
Vol. 47 No. SIG 12(ACS 15) IPSJ Transactions on Advanced Computing Systems Sep. 2006

Regular Paper

Parallel Branch and Bound Algorithm

with the Hierarchical Master-Worker Paradigm on the Grid

Kento Aida,†,☆ Yoshiaki Futakata†† and Tomotaka Osumi†††,☆☆

This paper proposes a parallel branch and bound algorithm that efficiently runs on the
Grid. The proposed algorithm is parallelized with the hierarchical master-worker paradigm in
order to efficiently compute fine-grain tasks on the Grid. The hierarchical algorithm performs
master-worker computing in two levels, computing among PC clusters on the Grid and that
among computing nodes in each PC cluster, and reduces communication overhead by localizing
frequent communication in tightly coupled computing resources, or a PC cluster. On each
PC cluster, granularity of tasks dispatched to computing nodes is adaptively adjusted to
obtain the best performance. The algorithm is implemented on the Grid testbed by using
GridRPC middleware, Ninf-G and Ninf. In the implementation, communication among PC
clusters is securely performed via Ninf-G using the Grid Security Infrastructure, and fast
communication in each PC cluster is performed via Ninf. The experimental results showed
that parallelization with the hierarchical master-worker paradigm using combination of Ninf-
G and Ninf effectively utilized computing resources on the Grid in order to run a fine-grain
application. The results also showed that the adaptive task granularity control automatically
gave the same or better performance compared to performance with manual control.

1. Introduction

Grid computing is regarded as new comput-
ing technology that provides huge computa-
tional power by employing computing resources
geographically distributed over the internet. A
user of Grid computing can use the computa-
tional power securely, stably and easily. Thus,
it has possibility not only to reduce execu-
tion time of applications currently computed on
hi-end computing systems but also to expand
applications of high-performance computing or
the internet. However, on the current Grid in-
frastructures, applications that are effectively
computed are limited. Some applications show
unacceptable performance on the Grid because
of the large overhead, e.g., the overhead caused
by poor network performance, and that by Grid
security service such as user authentication and
secure communication.

An example of applications that show poor
performance on the Grid is a fine-grain applica-
tion. Performance of an application that con-
sists of small tasks is significantly affected by
relatively large overhead on the Grid. Thus,
currently, applications effectively running on
the Grid have enough task grain sizes that com-

† Tokyo Institute of Technology/PRESTO, JST
†† University of Virginia
††† Tokyo Institute of Technology
☆ Presently with Tokyo Institute of Technology

☆☆ Presently with NTT Communications Corporation

pensate for the overhead, dozens of seconds or
hundreds seconds 1)～4). For instance, the work
presented in Ref. 1) shows experimental results
for the application, which solves the quadratic
assignment problem, on the Grid; and its mean
task grain size, or the mean execution time of
the single task in the application, is 190 [sec].
The work in Ref. 3) also presents experimen-
tal results for the application, which solves the
traveling salesman problem, on the Grid; and
its mean task grain size is distributed from 177
[sec] through 430 [sec].

However, there exist finer-grain applications,
where the mean task grain sizes are a few sec-
onds or less, and developers/users of these ap-
plications give up running their applications on
the Grid. Some of these applications might
consist of a huge number of fine-grain tasks
and require huge computational power. Thus,
developing algorithms to efficiently run these
fine-grain applications on the Grid contributes
for expanding applications of Grid computing.
An example of these fine-grain applications is
a branch and bound application. A branch
and bound algorithm is widely used to solve
optimization problems in many engineering
fields, e.g., operations research, control engi-
neering, multiprocessor scheduling 5)～8). How-
ever, many applications using a branch and
bound algorithm tend to be composed of a huge
number of fine-grain tasks, i.e., they are fine-
grain applications.

193



194 IPSJ Transactions on Advanced Computing Systems Sep. 2006

This paper proposes a parallel branch and
bound algorithm that efficiently runs on the
Grid. The proposed algorithm consists of
two techniques, parallelization of a branch and
bound algorithm with the hierarchical master-
worker paradigm and the adaptive task granu-
larity control.

The proposed algorithm parallelizes a branch
and bound algorithm with the hierarchical
master-worker paradigm 9) in order to effi-
ciently compute fine-grain tasks on the Grid.
The hierarchical algorithm performs master-
worker computing in two levels, computing
among PC clusters on the Grid and that
among computing nodes in each PC cluster.
It avoids performance degradation, which is
mainly caused by communication overhead be-
tween a master process and worker processes,
by localizing frequent communication in tightly
coupled computing resources, or a single PC
cluster. In each PC cluster, granularity of tasks
dispatched to worker processes affects perfor-
mance of the computation. The proposed al-
gorithm adaptively adjusts granularity of tasks
during the application run, and gives the best
performance.

While the hierarchical parallelization is be-
coming common on the Grid, there are prob-
lems in order to parallelize a branch and bound
algorithm in the hierarchical way on the Grid.
For instance, tasks should be efficiently dis-
patched to worker processes running on multi-
ple sites, and the best upper bound needs to be
efficiently shared among worker processes run-
ning on multiple sites. The proposed algorithm
solves above problems.

The proposed algorithm is implemented in
a Grid application by using GridRPC 10) mid-
dleware, Ninf-G 11) and Ninf 12). GridRPC is
a programming model based on client-server-
type remote procedure calls on the Grid, and
its model and APIs have been standardized
in GGF 13). In the implementation, commu-
nication among PC clusters is securely per-
formed via Ninf-G, which uses the Grid Security
Infrastructure (GSI) provided in the Globus
Toolkit 14), and communication among comput-
ing nodes in each PC cluster is performed via
Ninf, which has no mechanism to support Grid
security service but enables fast invocation of
remote computing routines.

While fine-grain applications on distributed
systems have been discussed in literatures 15),16),
the detailed performance of a fine-grain parallel

branch and bound application with GridRPC
on the Grid has not been sufficiently discussed.
The contribution of this paper is to propose an
efficient parallelization scheme of the fine-grain
parallel branch and bound algorithm, and to
present its implementation and detailed per-
formance on the Grid constructed with stan-
dard Grid technology 13),14). Furthermore, the
proposed algorithm presented in this paper en-
hances the algorithm firstly presented in the
conference paper 9) by adding the new idea of
the task granularity control.

