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Abstract: The Traveling Salesman Problem (TSP) is one of the most well-known NP-hard optimization problems.
Following a recent trend of research which focuses on developing algorithms for special types of TSP instances, namely
graphs of limited degree, in an attempt to reduce a part of the time and space complexity, we present a polynomial-
space branching algorithm for the TSP in an n-vertex graph with degree at most 5, and show that it has a running
time of O∗(2.3500n), which improves the previous best known time bound of O∗(2.4723n) given by the authors (the
12th International Symposium on Operations Research and Its Application (ISORA 2015), pp.45–58, 2015). While the
base of the exponent in the running time bound of our algorithm is greater than 2, it still outperforms Gurevich and
Shelah’s O∗(4nnlog n) polynomial-space exact algorithm for the TSP in general graphs (SIAM Journal of Computation,
Vol.16, No.3, pp.486–502, 1987). In the analysis of the running time, we use the measure-and-conquer method, and
we develop a set of branching rules which foster the analysis of the running time.
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1. Introduction

The Traveling Salesman Problem (TSP) is one of the most ex-
tensively studied problems across many fields of optimization.
Briefly, given a set of cities and their pairwise distances, the TSP
asks for a shortest closed route which visits each of the cities ex-
actly once. It has been formulated as a mathematical problem in
the 1930s, and many algorithmic methods have been investigated
to address the challenge of finding the fastest algorithm in terms
of running time. On the other hand, it has proven even more chal-
lenging to devise reasonable algorithms that would use a man-
ageable amount of computation space, bounded by a polynomial
in an input instance’s size. We review previous algorithmic at-
tempts, making a distinction between those which require space
exponential in the size of a problem instance, and those requiring
space polynomial in the input size. We use the O∗ notation, which
suppresses polynomial factors.

The first non-trivial algorithm for the TSP in an n-vertex graph
is the O∗(2n)-time dynamic programming algorithm discovered
independently by Bellman [2], and Held and Karp [10] in the
early 1960s. This dynamic programming algorithm however, re-
quires also an exponential amount of space. Ever since, this run-
ning time has only been improved for special types of graphs.
Primarily, investigation efforts have been focused on graphs in
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which vertices have a limited degree. Henceforth, let degree-i
graph stand for a graph in which vertices have a maximum degree
at most i. A recent improvement of the time bound to O∗(1.2186n)
for degree-3 graphs has been presented by Bodlaender et al. [3],
where the authors make use of a general approach for speeding
up straightforward dynamic programming algorithms. For the
TSP in degree-4 graphs, Gebauer [8] has shown a time bound of
O∗(1.733n), by using a dynamic programming approach. The run-
ning space of these algorithms remains exponential in the size of
an input instance.

In the vein of polynomial space algorithms, Gurevich and
Shelah [9] have shown that the TSP in a general n-vertex graph is
solvable in time O∗(4nnlog n). Eppstein [5] started the exploration
into polynomial space TSP algorithms specialized for graphs of
bounded degree by designing an algorithm for degree-3 graphs
that runs in O∗(1.260n) time. He introduced a branch-and-search
method by considering a generalization of the TSP proposed by
Rubin [14], called the forced TSP. Iwama and Nakashima [11]
claimed an improvement of Eppstein’s time bound to O∗(1.251n)
time for the TSP in degree-3 graphs. Later, Liskiewicz and
Schuster [12] uncovered some oversights made in Iwama and
Nakashima’s analysis, and proved that their algorithm actually
runs in O∗(1.257n) time. Liskiewicz and Schuster then made
some minor modifications to Eppstein’s algorithm and showed
that this modified algorithm runs in O∗(1.2553n) time, a slight
improvement over Iwama and Nakashima’s algorithm. Xiao and
Nagamochi [15] have recently presented an O∗(1.2312n)-time al-
gorithm for the TSP in degree-3 graphs, and this improved all
previous time bounds for polynomial-space algorithms. They
used the basic steps of Eppstein’s branch-and-search algorithm,
and introduced a branching rule based on a cut-circuit structure.
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In the process of improving the time bound, they used a sim-
ple measure-and-conquer analysis, and effectively analyzed their
algorithm by introducing an amortization scheme over the cut-
circuit structure, setting weights to both vertices and connected
components of induced graphs.

