
Electronic Preprint for Journal of Information Processing Vol.25

Regular Paper

The Building Puzzle Is Still Hard
Even in the Single Lined Version

Kazuya Haraguchi1,a) Ryoya Tanaka1

Received: October 25, 2016, Accepted: May 16, 2017

Abstract: The Building puzzle (a.k.a., the Skyscraper) is a Latin square completion-type puzzle like Sudoku, KenKen
and Futoshiki. Recently, Iwamoto and Matsui showed the NP-completeness of the decision problem version of this
puzzle, which asks whether a given instance has a solution or not. We provide a stronger result in the present paper;
it is still NP-complete to decide whether we can complete a single line of the grid (i.e., a 1 × n or an n × 1 subgrid)
without violating the rule.

Keywords: computational complexity, Latin square completion-type puzzle, Building puzzle, Skyscraper

1. Introduction

Let us begin with the rule of the Building puzzle. We illus-
trate a puzzle instance in Fig. 1 (a). For a natural number n, let
[n] = {1, . . . , n}. In this puzzle, we are given an n×n grid of cells,
along with some numbers in [n] written around the grid. We refer
to a row and a column in the grid simply as a line. A line has two
ends. A number around the grid is called a Building number. It is
placed next to an end of a line. We say that a line has a Building
number b on its end if b is written next to the end. Since there
are 2n lines and a line has two ends, there are at most 4n Building
numbers.

We are asked to fill all n2 cells with integers in [n] so that;
• the integers altogether form an n×n Latin square (i.e., in each

line, every integer in [n] appears exactly once), and that;
• what we call the Building condition is satisfied.

Let us explain what is the Building condition. Suppose that a
building is constructed in every cell so that the number of floors
is the integer assigned to the cell. The condition requires that,
for every Building number b, one should see exactly b buildings
when he or she looks up at the buildings on the line from the
end where b is placed. The point is that we cannot see any lower
buildings behind a higher building. In Fig. 1 (b), we show a (com-
plete) solution to the instance of Fig. 1 (a).

Recently, Iwamoto and Matsui [3] showed the NP-
completeness of the decision problem version of the Building
puzzle. In our terminology, the problem is summarized as
follows.� �

Building Puzzle
Input: An n × n Building puzzle instance and an n × n

partial Latin square S .
Question: Is there a solution to the instance that is an ex-

tension of S ?
� �
1 Otaru University of Commerce, Otaru, Hokkaido 047–8501, Japan
a) haraguchi@res.otaru-uc.ac.jp

Fig. 1 (a) a 4 × 4 Building puzzle instance; (b) a solution to the instance.

In the present paper, we provide a stronger result on the com-
plexity of the Building puzzle. Concentrating on one line that has
a building number b on one of its ends, we consider the following
question; can we complete all the empty cells in the line so that
the Building condition with respect to b is satisfied?

For the sake of simplicity, we take up the first row and assume
that b is on the left end. We can ignore empty cells in the sec-
ond row to the n-th row. This is because, if we could complete
the empty cells in the first row anyhow, it could be accomplished
without assigning any integer to the empty cells in the second row
to the n-th row.

We call the problem Single Lined Building Puzzle (SLBP),
which is summarized as follows.� �

Single Lined Building Puzzle (SLBP)
Input: An n×n partial Latin square S and a Building num-

ber b on the left end of the first row.
Question: Is it possible to fill the empty cells in the first

row with integers in [n] so that the following two con-
ditions are satisfied?

• all-different condition; i.e., every integer in [n] appears
exactly once (along with S).

• Building condition with respect to b; i.e., exactly b

buildings are seen from the left end.
� �
A solution to the SLBP instance (S , b) is a complete assignment
of integers in [n] to the empty cells in the first row that satisfies

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

the above two conditions.
The following theorem is the main contribution of the paper.

Theorem. The problem SLBP is NP-complete.

The remainder of the paper is devoted to the proof.
The theorem shows that it is computationally hard to complete

even a single line, which is a stronger claim than [3]. It may
also suggest the essential hardness of the Building puzzle, com-
pared with other Latin square completion-type puzzles, such as
the partial Latin square extension (PLSE) problem and Sudoku.
Similarly to the Building puzzle, their decision problem versions
require the decision as to whether a given partial solution can
be extended to a complete solution under their own constraints,
which are known to be NP-complete [1], [4]. However, as op-
posed to the Building puzzle, their single-lined versions can be
solved in polynomial time by means of bipartite perfect match-
ing. The Building puzzle is NP-hard, even in the single-lined
version.

2. Proof of the Theorem

The problem SLBP is in NP since the size of a solution is at
most n and we can check in polynomial time whether it is feasi-
ble or not.

We give a reduction from a variant of SAT, the problem called
Cubic Monotone Not-All-Equal (2, 3)-SAT, which is known to
be NP-complete [2].

