ρ0 + t)) = Cy1 (ρ0 + t) and g(x1) =
y1 ∈ X. Since the distance |xixi−1| ≤ t for all i such that
1 ≤ i ≤ n − 1, applying the same argument to points xi and xi+1 as
we applied to x0 and x1, we prove that for all non-negative inte-
gers i ≤ n−1, g(xi+1) = yi+1 ∈ X and g(Cxi+1 (ρ0+t)) = Cyi+1 (ρ0+t).

Hence, g(z) = g(xn) = yn ∈ X, and g(X) ⊆ X.
To show that g is a surjection we note that the inverse isometry
g−1 maps x′ onto x and Cx′ (ρ) onto Cx(ρ0). Applying the same
argument to g−1 as we applied to g we show that g−1 maps X into
X. Therefore, for any y ∈ X, g−1y ∈ X. Hence, g is a surjection.

As we already mentioned, S x(ρ0) = S x(ρ0 + t) for any point

x ∈ X. Therefore, by Lemma 3.3 (part 1) affCx(ρ) = Πn
x =

affCx(ρ0 + t) = Πn
x, i.e for every x ∈ X the following condition

holds

dx(ρ) = dx(ρ + t). (5)

Then, by Theorem 3.1 ∀x ∈ X dx(ρ) = dx(ρ + t) ≡ d, and
affCx(ρ0) = affCx(ρ0 + t) = affX ⊆ Rd. �

Definition 4.2 A t-bonded set X ⊂ Rd is a multi-regular t-
bonded system if there is a finite set X0 = {x1, ..., xm} such that

X =
k⋃

i=1

Sym(X) · xi.

Definition 4.2 is analogous to Definition 1.6 of a crystal. How-
ever, the situation is quite different in some respects. For instance,
in case of crystal we deal with Delone sets which are always in-
finite sets. Therefore the requirement to represent a Delone set
as a disjoint union of a finite number of regular systems selects a
proper subfamily from the full family of all Delone sets.

However, if X is a finite set then X can be obviously thought
as a t-bonded set for some suitable value of t and, moreover, X

can be thought as a multi-regular system. In fact the finite set X

can be presented as a finite collection of orbits with respect to the
trivial group. Nevertheless, the following refined version of the
question makes sense for finite sets as well as for infinite t-bonded
sets.

Let us call a t-bonded set an m-regular t-bonded system if the
number of classes in X/Sym(X) = m. Are there conditions which
guarantee that a t-bonded set X is an m-regular system? The fol-
lowing criterion answers the question.

Theorem 4.2 (Local Criterion for m-regular t-systems) A t-
bonded set X ⊂ Rd is an m-regular t-system if and only if there is
some ρ0 > 0 such that two conditions hold:
1) N(ρ0) = N(ρ0 + t) = m;
2) S x(ρ0) = S x(ρ0 + t),∀x ∈ X.

Proof. We precede a proof of Theorem 4.2 with Lemma 4.1,
which from our point of view also has its own value. The idea of
the proof is similar to that of an analogous criterion for a crystal
(see, e.g., Refs. [8], [10], [16]). On the other hand, in order to
prove this criterion for t-bonded sets we do not need to prove that
the group Sym(X) is crystallographic. The local criterion for reg-
ular systems (Theorem 4.1) is a particular case of Theorem 4.2.
Indeed, the condition N(ρ0+t) = 1 implies N(ρ0) = N(ρ0+t) = 1.

Lemma 4.1 Let a t-bonded set X fulfill conditions 1) and 2)
of Theorem 4.2 and Xi a subset of X of all points from X, whose
ρ0-clusters are equivalent and belong to the i-th class, i ∈ [1,m].
If Gi is a group generated by all isometries f such that f (x) = x′

and f (Cx(ρ0)) = Cx′ (ρ0), ∀x, x′ ∈ Xi, then:
1) Gi acts transitively on a set Xj, ∀ j ∈ [1,m];
2) Group Gi does not depend on i and for any i ∈ [1,m],
Gi = Sym(X).
Proof. Since for any i, Xi is not empty, for any two points
x, x′ ∈ Xi there is an isometry g that maps Cx(ρ0) onto Cx′ (ρ0)
and x onto x′. Therefore for any i, Gi is not empty. Because of
the way we defined Xi, at least one isometry exists in Gi though
it could be more than one.