The experimental results showed that the
proposed algorithm implemented using combi-
nation of Ninf-G and Ninf effectively utilized
computing resources on the Grid testbed in or-
der to run the fine-grain branch and bound ap-
plication, where the average computation time
of the single task was less than 1 [sec]. The re-
sults also showed that the adaptive task gran-
ularity control automatically gave the same or
better performance compared to performance
with manual control.

The rest of this paper is organized as follows:
Section 2 gives the background and presents the
proposed algorithm, and Section 3 presents im-
plementation of the proposed algorithm. Sec-
tion 4 presents experimental results on the Grid
testbed. Section 5 describes related works, and
Section 6 concludes the work presented in this
paper and outlines future work.

2. Parallel Branch and Bound Algo-
rithm

This section summarizes an overview of a par-
allel branch and bound algorithm and presents
the proposed parallelization scheme.

2.1 Branch and Bound Algorithm
The main idea of a branch and bound al-

gorithm is to find an optimal solution and to
prove its optimality by successively partitioning
the feasible set of the solution, or the original
problem, into subproblems of smaller size. To
this end, these subproblems are investigated by
computing lower and upper bounds of the ob-
jective function. These lower and upper bounds
are used to avoid exhaustive search of the solu-
tion space.

Procedures for the branch and bound algo-
rithm are illustrated by a tree structure like
an example in Fig. 1. In the figure, the root
node on the tree denotes the original prob-
lem. The original problem is partitioned into
two subproblems, which are depicted as child



Vol. 47 No. SIG 12(ACS 15) Parallel Branch and Bound Algorithm on the Grid 195

Fig. 1 An example of a search tree.

nodes of the root node. This partitioning pro-
cess is called branching. After the branching,
lower and upper bounds of the objective func-
tion are computed on each subproblem, and the
best upper bound is computed. The best upper
bound means the lowest upper bound among
upper bounds currently computed on all sub-
problems ☆. By continuing in this way, a tree
structure called a search tree is obtained. Some
subproblems, where their lower bounds (LB)
are higher than the current best upper bound
(Z), can be pruned, because further branching
for these subproblems does not yield an opti-
mal solution. This process is called pruning or
bounding, and efficient pruning is effective to
reduce computation time. Finally, an optimal
solution is obtained, when the gap between the
best upper bound and the lower bound becomes
zero or the allowable error.

A branch and bound algorithm is able to be
parallelized by distributing computation of sub-
problems on multiple computing nodes. Par-
allel branch and bound algorithms with the
master-worker paradigm, where a single mas-
ter process dispatches tasks to multiple worker
processes, have been proposed in many litera-
tures 1),3),17).

2.2 Parallelization with Hierarchical
Master-Worker Paradigm

In the proposed algorithm, a branch and
bound algorithm is parallelized with the hi-
erarchical master-worker paradigm 9) to avoid
performance degradation exhibited in the con-
ventional master-worker paradigm on the Grid.
In this paradigm, a single supervisor process
controls multiple process sets, each of which is
composed of a single master process and mul-
tiple worker processes. Distribution of tasks
is performed in two phases: the distribution
from the supervisor process to master pro-
cesses and that from the master process to

☆ This paper assumes an optimization problem that
minimizes the objective function.

Fig. 2 The branch and bound algorithm with the
hierarchical master-worker paradigm.

worker processes. Collection of computed re-
sults is performed in the reverse way. The hi-
erarchical master-worker paradigm has advan-
tages compared with the conventional master-
worker paradigm. The first advantage is to
reduce communication overhead by putting a
set of a master process and worker processes,
which frequently communicate with each other,
in tightly coupled computing resources. The
second advantage is to avoid the performance
bottleneck due to a single heavily loaded mas-
ter process by distributing the workload among
multiple master processes.

The branch and bound algorithm parallelized
with the hierarchical master-worker paradigm
performs parallel computation in the following
way: A set of the master and worker processes
performs a parallel branch and bound opera-
tion for a subset of the search tree, that is, the
master process dispatches subproblems to mul-
tiple worker processes and receives computed
results from these worker processes. The super-
visor process performs load balancing among
master processes and advertises the best upper
bound of the objective function by communicat-
ing with master processes. The advertisement
of the best upper bound is crucial to improve
performance of applications, because it accel-
erates pruning. Figure 2 shows an overview
of the branch and bound algorithm with the hi-
erarchical master-worker paradigm. Symbols in
the figure, ZWi, ZMj and Z, denote the current
upper bound of the objective function stored on
the worker process Wi, the master process Mj

and the supervisor process, respectively.
In each set of a master process and worker

processes, the master process maintains a sub-
set of the search tree. Un-computed subprob-
lems are saved in the queue on the master pro-



196 IPSJ Transactions on Advanced Computing Systems Sep. 2006

cess. It dispatches subproblems, which corre-
spond to leaf nodes on the search tree, to mul-
tiple worker processes and receives computed
results from these worker processes. Simultane-
ously, the master process sends the best upper
bound stored on itself to worker processes.

The worker process that received a subprob-
lem from the master process performs branch-
ing, that is, it partitions the subproblem into
multiple (sub-)subproblems and generates the
sub-tree. Next, it computes lower and upper
bounds for each subproblem on the sub-tree and
performs bounding; that is, it prunes an unnec-
essary subproblem, where its lower bound ex-
ceeds the current best upper bound. Finally,
the worker process returns computed results
to the master process. The computed results
contain lower and upper bounds computed on
the worker process, the solution, and subprob-
lems that have been generated by branching
and have not been pruned on the worker pro-
cess.

The size of the sub-tree generated on a worker
process corresponds to granularity of the task
dispatched by the master process. The pro-
posed algorithm defines the task granularity as
depth of the sub-tree. For instance, W11 in
Fig. 2 generates the sub-tree with depth = 2.
The performance of a branch and bound oper-
ation performed on a set of a master process
and worker processes is affected by task gran-
ularity. The further discussion about the task
granularity is presented in Section 2.3.