2.1 Preliminaries
We introduce the problem Cubic Monotone Not-All-Equal

(2, 3)-SAT. Let X = {x1, . . . , xN} denote a set of N Boolean vari-
ables. For a variable x ∈ X, x is called the positive literal and x̄ is
called the negative literal. A clause is a subset of literals over X.
A truth assignment for X is denoted by τ : X → {T, F}. Given a
true assignment τ, if τ(x) = T, then the positive literal x takes true
and the negative literal x̄ takes false. If τ(v) = F, then x takes false
and x̄ takes true. A clause is called not-all-equal under τ if there
are two literals in the clause that take different truth values under
τ. The problem Cubic Monotone Not-All-Equal (2, 3)-SAT is
defined as follows.� �

CubicMonotone Not-All-Equal (2, 3)-SAT
Input: A set X = {x1, . . . , xN} of N Boolean variables and

a collection C = {C1,C2, . . . ,CM} of M clauses over X

such that:
(monotone) all literals over C are positive;
(cubic) each variable appears as a literal in exactly
three clauses;

(2,3) each clause Cb contains either two or three lit-
erals, i.e., |Cb| ∈ {2, 3}.

Question: Is there a truth assignment τ : X → {T, F} such
that every clause is not-all-equal under τ?

� �
A SAT instance is NAE-satisfiable if there is a truth assignment
under which every clause is not-all-equal. We partition C into C(2)

and C(3) so that C(h) (h ∈ {2, 3}) is the subcollection of h-clauses
(i.e., those that contain h literals); C(h) = {Cb ∈ C : |Cb| = h}.

Concerning the n × n grid, we denote the cell in the i-th row

Fig. 2 Construction of a partial solution S (n = 6, N = 2): (a) the n × n
partial Latin square such that the integer n is assigned to (1, n − N)
and an arbitrary (n−1)× (n−1) Latin square; (b) the (n−1)× (n−1)
Latin square is spread over shaded cells; (c) some integers are re-
moved, and small digits in the first row indicate the candidates that
the empty cells have.

and in the j-th column by (i, j). For an empty cell (i, j) of a par-
tial Latin square, if an integer k appears neither in the row i nor in
the column j, then we say that k is assignable to (i, j), or equiva-
lently, that (i, j) has k as a candidate.

An independent set in a graph is a subset of vertices such that
no two of them are adjacent to each other. The largest cardinal-
ity is called the independence number, and an independent set
that achieves this number is called a maximum independent set,
which we abbreviate into an MIS.

2.2 Overview
We are ready to transform a given SAT instance into an SLBP

instance (S , b). The SLBP instance is built on the n × n grid with
n = 10|C(2)|+ 30|C(3)|+N + 1, where the Building number b is set
to b = 5|C(2)|+16|C(3)|+1. Clearly, the size of the SLBP instance
is polynomial with respect to that of the SAT instance.

We initialize the partial Latin square S as follows.
• We assign n (i.e., a highest building) to (1, n − N).
• We leave every (1, j) (j � n − N) and every (i, n − N) (i � 1)

empty.
• Taking an arbitrary (n − 1) × (n − 1) Latin square that has

integers in [n − 1], we spread it over the second row to the
n-th row, and the first column to the n-th column except the
(n − N)-th column.

The initialization is illustrated in Fig. 2 (a) and (b).
At this point, no value is assignable to every empty cell (1, j).

We will make a certain k ∈ [n− 1] assignable to (1, j). To do this,
we have only to remove k from the column j of S . Hence, we can
let (1, j) have arbitrary integers in [n − 1] as the candidates, by
removing values from the grid appropriately.

We remove integers from S so that the following conditions are
satisfied in the first row:

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 3 The CC-graph constructed from the partial solution in Fig. 2 (c).

(I) Each empty cell has either one or two candidates.
(II) Each integer in [n−1] appears as a candidate either once or

twice over the first row.
(III) If an integer k appears as a candidate once, say in (1, j),

then (1, j) has k as the only candidate. Otherwise, that is, if
k appears as a candidate twice, say in (1, j) and (1, j′), then
both cells have two candidates respectively.

Figure 2 (c) illustrates these conditions. (I) We see that each
empty cell has either one or two candidates. (II) The integers
from 1 to 5 appear as candidates once or twice. (III) The integers
3 and 4 appear only in (1, 5) and (1, 3), respectively. These two
cells have exactly one candidate. On the other hand, the integers
1, 2 and 5 appear twice over the remaining empty cells, that is
(1, 1), (1, 2) and (1, 6). These cells have two candidates.