For the TSP in degree-4 graphs, Eppstein [5] designed an algo-
rithm that runs in O∗(1.890n) time, based on a branch-and-search
method. Following, Xiao and Nagamochi [16] showed an im-
proved value for the upper bound of the running time and showed
that their algorithm runs in O∗(1.692n) time. To the best of our
knowledge, this is currently the fastest algorithm for the TSP in
degree-4 graphs. Basically, the idea behind their algorithm is to
apply reduction rules until no further reduction is possible, and
then branch on an edge by either including it in a solution or
excluding it from any solution. This is similar to most of the pre-
vious branch-and-search algorithms for the TSP. To effectively
analyze their algorithm, Xiao and Nagamochi used the measure-
and-conquer method by setting a weight to each vertex in an input
graph. From each branching operation, they derived a branching
vector using the assigned weight and evaluated how much weight
can be decreased in each of the two instances obtained by branch-
ing on a selected edge e. In this way, they were able to analyze
by how much the total weight decreases in each branch. More-
over, they indicated that the measure will decrease more if we
select a “good” edge to branch on, and gave a set of simple rules
based on a graph’s topological properties for choosing such an
edge. However, the analysis of the running time itself is not as
straightforward, and the interested reader is referred to the origi-
nal paper [16].

Md Yunos et al. [13] presented the first algorithm specialized
for the TSP in degree-5 graphs, and showed that their algorithm
runs in O∗(2.4723n) time. This algorithm employs similar tech-
niques as most of the previous branching algorithms for the TSP.
In the analysis, the authors use the measure-and-conquer method
as a tool to get an upper bound of the running time. In this work
we present an extended algorithm coupled with an improved anal-
ysis, giving an upper bound on the running time of O∗(2.3500n)
for the TSP in degree-5 graphs with n vertices, which improves
the previous result by the authors [13]. Namely, a new branching
rule has been introduced for convenience in the analysis, and we
present a much more detailed analysis, through which we are able
to obtain an improved bound on the running time.

The remainder of this paper is organized as follows. Section 2
introduces the basic notation used in this paper and presents an in-
troduction to branching algorithms and the measure-and-conquer
method. Section 3 describes our polynomial-space branching al-
gorithm. We state our main result in Section 4, where we proceed
with the analysis of the proposed algorithm. Finally, Section 5
concludes the paper.

2. Methods

2.1 Preliminaries
For a graph G, let V(G) denote the set of vertices in G, and

let E(G) denote the set of edges in G. A vertex u is a neighbor
of a vertex v if u and v are adjacent by an edge uv. We denote
the set of all neighbors of a vertex v by N(v), also called the

neighborhood of v, and denote by d(v) the cardinality |N(v)|
of N(v), also called the degree of v.

For a vertex v and subsets W ⊆ V(G) of vertices, and E′ ⊆
E(G) of edges, we consider the following sets of vertices:
− N(v; W) � N(v) ∩W,
− NE′ (v) � N(v) ∩ {u | uv ∈ E′}, and
− NE′ (v; W) � NE′ (v) ∩W.

Let dE′ (v) and dE′ (v,W) denote the cardinalities |NE′ (v)| and
|NE′ (v,W)| of NE′ (v) and NE′ (v,W), respectively. Also, for a sub-
set E′ of E(G), we denote by G−E′ the graph (V, E \E′) obtained
from G by removing the edges in E′.

We employ a known generalization of the TSP proposed by
Rubin [14], named the forced Traveling Salesman Problem by
Eppstein [5]. We define an instance I = (G, F) that consists of
a simple, edge weighted, undirected graph G, and a subset F of
edges in G, called forced. For brevity, throughout this paper let U

denote E(G) \ F. A vertex is called forced if exactly one of its in-
cident edges is forced. Similarly, it is called unforced if no forced
edge is incident to it. A Hamiltonian cycle in G is called a tour if
it passes through all the forced edges in F. Under these circum-
stances, the forced TSP requests to find a minimum cost tour of
an instance (G, F), or determine that none exists.

Throughout this paper, we assume that the maximum degree of
a vertex in G is at most 5. We denote a forced (resp., unforced)
vertex of degree i as a type fi vertex (resp., ui vertex). We are in-
terested in six types of vertices in an instance of (G, F), namely,
u5, f5, u4, f4, u3 and f3-vertices. Let Vfi (resp., Vui), i = 3, 4, 5,
denote the set of fi-vertices (resp., ui-vertices) in (G, F).