The supervisor process periodically queries
master processes about their statuses, which
include the number of un-computed subprob-
lems and upper bounds stored on these master
processes. When numbers of un-computed sub-
problems, or loads, on master processes are not
well balanced, the supervisor process moves un-
computed subproblems from highly loaded mas-
ter processes to lightly loaded master processes.
When the supervisor process finds the new best
upper bound on the master process Mi, where
ZMi < Z, the supervisor process updates the
best upper bound stored on the supervisor pro-
cess (Z) and advertises the updated Z to other
master processes. Thus, a master process com-
municates both with its worker processes and
with the supervisor process. Finally, the su-
pervisor process terminates computation if the
termination condition is satisfied.

2.3 Adaptive Task Granularity Con-
trol

Performance of computation performed in
each set of a master process and worker pro-
cesses, or in a PC cluster, is affected both by
communication overhead and an interval be-
tween advertisements of the best upper bound.
The communication overhead is caused by
communication between a master process and
worker processes, and reducing the overhead
improves the performance. On the other hand,
the new best upper bound is advertised to
worker processes by a master process, and re-
ducing the interval improves the performance.
Note that bounding is performed on a worker
process using the best upper bound, which is
available on the worker process. If a worker
process finds the new best upper bound, quickly
advertising the new best upper bound to other
worker processes helps other worker processes
to efficiently perform bounding.

There is a tradeoff between reducing the com-
munication overhead and reducing the interval
between the advertisements. In order to reduce
the communication overhead, granularity of a
task should be relatively large compared to the
overhead. However, in order to reduce the in-
terval, task granularity should be small so that
a master process dispatches a task with the new
best upper bound to worker processes more fre-
quently.

The proposed algorithm adaptively adjusts
granularity of tasks to achieve both low commu-
nication overhead and efficient advertisement of
the best upper bound. The idea of the scheme
is:
• Increasing task granularity to reduce com-

munication overhead, when we cannot ex-
pect effect by advertising the new best up-
per bound frequently, or the gap between
the newly computed best upper bound and
the current one is small,

• Decreasing task granularity to reduce the
interval between the advertisements, when
we can expect substantial effect to fre-
quently advertise the new best upper
bound, or the gap between the new best
upper bound and the current one is large.

Whenever a master process (j) receives the
new best upper bound (ZWi) from the worker
process (i), the master process compare ZWi

and the best upper bound stored on the master
process (ZMj). If ZWi < ZMj , the master pro-
cess computes the gap between ZWi and ZMj ,



Vol. 47 No. SIG 12(ACS 15) Parallel Branch and Bound Algorithm on the Grid 197

and updates ZMj to the value of ZWi. Then,
if the gap is smaller than a certain threshold,
the master process increases granularity of the
task that is dispatched in the next turn, or it
increases depth of the sub-tree that is gener-
ated from the task. If the gap is larger than
or equal to the threshold, the master process
reduces granularity of the task. When the mas-
ter process dispatches a new task, it notifies a
worker process of the task granularity, or the
depth of the sub-tree.

The threshold, θ, is computed as follows:
θ = a × ∆Z (1)

Here, ∆Z means the gap computed when the
ZMj is updated for the first time since the ap-
plication starts, and the variable, a (0 ≤ a ≤ 1),
indicates a constant parameter. The prelimi-
nary experiment shows that the gap computed
for the first time exhibits the maximum gap
in most cases; thus, the proposed scheme com-
putes the threshold using ∆Z.

A worker process receives a task from the
master process, and generates a sub-tree with
depth notified by the master process. When-
ever a worker process finds the new best upper
bound during computation of the task, it im-
mediately reports the new best upper bound to
the master process.

3. Implementation

A Grid testbed considered in this paper con-
sists of multiple PC clusters that are connected
to the internet and are administrated in multi-
ple domains. In order to efficiently run an appli-
cation parallelized with the hierarchical master-
worker paradigm on the Grid testbed, mapping
of processes on computing resources and com-
munication methods among these processes are
crucial. Particularly, to run a fine-grain appli-
cation on the Grid testbed, implementation to
reduce the communication overhead is neces-
sary, because performance of a fine-grain appli-
cation is significantly affected by the overhead.

3.1 Process Mapping
Figure 3 illustrates mapping of processes in

the application on the Grid testbed. In the fig-
ure, multiple PC clusters, which are depicted by
squares with dotted lines, are distributed on the
internet. Symbols in the figure, S, M and W ,
denote a supervisor process, a master process
and a worker process, respectively. The symbol,
C, denotes a process that runs with the master
process on the same computing node, which is
depicted by the square with solid lines. Pro-

Fig. 3 Process mapping.

cesses, M and C, are invoked by the supervisor
process via GridRPC, and examples of codes
are presented in Section 3.3. The process M
communicates with the process C via the inter-
process communication mechanism provided by
the System V message queue.

The process, C, relay operations between
the supervisor process and the master process.
These relay operations consist of the following
operations:
• initializing the queue on the master process
• querying about a status of the master pro-

cess
• updating the new best upper bound saved

on the master process
• stealing subproblems from the master pro-

cess
• assigning subproblems to the master pro-

cess
• notifying the master process to stop com-

putation
As described in Section 2.2, a master pro-

cess communicates both with its worker pro-
cesses and with the supervisor process. The
former communication is performed for compu-
tation of subproblems, or dispatching subprob-
lems to worker processes and receiving com-
puted results. The process C relays opera-
tions requested by the supervisor process so
that computation on master processes will not
be blocked by the supervisor process.

A set of the master process (M and C) and
worker processes (W ) are mapped on comput-
ing nodes in a single PC cluster, where comput-
ing nodes are connected via a dedicated high-
speed network. This mapping is effective to
reduce communication overhead, because the
amount of data transferred between the su-
pervisor process and master processes is much



198 IPSJ Transactions on Advanced Computing Systems Sep. 2006

smaller than that between a master process
and worker processes. The supervisor process
is mapped on a computing node on the Grid
testbed.