We do not construct S explicitly. Instead, we construct a
graph that represents all appearing candidates, which we call the
column-candidate graph (CC-graph). In the CC-graph, there is
a vertex v j,k whenever a cell (1, j) has a candidate k, and there is
an edge between v j,k and v j′ ,k′ whenever they are “incompatible”;
we say that two different vertices v j,k and v j′ ,k′ are incompatible

if we cannot assign k to the cell (1, j) and k′ to the cell (1, j′) at
the same time. This occurs when and only when either j = j′

or k = k′ holds. We also include the isolated vertex vn−N,n in the
graph, the vertex for the highest building at the cell (1, n − N). A
vertex is regarded as an integral point on the 2D plane and an edge
is drawn along with a grid line. In Fig. 3, we show the CC-graph
that is constructed from the example of Fig. 2 (c).

Due to the conditions (I) to (III), the degree of each vertex v j,k

is either zero or two. Hence, the CC-graph consists of isolated
vertices and cycles. The length of every cycle is even since it
consists of an alternation of horizontal and vertical edges.
Claim 1. The independence number of the CC-graph is n.

Proof. For every column j ∈ [n], if there is only one vertex, then
it is isolated, and it is included in every MIS. Otherwise, i.e., if
there are two vertices, they are included in an even cycle, and thus
one of them is included in every MIS. Since exactly one vertex is
chosen from a column and there are n columns, the independence
number is n. �
Claim 2. Let I denote the collection of MISs in the CC-graph for

a certain S , and A denote the collection of all-different assignable

assignments of integers in [n] to the n cells in the first row. Then

I and A have one-to-one correspondence.

Proof. Let us denote an arbitrary MIS by {v1,k1 , . . . , vn,kn }. Each
k j (j ∈ [n] \ {n−N}) is assignable to an empty cell (1, j), whereas

Fig. 4 Overview of the CC-graph layout.

Fig. 5 The 5 × 5 component P(xp1 , xp2).

the integer kn−N = n is already assigned to (1, n − N) by S . From
the construction of S , k j does not appear in the second row to
the n-th row of the column j, and the integers k1, . . . , kn are all-
different. Hence, we have an all-different assignable assignment,
by assigning k j to (1, j). The converse is immediate. �

Following this claim, the remaining task is to show the way to
construct the CC-graph from the given SAT instance so that the
SAT instance is NAE-satisfiable iff there is an MIS in the CC-
graph such that the Building condition is satisfied.

2.3 Construction of the CC-Graph
In Fig. 4, we overview how we lay out the CC-graph on the

2D plane. We construct the CC-graph so that there are exactly N

cycles, each of which is the “gadget” for a Boolean variable in
the SAT instance. Two or three cycles cross each other intricately
in a certain part of the 2D plane, which is the gadget for a 2- or
3-clause. The clause gadgets are indicated by bold squares.

The cycle for a Boolean variable xp passes a vertex at (n− N +

p, p); see the lower-right part of Fig. 4. It goes into and out of the
clause gadgets that include xp, with horizontal and vertical edges
being alternated. Figure 4 assumes that x1 appears in C1, CM and
a certain other clause.

The M clause gadgets are allocated in a stair-like way, as in
Fig. 4. The gadgets are different between 2-clauses and 3-clauses,
but both of them are built by connecting copies of a certain com-
ponent. The component is a subgraph in a 5× 5 subgrid, which is
shown in Fig. 5. Denoted by P(xp1 , xp2), the component contains
a part of the cycle for xp1 and a part of the cycle for xp2 . Note that

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 6 The gadget for a 2-clause {xp1 , xp2 }.

Fig. 7 The gadget for a 3-clause {xp1 , xp2 , xp3 }.

the lower-left vertex is isolated.
The gadget for a 2-clause {xp1 , xp2 } is a subgraph in a 10 × 10

subgrid, which is constructed by connecting two copies of the
component, P(xp1 , xp2) and P(xp2 , xp1), in the way of Fig. 6.

The gadget for a 3-clause {xp1 , xp2 , xp3 } is a subgraph in a
30×30 subgrid, which is constructed as follows; First we decom-
pose the clause into three 2-clauses, that is {xp1 , xp2 }, {xp1 , xp3 }
and {xp2 , xp3 }. Then we connect the gadgets for the three 2-
clauses in the way of Fig. 7. The resulting gadget is contained
in a 30 × 30 subgrid as it is made of three 2-clause gadgets.

We see that the CC-graph is contained in the n × n grid, where
n = 10|C(2)| + 30|C(3)| + N + 1.

Obviously, the partial Latin square S that corresponds to the
CC-graph constructed in this way satisfies the conditions (I) to
(III).