2.2 A Polynomial-Space Branching Algorithm
Our algorithm contains two major steps which are repeated re-

cursively. In the first step, the algorithm applies reduction rules
until no further reduction is possible. Once a feasible instance
which cannot be further reduced has been obtained, the algo-
rithm branches in search of a solution by either including a cho-
sen unforced edge e into F, force(e), or excluding it from E(G),
delete(e). The choice of the edge e to branch on is based on a
set of branching rules. By applying a branching operation, the
algorithm generates two new instances, called branches.
2.2.1 Reduction Rules

Reduction is the process of transforming an instance to a
smaller instance while preserving its optimality. It takes poly-
nomial time to obtain a solution of an original instance from a
solution of a smaller instance that has been obtained by a reduc-
tion procedure from the original instance.

Not all instances of the forced TSP have a tour. If an instance
has no tour, we call it infeasible. Observation 1 gives two suffi-
cient conditions for an instance to be infeasible, as observed by
Rubin [14].

Observation 1 An instance (G, F) is infeasible if one of the
following conditions holds.

(i) d(v) ≤ 1 for some vertex v ∈ V(G), and
(ii) dF(v) ≥ 3 for some vertex v ∈ V(G).
In this paper, there are two reduction rules which are applied

following any branching operation, following Observation 2.
Observation 2 Each of the following reductions preserves
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the feasibility and a minimum cost tour of an instance (G, F).
(i) If d(v) = 2 for a vertex v, then add to F any unforced edge

incident to the vertex v; and
(ii) If d(v) > 2 and dF(v) = 2 for a vertex v, then remove

from G any unforced edge incident to the vertex v.
An instance (G, F) which does not satisfy any of the conditions

in Observation 1 and Observation 2 is called a reduced instance.
Based on Observation 1 and Observation 2, we can form a

reduction procedure that given an instance (G, F) of the forced
TSP returns a reduced instance, or a message for the infeasibility
of (G, F), which for convenience we can assume that evaluates
to ∞. For completeness, we describe such a procedure as Algo-
rithm Red(G, F).

Algorithm Red(G, F)

Input: An instance (G, F).
Output: A reduced instance (G′, F′) of (G, F); or a message for the
infeasibility of (G, F) which evaluates to∞.

1: Initialize (G′, F′) := (G, F);
2: while (G′, F′) is not a reduced instance do
3: if there is a vertex v in (G′, F′) such that d(v) ≤ 1 or dF′ (v) ≥ 3

then
4: return∞
5: else if there is a vertex v in (G′, F′) such that 2 = d(v) > dF′ (v)

then
6: Let E† be the set of unforced edges incident to all such

vertices;
7: set F′ := F′ ∪ E†
8: else if there is a vertex v in (G′, F′) such that d(v) > dF′ (v) = 2

then
9: Let E† be the set of unforced edges incident to all such

vertices;
10: set G′ := G′ − E†
11: end if
12: end while;
13: return (G′, F′)

2.2.2 Branching Rules
To describe our branching algorithm, let (G, F) be a reduced

instance such that the maximum degree of G is at most 5. In
(G, F), an unforced edge e = vt incident to a vertex v of degree 5
is called optimal, if it satisfies a condition c-i below with mini-
mum index i, over all unforced edges vt in (G, F). We refer to the
following conditions for choosing an optimal edge to branch on,
c-1 to c-15, as the branching rules.
(c-1) v ∈ Vf5 and t ∈ NU (v; Vf3) such that NU (v) ∩ NU (t) = ∅;
(c-2) v ∈ Vf5 and t ∈ NU (v; Vf3) such that NU (v) ∩ NU (t) � ∅;
(c-3) v ∈ Vf5 and t ∈ NU (v; Vu3);
(c-4) v ∈ Vf5 and t ∈ NU (v; Vf4) such that NU (v) ∩ NU (t) = ∅;
(c-5) v ∈ Vf5 and t ∈ NU (v; Vf4) such that NU (v) ∩ NU (t) � ∅;

(I) |NU (v) ∩ NU (t)| = 1; and
(II) |NU (v) ∩ NU (t)| = 2;

(c-6) v ∈ Vf5 and t ∈ NU (v; Vu4);
(c-7) v ∈ Vf5 and t ∈ NU (v; Vf5) such that NU (v) ∩ NU (t) = ∅;
(c-8) v ∈ Vf5 and t ∈ NU (v; Vf5) such that NU (v) ∩ NU (t) � ∅;

(I) |NU (v) ∩ NU (t)| = 1;
(II) |NU (v) ∩ NU (t)| = 2; and

(III) |NU (v) ∩ NU (t)| = 3;
(c-9) v ∈ Vf5 and t ∈ NU (v; Vu5);

(c-10) v ∈ Vu5 and t ∈ NU (v; Vf3) such that NU (v) ∩ NU (t) � ∅;

Assume without loss of generality that NU (v) ∩ NU (t) =
{t2}.