3.2 Communication among Processes
On the Grid testbed, communication between

the supervisor process and master processes is
performed among different domains via the in-
ternet, while that between a master process and
worker processes is performed in a single PC
cluster. Thus, the former communication needs
to be securely performed using Grid security
service, e.g., user authentication over different
domains, secure communication and etc., even
if it causes additional overhead. The latter com-
munication needs to be fast performed without
the Grid security service, because communica-
tion inside a PC cluster does not require user
authentication and secure communication.

In the implementation, communication be-
tween the supervisor process and master pro-
cesses is performed by Grid RPC middle-
ware Ninf-G 11), which uses the Grid Security
Infrastructure (GSI) provided in the Globus
Toolkit 14). Also, communication between a
master process and worker processes is per-
formed by Ninf 12), which has no mechanism to
support Grid security service but enables fast
invocation of remote computing routines.

3.3 Implementation with GridRPC
Ninf-G 11) is reference implementation of

GridRPC API. The client program is able to in-
voke server programs, or executables, on remote
computing resources using the Ninf-G client
API. Ninf-G is implemented on the Globus
Toolkit 14). When the client program starts its
execution, it accesses MDS to obtain interface
information to invoke the remote executable.
Next, the client program requests GRAM to
invoke the remote executable. In this phase,
authentication is performed using GSI. After
the invocation, the remote executable connects
back to the client to establish connection. Fi-
nally, the client program dynamically encodes
its arguments according to the interface infor-
mation, and transfers them using Globus I/O
and GASS. Ninf 12) has been developed as an
initial product of Ninf-G. Ninf provides a client
program almost same API as Ninf-G. Ninf is
implemented as a standalone software system,
and has no mechanism to support Grid security
service; however, it enables fast invocation of
remote computing routines with low overhead.

The supervisor process is firstly initiated

when a user starts the application. Next, it ini-
tiates a master process on the designate node
for each PC cluster using Ninf-G. The example
of the program code with the Ninf-G API on
the supervisor process is as follows:
for(i = 0; i < nMaster; i++){

grpc_function_handle_init(&ex[i],…,
"Master");

}

for(i = 0; i < nMaster; i++){
pid[i] = grpc_call_async(&ex[i],…);

}
Here, nMaster denotes the number of master
processes, which is equal to the number of PC
clusters employed to run the application. The
API, grpc function handle init(), is called
to initialize the function handle to invoke the
remote executable, or the master process. Its
arguments include a hostname of the remote
computing node, a port number and a path for
the executable. The API, grpc call async(),
is called to invoke the remote executable indi-
cated by the function handle in its argument.

A master process initiates worker processes
on computing nodes in the same PC cluster and
dispatches subproblems to idle worker processes
using Ninf. The example of the program code
with the Ninf API on the master process is as
follows:
for(i = 0; i < nWorker; i++){

sprintf(ninfURL[i], NINF_URL_LENGTH,
"ninf://%s/Worker", workerList[i]);
exs[i] =
Ninf_get_executable(ninfURL[i]);

}

while (1) {
id = Ninf_wait_any();
for (i = 0; i < nWorker; i++)
if (ids[i] == id) break;
:
ids[i] =
Ninf_call_executable_async(exs[i],

…);
}
Here, nWorker denotes the number of worker
processes. The API, Ninf get executable(),
is called to initialize the function handle
to invoke the worker process. Its argu-
ments include the same information as those
for grpc function handle init(). The API,
Ninf wait any(), blocks execution of the
client program until one of invoked exe-



Vol. 47 No. SIG 12(ACS 15) Parallel Branch and Bound Algorithm on the Grid 199

cutables finishes its task, that is, one of
worker processes becomes idle. The API,
Ninf call executable async(), is called to
dispatch a subproblem to an idle worker pro-
cess.

On ordinary RPC systems, all input data for
a remote computing routine need to be trans-
ferred to the remote computing node whenever
the remote routine is invoked. This data trans-
fer might cause redundant communication for
some applications, where input data for a re-
mote computing routine are same for every in-
vocation. The proposed algorithm avoids the
redundant communication by re-using constant
input data transferred at the first invocation.
When a master process dispatches the first sub-
problem to a worker process, the master process
transfers all input data to the worker process.
At this time, the worker process stores the con-
stant input data on the local memory. Since
the second invocation, the master process does
not transfer the constant data, and the worker
process computes subproblems using the stored
constant data.

Load balancing and advertisement of the best
upper bound are performed by the supervisor
process invoking remote executables using Ninf-
G. The supervisor process queries statuses of
master processes by invoking Ninf-G executa-
bles on computing nodes where master pro-
cesses are running. The invoked executable,
which is presented as the process C in Fig. 3,
obtains the number of un-computed subprob-
lems and the best upper bound by communi-
cating with the master process via inter-process
communication. Then, the executable returns
results to the supervisor process. Other oper-
ations, stealing/assigning subproblems from/to
master processes and advertising the updated
best upper bound, are performed in the same
way.

3.4 Advantage of Implementation with
GridRPC

There are implementation methods other
than GridRPC, e.g., MPI 18),19), a hybrid
method of GridRPC and MPI 20), on the Grid.

Table 1 The Grid testbed.

- spec/node Grid software RTT [ms]
client PC PIII 1.0GHz, 256MB mem., 100BASE-T NIC GTK 2.4, Ninf-G 2.2
Blade PIII 1.4GHz x2, 512MB mem., 100BASE-T NIC GTK 2.4, Ninf-G 2.2 0.03
PrestoIII Athlon 1.6GHz x2, 768MB mem., 100BASE-T NIC GTK 2.4, Ninf-G 2.2 6
Sdpa Athlon 2.0GHz x2, 1024MB mem., 1000BASE-T NIC GTK 2.4, Ninf-G 2.2 12
Mp Athlon 2.0GHz x2, 512MB mem., 100BASE-T NIC GTK 2.4, Ninf-G 2.2 28

The motivation that the authors implemented
the application program by GridRPC is that
GridRPC is suitable to implement a master-
worker application on the Grid.