2.4 Connection between SAT and SLBP
Let us establish one-to-one correspondence between a truth as-

signment and an MIS. An MIS is the union of MISs over the

Fig. 8 Which buildings can be seen in the 5 × 5 component.

connected components. An isolated vertex belongs to every MIS.
An even cycle has two MISs. A horizontal edge in the cycle is
either on the upper or lower side of the rectilinear polygon that
the cycle makes. For example, in Fig. 3, we see three horizontal
edges. The edges (v1,2, v2,2) and (v2,5, v6,5) are on the upper side
of the polygon, while (v1,1, v6,1) is on the lower side. Concerning
the MISs, one easily sees the following;
• One MIS consists of the left endpoints of the upper-sided

horizontal edges, and the right endpoints of the lower-sided
horizontal edges; in Fig. 3, it is {v1,2, v2,5, v6,1}.

• The other MIS consists of the right endpoints of the upper-
sided horizontal edges, and the left endpoints of the lower-
sided horizontal edges; in Fig. 3, it is {v2,2, v6,5, v1,1}.

Associating the MISs with the truth values, we call the former
the true MIS, and the latter the false MIS. Since one of them
belongs to an MIS of the entire CC-graph independently from cy-
cle to cycle, there are 2N MISs in the CC-graph, each of which
corresponds to a truth assignment.

The clause gadgets are composed of copies of the 5 × 5 com-
ponent of Fig. 5. The clause gadgets are allocated in a stair-like
way, and within each gadget, copies of the component are allo-
cated also in a stair-like way. Observe that the “buildings” we can
see from the left end are only ones in the clause gadgets and the
highest building at (1, n − N). We cannot see any other building.

For a component P(xp1 , xp2), Fig. 8 shows which buildings can
be seen when we set (xp1 , xp2) = (F, F), (T,F), (F,T) and (T,T),
respectively. In each figure, the shade indicates vertices in the
corresponding MISs. A vertex corresponds to a building. In par-
ticular, an upper vertex corresponds to a higher building. Recall
that a building hides any lower buildings on the right side from a
viewer on the left side. Buildings that can be seen by the viewer
are indicated in boldface. The point is that we see two buildings
only when (xp1 , xp2) = (T,F), and in the other cases, we see three
buildings.

Then in Table 1, we show the number of buildings that can

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Table 1 The number of buildings that can be seen in a clause gadget.

(2-clause) (3-clause)

xp1 xp2 Number xp1 xp2 xp3 Number
F F 6 F F F 18
F T 5 F F T 16
T F 5 F T F 16
T T 6 F T T 16

T F F 16
T F T 16
T T F 16
T T T 18

be seen in a clause gadget for every truth assignment. At least 5
(= 3 + 2) buildings are seen in a 2-clause gadget, and at least 16
(= 5+5+6) buildings are seen in a 3-clause gadget. Observe that
buildings of the smallest number are seen when and only when
the clause is not-all-equal under the assignment.

Over the first row, at least 5|C(2)|+16|C(3)|+1 buildings are seen
regardless of a truth assignment, where the last term is due to the
highest building at (1, n − N). This lower bound is equal to b. It
is tight and achieved only by a truth assignment such that build-
ings of the smallest number are seen in the respective gadgets.
Therefore, there is a solution to the SLBP instance iff there is a
truth assignment for the SAT instance under which every clause
is not-all-equal.

To construct the SLBP instance, we have only to lay out the
clause gadgets in the manner of Fig. 4 and then to connect them
by introducing the variable gadgets. The transformation time is
clearly polynomial with respect to the size of the SAT instance.

References

[1] Colbourn, C.: The complexity of completing partial Latin squares, Dis-
crete Applied Mathematics, Vol.8, pp.25–30 (1984).

[2] Dehghan, A., Sadeghi, M.-R. and Ahadi, A.: On the Complex-
ity of Deciding Whether the Regular Number is at Most Two,
Graphs and Combinatorics, Vol.31, No.5, pp.1359–1365 (online), DOI:
10.1007/s00373-014-1446-9 (2015).

[3] Iwamoto, C. and Matsui, Y.: Computational Complexity of Building
Puzzles, IEICE Trans. Fundamental of Electronics, Communications
and Computer Sciences, Vol.E99-A, No.6, pp.1145–1148 (2016).

[4] Yato, T. and Seta, T.: Complexity and Completeness of Finding Another
Solution and Its Application to Puzzles, IEICE Trans. Fundamentals,
Vol.E86-A, No.5, pp.1052–1060 (2003).

Kazuya Haraguchi received his B.E.,
Master of Informatics, and Doctor of In-
formatics from Kyoto University, in 2001,
2003 and 2007, respectively. He is cur-
rently with the Department of Informa-
tion and Management Science, Faculty
of Commerce, Otaru University of Com-
merce. His interests include discrete al-

gorithms, discrete optimization, and their application to artificial
intelligence, operations research and recreational mathematics.

Ryoya Tanaka received his Bachelor of Commerce from Otaru
University of Commerce in 2017. He currently works for The
Japan Post Bank.

c© 2017 Information Processing Society of Japan