(I) t2 is an f3-vertex,
(II) t2 is a u3-vertex,

(III) t2 is an f4-vertex,
(IV) t2 is a u4-vertex, and
(V) t2 is a u5-vertex.

(c-11) v ∈ Vu5 and t ∈ NU (v; Vf3), such that NU (v) ∩ NU (t) = ∅;
(c-12) v ∈ Vu5 and t ∈ NU (v; Vu3);
(c-13) v ∈ Vu5 and t ∈ NU (v; Vf4);
(c-14) v ∈ Vu5 and t ∈ NU (v; Vu4); and
(c-15) v ∈ Vu5 and t ∈ NU (v; Vu5).

The collective set of branching rules are illustrated in Fig. 1.
The given list of branching rules is exhaustive, in the sense that
each possible combination of a degree 5 vertex and choice for its
neighbor are included.

For convenience in the analysis of the algorithm, cases c-5 and
c-8 have been subdivided into sub-cases according to the cardi-
nality of the intersection of the neighborhoods of the vertices v
and t. Intersections of lower cardinality take precedence over
higher ones. Case c-10 has been subdivided into sub-cases ac-
cording to the type of the unique vertex in the neighborhood in-
tersection of vertices v and t.

Given a reduced instance (G, F), our algorithm checks whether
there exists a vertex of degree 5. If it does, then the algorithm
chooses an optimal edge according to the branching rules, and
branches into two recursive branches; one branch that includes
the selected edge into the set of forced edges, and the other branch
removes the edge from the set of edges of the graph G. If there
does not exist a vertex of degree 5 in the graph G of the given
instance, then we can call a polynomial space exact algorithm for
the TSP that is specialized for degree-4 graphs, e.g., the algo-
rithm due to Xiao and Nagamochi [16]. Our branching algorithm
is described in Algorithm tsp5(G, F).

Algorithm tsp5(G, F)

Input: An instance (G, F) such that the maximum degree of G is at
most 5.
Output: The minimum cost of a tour of (G, F); or a message for the
infeasibility of (G, F) which evaluates to∞.

1: Run Red(G, F);
2: if Red(G, F) returns∞ then
3: return∞
4: else
5: Let (G′, F′) := Red(G, F);
6: if Vu5 ∪ Vf5 � ∅ in (G′, F′) then
7: Choose an optimal unforced edge e;
8: return min{tsp5(G′, F′ ∪ {e}), tsp5(G′ − {e}, F′)}
9: else /* the maximum degree of any vertex in (G′, F′) is at

most 4 */
10: return tsp4(G′, F′).
11: end if
12: end if.

Note: The input and output of algorithm tsp4(G, F) are as follows:

Input: An instance (G, F) such that the maximum degree of G is at

most 4.

Output: The minimum cost of a tour of (G, F); or a message for the

infeasibility of (G, F) which evaluates to∞.
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Fig. 1 Illustration of the Branching Rules.

3. Analysis

3.1 Analysis Framework
To effectively analyze the running time of our branching algo-

rithm, we use the measure-and-conquer method as introduced by
Fomin et al. [6]. Given an instance I = (G, F) of the forced TSP,
we assign a nonnegative weight ω(v) to each vertex v ∈ V(G) ac-
cording to its type. To this effect, we set a non-negative vertex
weight function ω : V → R+ in the graph G, and we use the
sum of weights of all vertices in the graph as the measure μ(I) of
instance I, that is,

μ(I) �
∑

v∈V(G)

ω(v). (1)

It is important for the analysis to find a measure which satisfies
the following properties:

(i) μ(I) = 0 if and only if I can be solved in polynomial time;
and

(ii) If I′ is a sub-instance of I obtained through a reduction or
a branching operation, then μ(I′) ≤ μ(I).

We call a measure μ satisfying conditions (i) and (ii) above a
proper measure.