To prove that for any point z ∈ X, g(z) ∈ X we can apply the
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same method that was used to prove Theorem 4.1, though due to
the fact that unlike the conditions of Theorem 4.1, not all points
in the set X are (ρ0 + t)-equivalent, and therefore we must be sure
that the t-extension theorem (Theorem 3.3) is applicable to the
situation under consideration.

Let us take an arbitrary point z ∈ X and connect x to z by a
t-chain x = x0, x1, . . . , xn = z. We will show that g-images of all
points in the chain starting with x0 and ending with xn = z belong
to X.

Since |xx1| ≤ t, it follows that Cx1 (ρ0) ⊂ Cx(ρ0 + t) and
g(Cx1 (ρ0)) = Cy1 (ρ0) where y1 = g(x1) ∈ Cy1 (ρ0) ⊂ X. Since
g(Cx1 (ρ0)) = Cy1 (ρ0) and y1 = g(x1), it follows that x1 and y1

belong to the same set Xj. Therefore it follows from Theorem 3.3
that g(Cx1 (ρ0 + t)) = Cy1 (ρ0 + t).

Hence, we proved that g(Cx1 (ρ0 + t)) = Cy1 (ρ0 + t) and g(x1) =
y1 ∈ Xj ⊆ X.

Since for any positive integer i ≤ m the distance |xixi−1| ≤ t,
applying the same argument to the points xi and xi+1 as we ap-
plied to x0 and x1, we prove that for any positive integer i ≤ m,
g(Cxi+1 (ρ0 + t)) = Cyi+1 (ρ0 + t) and g(xi+1) = yi+1 ∈ Xj ⊆ X for
some j ≤ m.

Hence, g(z) = g(xn) = yn ∈ X, and g(X) ⊆ X.
To show that g restricted to X is a surjective mapping of X onto

itself, we notice that the inverse isometry g−1 maps x′ onto x and
Cx′ (ρ) onto Cx(ρ0). Applying the same argument to g−1 as we
applied to g we show that g−1 maps X into X. Therefore, for any
y ∈ X g−1y ∈ X. Hence, g is a surjection on X. Therefore Gi is a
subgroup of the group G := Sym(X) (i.e., (Gi ⊆ G).

Let us take now any f ∈ Sym(X), and any point x ∈ Xi. Since
f maps X onto X. It is clear that f establishes (ρ0+ t)-equivalence
of points x and f (x), therefore f ∈ Gi. Hence, we proved that for
any i ∈ [1,m] Gi = Sym(X). �

To complete the proof of Theorem 4.2 we need to make two
observations.

First, by definitions of a subset Xi and of a group Gi, Gi acts
transitively on Xi. Therefore, Xi = G · xi. Since Gi = Sym(X) we
have Xi = Sym(X) · xi for any i ∈ [1,m].

Let X0 denote a set that consists of one point from each subset
Xi: X0 = {x1, x2, . . . , xm}. Then we obtain

X =
⋃

xi∈X0

Sym(X) · xi.

This concludes the proof of Theorem 4.2. �

5. Concluding Remarks

In the paper we give criteria for regular and multi-regular t-
bonded sets. The significance of this generalization of well
known criteria for regular and multi-regular Delone sets is that the
terms of t-bonded sets seem to be more appropriate for describing
the chemical bonds existing between atoms in real structures. In
many respects this theory follows in the tracks of the local theory
of regular Delone systems. However, the t-bonded sets essentially
extend the limits of the family of Delone sets, and therefore it is
no surprise that in spite of the similarity of the theories, there are
essentially new features in the behavior of t-bonded sets that are
not Delone sets.

From our point of view the studies of t-bonded sets should be
continued in two directions. First, to get the upper bound for ra-
dius ρ0 of a cluster such that the condition N(ρ0) = 1 implies
regularity of a t-bonded set in the 3D space. Second, regarding
potential application of the theory, it makes sense to extend the
above mentioned theory of regular sets for clusters defined by
other metrics.
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