The RPC programming model is suitable to
implement an application program parallelized
by the master-worker paradigm. In the imple-
mentation, a worker process is implemented as
a subroutine, and a master process invokes the
subroutine, or the worker process, via RPC.
Parallelization with the hierarchical master-
worker paradigm is also implemented by cas-
cading RPCs. Furthermore, in the authors’
original (sequential) application program, com-
putation of a worker process, e.g., computation
of lower and upper bounds, is implemented as a
subroutine. Thus, the subroutine call is easily
modified to the GridRPC call.

There is room for discussion about the perfor-
mance issue, or performance comparison among
implementation methods. However, this discus-
sion is beyond the scope of this paper.

4. Experimental Results

The Grid testbed used in the experiment
consists of four PC clusters and a client PC
distributed over four cities in Japan 21). Ta-
ble 1 shows resources on the testbed. Four
PC clusters in the testbed, Blade, PrestoIII,
Sdpa and Mp, are installed in Tokyo Institute
of Technology (Yokohama), Tokyo Institute of
Technology (Tokyo), Tokyo Denki University
(Saitama), and The University of Tokushima
(Tokushima), respectively. The client PC and
Blade are installed in the same site. The col-
umn, RTT, on the table indicates round trip
time measured by the ping command between
the client PC and PC clusters. The supervi-
sor process runs on the client PC, and a set of
a master process and worker processes runs on
each PC cluster. Certificates for users/hosts on
the testbed are issued from the AIST GTRC
CA 22).

The benchmark application in this experi-
ment is the Bilinear Matrix Inequality Eigen-
value Problem (BMI-EP). The objective of the



200 IPSJ Transactions on Advanced Computing Systems Sep. 2006

problem is to find an optimal solution, xi

and yi, which minimizes the greatest eigen-
value of the following bilinear matrix function
with given constant matrices (Fij = FT

ij ∈
Rm×m (i = 0, · · · , nx, j = 0, · · · , ny)).

F (x,y) := F00 +
nx∑

i=1

xiFi0 +
ny∑

j=1

yjF0j

+
nx∑

i=1

ny∑

j=1

xiyjFij (2)

where F : Rnx ×Rny → Rm×m

x := (x1, · · · , xnx
)T (3)

y := (y1, · · · , yny
)T

The BMI-EP is recognized as a general frame-
work for analysis and synthesis of the output
feedback control systems in a variety of indus-
trial applications, such as position control of
a helicopter and control of robot arms. How-
ever, it is known that the BMI-EP is hard to
solve due to the huge computational cost. Thus,
speedup of the computation is expected in the
control engineering community in order to en-
able analysis and synthesis of large scale con-
trol systems 6). Also, in the operations research
community, it is an academic grand challenge
to solve the large scale BMI-EP that has never
been solved 7).

4.1 Results on Grid Testbed
Figure 4 shows the execution time of

five benchmark problems (P1-P5), where their
problem sizes are same (nx = 6, ny = 6, m =
24) but their given constant matrices (Fij) are
different, on the Grid testbed. For the ex-
periment, 412 CPUs on four PC clusters, 73
CPUs (one for the master process and 72 CPUs
for worker processes) on Blade, 129 CPUs on
PrestoIII, 81 CPUs on Sdpa and 129 CPUs
on Mp, are employed to solve problems. In the
figure, seq denotes sequential execution time
on the single computing node of Blade; clus-
ter means execution time on the single cluster
(Blade), where the application is parallelized
by the conventional master-worker paradigm
with Ninf; finally grid indicates execution time
on the Grid testbed, where the application is
parallelized by the hierarchical master-worker
paradigm with Ninf-G and Ninf. The value on
the right hand side of the bar diagram indicate
the execution time [sec]. Figure 5 shows the
speedup to the sequential execution time on PC
clusters and the Grid testbed.

Fig. 4 The execution time on the Grid testbed.

Fig. 5 The speedup to sequential execution time on
the Grid testbed.

The results show that the execution time
of the benchmark problems is effectively re-
duced by parallelization on the single PC clus-
ter, Blade, compared with the sequential ex-
ecution time. Also, the execution time is fur-
ther reduced by employing four PC clusters dis-
tributed on the Grid testbed. The best perfor-
mance is observed for the benchmark problem
P2. It is solved for 4.5 minutes on the Grid
testbed, while it requires nine hours and half
on the single CPU.

Figure 6 shows the breakdown of the execu-
tion time for the benchmark problems on the
Grid testbed. In the figure, init, compt and
fin mean the overhead to initialize Ninf-G pro-
cesses, the computation time to solve problems,
and the overhead to finalize Ninf-G processes,
respectively. The results in Fig. 6 indicate that
the overhead to finalize Ninf-G processes sig-
nificantly affects the overall performance. It
might be one of reasons why the performance



Vol. 47 No. SIG 12(ACS 15) Parallel Branch and Bound Algorithm on the Grid 201

Fig. 6 The breakdown of execution time.

for P1 on the Grid testbed is not well improved
compared with that on the single PC cluster.
However, in the implementation, a user of the
application can obtain computed results before
the finalization phase. Thus, from the user’s
point of view, the necessary time to obtain the
optimal solution is shorter than the execution
time in Fig. 6, e.g., the execution time without
the finalization phase is 72 [sec] for P1.

The benchmark problem solved in this ex-
periment is a fine-grain problem. The aver-
age execution time of the single task, or com-
putation dispatched by a master process to a
worker process, is less than 1 [sec]. The con-
ventional master-worker paradigm on the Grid
might show unacceptable performance because
of the overhead to dispatch fine-grain tasks via
the internet. For instance, the authors’ prelim-
inary experiment using a smaller testbed shows
that the execution time for P1 with the hierar-
chical master worker paradigm is 639 [sec] while
the execution time with the conventional mas-
ter worker paradigm is more than one hour.☆
The results show that the hierarchical master-
worker paradigm using combination of Ninf-
G and Ninf effectively utilizes computing re-
sources on the Grid testbed in order to effi-
ciently run the fine-grain application.

4.2 Load Balancing
The performance of the application might

be affected by load balancing strategies among
master processes, or PC clusters. The load
balancing strategy implemented in this experi-
ment tries to assign un-computed subproblems
to master processes, or PC clusters, proportion-
ally to their measured performance. When-
ever the supervisor process finds an idle PC
cluster, the supervisor process steals/assigns
☆ Detailed discussion about the performance degrada-

tion of the application implemented with the con-
ventional master-worker paradigm on WAN is pre-
sented in Ref. 9).

Fig. 7 The idle time on PC clusters in the first
period.

Fig. 8 The idle time on PC clusters in the second
period.

un-computed subproblems from/to master pro-
cesses so that un-computed subproblems are
distributed among master processes propor-
tionally to performances of master processes.
Here, an idle PC cluster means a PC cluster
with no un-computed subproblems in the queue
of the master process.

Idle time on PC clusters is one of metrics to
indicate performance of load balancing strate-
gies. Figures 7 and 8 show the idle time on
PC clusters during a single application run. In
the figure, M1, M2, M3 and M4 denote idle
time on master processes on Blade, PrestoIII,
Sdpa and Mp, respectively. The idle time is
divided into two periods. In the first period,
three PC clusters among four PC clusters are
idle because of low parallelism. Tasks, or sub-
problems, are generated by branching during
the execution; thus, only one PC cluster is busy
in the first period because there are not enough
tasks to make all PC clusters busy. The idle
time in the first period cannot be reduced by
load balancing strategies. In the second pe-
riod, there are enough subproblems to make all
PC cluster busy; thus, load balancing strate-
gies, which move tasks from highly loaded PC



202 IPSJ Transactions on Advanced Computing Systems Sep. 2006

clusters to lightly loaded PC clusters, can re-
duce the idle time.

Figure 7 shows the idle time on PC clusters
in the first period. When a user runs the ap-
plication, the first subproblem is generated and
computed on Blade. Thus, no idle time is ob-
served on M1. Idle time is observed on three
PC clusters, M2, M3 and M4. In other words,
the idle time indicated in Fig. 7 shows elapsed
time that a master process waits for the first
subproblem to be dispatched.

Figure 8 shows the idle time on PC clusters in
the second period. No idle time is observed on
some master processes, or M1 for P1 and P3,
and M2 for P2. The results show that idle time
on master processes is not much observed in the
second period. For instance, ratio of the idle
time to the overall computational time, which
is indicated in Fig. 6, is 8% or less for all bench-
mark problems. It means that the load balanc-
ing strategy performs well in this experiment.

4.3 Results on Emulated Grid Testbed
The performance of the application might

be affected by communication performance be-
tween the supervisor process and master pro-
cesses. Figure 9 shows execution time for
P1 on the emulated Grid testbed illustrated in
Fig. 10, where communication latency between

Fig. 9 Effects of communication latency.

Fig. 10 The emulated Grid testbed.

the supervisor process and master processes is
emulated from 0 [msec] through 100 [msec]. For
instance, the 100 [ms] latency corresponds to
the one way latency between US and Japan.
The emulated Grid testbed includes four groups
of computing nodes, each of which has one com-
puting node (P4 2.4 GHz, 512 MB mem.) for a
master process and four computing nodes (PIII
1.4 GHz x2, 512 MB mem.) for worker pro-
cesses. Communication between the supervisor
process and master processes is routed via the
PC router (P4 2.4 GHz, 512 MB mem.), which
emulates communication latency on wide area
network by the software, NIST Net 23).

The results in Fig. 9 show that performance
degradation is observed when emulated latency
is high. However, the performance degradation
is mainly caused by increase of the overhead to
initialize Ninf-G processes, and the computa-
tion time is not much affected by the latency.
In the initialization phase of Ninf-G processes,
a supervisor process communicates with each
PC cluster to invoke multiple Ninf-G processes
on the remote PC cluster. In the current imple-
mentation described in Section 3.1, the supervi-
sor process invokes seven Ninf-G processes, one
for a master process and six for relay opera-
tions, on remote PC clusters. The communi-
cation overhead is affected by latency between
a node, on which the supervisor process runs,
and remote PC clusters.

The results indicate that the hierarchical
master-worker paradigm with GridRPC works
efficiently enough on the Grid testbed with high
communication latency.

4.4 Task Granularity Control
Figure 11 illustrates the execution time of

the application on Blade (33 CPUs), where
the task granularity control is performed. Here,
the application is parallelized by the master-

Fig. 11 The performance of the task granularity
control.



Vol. 47 No. SIG 12(ACS 15) Parallel Branch and Bound Algorithm on the Grid 203

worker paradigm with Ninf. Different bench-
mark problems, P6-P10, are selected to see
performance of the task granularity control for
benchmarks with different problem sizes. The
problem size of P6 is nx = 10, ny = 2, m = 8;
the size of P7-P8 is nx = 5, ny = 5, m = 20;
and the size of P9-P10 is nx = 6, ny = 6,
m = 24. Particularly, the size of m defines
computational complexity of a subproblem in
the BMI-EP. In the figure, manual means exe-
cution time where the task granularity is manu-
ally adjusted. Here, the task granularity, or the
depth of the sub-tree generated on a worker pro-
cess, is set by the authors before the application
run, and the granularity is fixed during the ap-
plication run; i.e., the authors ran the applica-
tion multiple times using different setting of the
task granularity, and chose the setting with the
best performance. The symbol, d, denotes the
depth of the sub-tree in the best setting. On the
other hand, auto indicates the execution time
where the task granularity is automatically ad-
justed by the adaptive task granularity control
presented in Section 2.3. The constant param-
eter, a in the formula (1), is empirically defined
and is set to 0.5 in the experiment, and the
maximum task granularity is set to depth = 5.

The results show that the adaptive task gran-
ularity control appropriately adjusts the task
granularity during the application run and ex-
hibits the same or better performance com-
pared to the manual control. Note that the ob-
jective of the task granularity control is to run
the application without tuning of task granular-
ity setting. The manual control requires mul-
tiple times of preliminary application runs to
investigate the best setting.

Furthermore, if task granularity is inappro-
priately set, it could degrade performance. Fig-
ure 12 shows execution time for P6, where task
granularity is manually set to depth. Figure 12
indicates that the execution time is smallest
where depth = 3, and the execution time in-
creases when depth increases/decreases. The
results show that too small/large task granu-
larity significantly degrades performance of the
application. For instance, the execution time
increases by 50% when depth = 1 compared
to the best setting, and the execution time in-
creases by 30% when depth = 5. The pro-
posed adaptive task granularity control algo-
rithm automatically adjusts the task granular-
ity, or depth, so that it gives the best perfor-
mance without tedious preliminary runs.

Fig. 12 Effects of task granularity.

The parameter, a, also affects the perfor-
mance. In the formula (1), ∆Z exhibits the
maximum gap between the new best upper
bound and previous one in most cases. Thus,
if a is set to 1, task granularity increases to
the maximum (depth = 5) and preserves the
maximum granularity. For instance, the perfor-
mance might be close to the performance where
task granularity manually set to depth = 5
in Fig. 12. On the other hand, if a is set to
0, task granularity decreases to the minimum
(depth = 1) and preserves the minimum granu-
larity; that is the performance might be close to
the performance where task granularity manu-
ally set to depth = 1 in Fig. 12.

In the experiments, the authors set a = 0.5
to avoid significant performance degradation as
shown in Fig. 12. The preliminary experiments
show that this setting, a = 0.5, gives accept-
able performance. However, there is room for
further investigation for the value for a, and the
development of the method to define the opti-
mal a is the authors’ future work.

4.5 User Interface
The authors developed the user interface to

run the branch and bound application using the
proposed algorithm. A user of the application
can operate through the web interface as illus-
trated in Fig. 13 and can observe interim re-
sults of the computation. The upper window on
the interface depicts the convergence of lower
and upper bounds currently computed on the
Grid, and the lower window shows the number
of un-computed subproblems. The interim in-
formation is useful for the user to find the best
parameter for the user’s problem. The user can
restart the computation with other parameters
through the web, if he/she finds unsatisfactory
behavior in the interim information.

5. Related Work

Fine-grain applications on distributed sys-



204 IPSJ Transactions on Advanced Computing Systems Sep. 2006

Fig. 13 An example of the user interface.

tems have been discussed in literatures 15),16).
The work presented in Ref. 15) discusses perfor-
mance of applications on multiple PC clusters
connected via slow network. The experimen-
tal results show an impact on performance by a
gap between fast network and slow network for
six benchmark applications. The work also dis-
cusses optimization techniques, which includes
communication in a hierarchical manner, to im-
prove the performance. Furthermore, the ex-
periment for fine-grain divide-and-conquer ap-
plications on the Grid is reported in Ref. 16).
It shows the performance of the divide-and-
conquer Java applications, which is parallelized
in a hierarchical manner, on Satin/Ibis, Java
based Grid programming environment.

The work presented in Ref. 24) discusses load
balancing strategies on distributed systems,
where applications are parallelized in a hierar-
chical manner. The work reports experimental
results for various load balancing strategies on
multiple PC clusters with simulated WAN set-
ting. The idea behind the load balancing strat-
egy in the hierarchical master-worker paradigm,
which is presented in this paper, is similar to
that of CLS 24) in the view that load balancing
is performed in a hierarchical way via desig-
nated nodes on PC clusters.

The work presented in this paper is extended
from the work in Refs. 9), 21). Reference 9)
proposes the idea of the hierarchical master-
worker paradigm, and Ref. 21) presents the im-
plementation and the experimental results on
the Grid. The proposed algorithm in this pa-

per enhances the original algorithm 9) by adding
the new idea of task granularity control. This
paper also presents new experimental results on
the larger Grid testbed.

6. Conclusions

This paper proposed a parallel branch and
bound algorithm that efficiently ran on the
Grid. The proposed algorithm is parallelized
with the hierarchical master-worker paradigm
in order to efficiently compute fine-grain tasks
on the Grid. The hierarchical approach ef-
fectively reduces communication overhead on
WAN by localizing frequent communication in
tightly coupled computing resources, or a PC
cluster. On each PC cluster, granularity of
tasks is adaptively adjusted to obtain the best
performance.

The application is implemented on the Grid
testbed by using two GridRPC middleware,
Ninf-G and Ninf, where secure communication
among PC clusters is performed via Ninf-G and
fast communication among computing nodes in
each PC cluster is performed via Ninf. The
experimental results showed that the imple-
mentation with the hierarchical master-worker
paradigm using combination of Ninf-G and Ninf
effectively utilized computing resources on the
Grid testbed in order to efficiently run the fine-
grain application, where the average computa-
tion time of the single task was less than 1
[sec]. The results also showed that the adap-
tive task granularity control automatically gave
the same or better performance compared with
manual control that required preliminary appli-
cation runs.

There is room to improve the load balancing
strategy for the application. Experiments on
the actual testbed are not suitable for compar-
ison of multiple strategies, because the testbed
does not exhibit reproducible results. The au-
thors plan to perform experiments to compare
various load balancing strategies, including the
conventional load balancing strategies proposed
in the distributed computing community, on the
emulated Grid testbed. Also, the current em-
ulation model in the emulated Grid testbed is
too simple to emulate realistic behavior of the
internet. The development of the more sophisti-
cated Grid emulation model is the future work.
There is also room for further investigation for
the constant parameter a in the adaptive task
granularity control. Further investigation and
development of the method to define an optimal



Vol. 47 No. SIG 12(ACS 15) Parallel Branch and Bound Algorithm on the Grid 205

a is the authors’ future work.
Acknowledgments The authors would

like to thank members of the Ninf project for
their insightful comments. This research is par-
tially supported by Research and Development
for Applying Advanced Computational Science
and Technology (ACT-JST), Japan Science and
Technology Agency.

References

1) Goux, J., Kulkarni, S., Linderoth, J. and
Yoder, M.: An enabling framework for master-
worker applications on the computational Grid,
Proc. 9th IEEE Symposium on High Per-
formance Distributed Computing (HPDC9 )
(2000).

2) Heymann, E., Senar, M.A., Luque, E. and
Livny, M.: Adaptive scheduling for master-
worker applications on the computational Grid,
Proc. 1st IEEE/ACM International Workshop
on Grid Computing (Grid2000 ) (2000).

3) Neary, M.O. and Cappello, P.: Advanced
Eager Scheduling for Java-Based Adaptively
Parallel Computing, Proc. 2002 joint ACM-
ISCOPE conference on Java Grande (2002).

4) Takemiya, H., Shudo, K., Tanaka, Y. and
Sekiguchi, S.: Development of Grid applica-
tions on standard Grid middleware, Proc.
GGF8 Workshop on Grid Applications and
Programming Tools (2003).

5) Horst, R., Pardalos, P.M. and Thoai, N.V.
(Eds.): Introduction to Global Optimization,
Kluwer Acadimic Publishers (1995).

6) Goh, K.C., Safonov, M.G. and
Papavassilopoulos, G.P.: A global optimization
approach for the BMI problem, Proc. 33rd
IEEE Conrerence on Decision and Control,
pp.2009–2014 (1994).

7) Fukuda, M. and Kojima, M.: Branch-and-cut
algorithms for the bilinear matrix inequality
eigenvalue problem, Computational Optimiza-
tion and Applications, Vol.19, No.1, pp.79–105
(2001).

8) Kasahara, H. and Narita, S.: Practical mul-
tiprocessor scheduling algorithms for efficient
parallel processing, IEEE Trans. Comput.,
Vol.C-33, No.11, pp.1023–1029 (1984).

9) Aida, K., Natsume, W. and Futakata, Y.: Dis-
tributed computing with hierarchical master-
worker paradigm for parallel branch and bound
algorithm, Proc. 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGrid 2003 ) (2003).

10) Seymour, K., Nakada, H., Matsuoka, S.,
Dongarra, J., Lee, C. and Casanova, H.:
Overview of GridRPC: A remote procedure call

API for Grid computing, Proc.Grid Computing
— Grid 2002, LNCS2536, pp.274–278 (2002).

11) Tanaka, Y., Nakada, H., Sekiguchi, S.,
Suzumura, T. and Matsuoka, S.: Ninf-G: A ref-
erence implementation of RPC-based program-
ming middleware for Grid computing, J. of
Grid Computing, Vol.1, No.1, pp.41–51 (2003).

12) Matsuoka, S., Nakada, H., Sato, M. and
Sekiguchi, S.: Design issues of network enabled
server systems for the Grid, Proc.Grid Comput-
ing — Grid 2000, LNCS1971, pp.4–17 (2000).

13) Nakada, H., Matsuoka, S., Seymour, K.,
Dongarra, J., Lee, C. and Casanova, H.: A
GridRPC model and API for end-user appli-
cations, GGF Document, GFD-R.052 (2005).

14) Foster, I. and Kesselman, C.: Globus: A
metacomputing infrastructure toolkit, Int. J.
of Supercomputing Applications, Vol.11, No.2,
pp.115–128 (1997).

15) Plaat, A., Bal, H.E. and Hofman, R.F.: Sen-
sitivity of parallel applications to large differ-
ences in bandwidth and latency in two-layer in-
terconnects, Porc.High Performance Computer
Architecture (HPCA-5 ), pp.244–253 (1999).

16) van Nieuwpoort, R., Massen, J., Kielmann,
T. and Bal, H.E.: Satin: Simple and efficient
java-based Grid programming, Proc. Workshop
on Adaptive Grid Middleware (AGridM 2003 )
(2003).

17) Tanaka, Y., Sato, M., Hirano, M., Nakada,
H. and Sekiguchi, S.: Performance evaluation
of a firewall compliant Globus-based wide-area
cluster system, Proc. 9th IEEE Symposium
on High-Performance Distributed Computing
(2000).

18) GridMPI. http://www.gridmpi.org/
19) Karonis, N., Toonen, B. and Foster, I.:

MPICH-G2: A Grid-enabled implementation of
the message passing interface, Journal of Par-
allel and Distributed Computing, Vol.63, No.5,
pp.551–563 (2003).

20) Takemiya, H., Tanaka, Y., Nakada, H. and
Sekiguchi, S.: Development and execution
of large scale Grid applications using MPI
and GridRPC: Hybrid QM/MD simulation
(in japanese), IPSJ Transaction on Advanced
Computing Systems, Vol.46 (SIG12), pp.384–
395 (2005).

21) Aida, K. and Osumi, T.: A case study in
running a parallel branch and bound appli-
cation on the Grid, Proc. IEEE/IPSJ The
2005 Symposium on Applications & the Inter-
net (SAINT2005 ), pp.64–173 (2005).

22) AIST GRID CA. https://www.apgrid.org/ca/
aist/production/index.html

23) NIST Net. http://snad.ncsl.nist.gov/nistnet/
24) van Nieuwpoort, R.V., Kelmann, T. and Bal,



206 IPSJ Transactions on Advanced Computing Systems Sep. 2006

H.E.: Efficient load balancing for wide-area
divide-and-conquer applications, Proc. eighth
ACM SIGPLAN Symposium on Principles and
Practices of Parallel Programming PPoPP’01,
pp.34–43 (2001).

(Received January 27, 2006)
(Accepted May 3, 2006)

Kento Aida received his
B.E., M.E., and Dr. Eng. de-
grees from Waseda University in
1990, 1992, 1997, respectively.
He became a research associate
at Waseda University in 1992,
a research scientist at the De-

partment of Mathematical and Computing Sci-
ences, Tokyo Institute of Technology in 1997,
and an assistant professor at the Department
of Computational Intelligence and Systems Sci-
ence, Tokyo Institute of Technology in 1999,
respectively. He is now an associate profes-
sor at the Department of Information Process-
ing, Tokyo Institute of Technology from 2003.
His research interests are parallel computing,
Grid computing, scheduling and internet appli-
cations. He is a member of IEICE, IEEJ, ACM
and IEEE-CS.

Yoshiaki Futakata received
his B.E. and M.E. degrees from
Tokyo Institute of Technology in
1999 and 2001, respectively. He
joined IBM Japan in 2001. He is
now a Ph.D. student at Univer-
sity of Virginia.

Tomotaka Osumi received
his B.E. and M.E. degrees from
Tokyo Institute of Technology
in 2004 and 2006, respectively.
He joined NTT Communications
Corporation in 2006.