A branching algorithm typically comprises multiple branch-
ing rules. We perform the time analysis of the branching algo-
rithm via appropriately constructed recurrences over the measure
μ = μ(I) of an instance I = (G, F), for each branching rule of
the algorithm. Let T (μ) denote the number of nodes in the search
tree generated by a branching rule when invoked on the instance I

with measure μ. For k ≥ 2, let I1, I2, . . . , Ik be the instances ob-
tained from I by the branching operation, and for i = 1, 2, . . . , k,
let ti ≤ μ(I) − μ(Ii) be lower bounds on the amounts of decrease
in the measure. We call (t1, t2, . . . , tk) a branching vector of the
branching operation, and this implies the linear recurrence

T (μ) ≤ T (μ − t1) + T (μ − t2) + · · · + T (μ − tk) . (2)

To evaluate the performance of this branching vector, we can
use any standard method for linear recurrence relations. In fact,
it is known that T (μ) is of the form O (τμ), where τ is the unique
positive real root of the function f (x) = 1−(x−t1+x−t2+ · · ·+x−tk ).
The value τ is called the branching factor of the branching vector
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(t1, t2, . . . , tk). The running time of the algorithm is determined by
considering the worst branching factor over all branching vectors
generated by all of the branching rules of the algorithm.

For further details justifying this approach, as well as a solid
introduction to branching algorithms, the reader is referred to the
book of Fomin and Kratsch [7].

3.2 Weight Setting
In order to obtain a measure which will naturally give a run-

ning time bound as a function of the size of a TSP instance, we
require that the weight of each vertex be at most 1. In what fol-
lows, we examine some necessary constraints which the vertex
weights should satisfy in order for us to obtain a proper measure.

For each i ∈ {3, 4, 5}, we denote by wi the weight of a ui-vertex,
and by w′i the weight of an fi-vertex. The conditions for a proper
measure require that the measure of an instance obtained through
a reduction operation or a branching operation be not greater than
the measure of the original instance. Thus, the vertex weights
should satisfy the following relations:

w5 ≤ 1, (3)

w′i ≤ wi, i = 3, 4, 5, (4)

w3 ≤ w4 ≤ w5, and (5)

w′3 ≤ w′4 ≤ w′5. (6)

The vertex weight for vertices of degree less than 3 is set to be 0.
Lemma 1 states that given Algorithm Red(G, F) and Algorithm

tsp5(G, F), setting vertex weights which satisfy the conditions of
Eqs. (4) to (6) is sufficient to obtain a proper measure. This lemma
has been proved by Md Yunos et al. [13].

Lemma 1 If the weights of vertices are chosen as in Eqs. (4)
to (6), then the measure μ(I) never increases as a result of the re-
duction or the branching operations of Algorithm Red(G, F) and
Algorithm tsp5(G, F).
Proof. Let I = (G, F) be a given instance of the forced TSP. Due
to our definition of the measure μ(I) of Eq. (1), it suffices to show
that none of the individual vertex weights will increase as a result
of a reduction operation or a branching operation in Algorithm
Red(G, F) and Algorithm tsp5(G, F).

The branching rules state that for an unforced edge e in E(G) \
F, two sub-instances are generated by either setting F := F ∪ {e},
termed force(e), or by setting G := G − {e}, termed delete(e).
We bring to the reader’s attention that a reduction operation is
in fact a repeated application of the above two steps, force(e) or
delete(e), for some unforced edge e, identified by the conditions
in Observation 2. Therefore, we proceed with analyzing the ef-
fects of applying each of the force(e) or the delete(e) operations.

Let e = uv be an unforced edge to which one of the force(e) or
delete(e) operations will be applied. Without loss of generality,
we observe the effect of the operation on the vertex weight ω(v).

In the case where operation force(e) is applied, the following
cases may arise.
− If v is an unforced vertex, then v will become forced. By

Eq. (4), the weight ω(v) will not increase.
− If v is a forced vertex, then ω(v) will become 0; and
− If dF(v) ≥ 2, then by Observation 1 the instance will become

infeasible.
On the other hand, if operation delete(e) is applied, then we

observe the following cases.
− If v is either forced or unforced, and d(v) ≥ 3, then the degree

of v will decrease by one, and by Eqs. (5) and (6), ω(v) will
not increase; and

− If v is either forced or unforced, and d(v) ≤ 2, then by Ob-
servation 1 the instance will become infeasible.

Following the above observations, we conclude that the com-
plete measure μ(I) of a given instance I = (G, F) of the forced
TSP will not increase as a result of the reduction and the branch-
ing operations in Algorithm Red(G, F) and Algorithm tsp5(G, F).

To simplify some arguments and the list of the branching vec-
tors we are about to derive, we introduce the following notation:

Δi � wi − w′i , 3 ≤ i ≤ 5

Δi, j � wi − w j, 3 ≤ j < i ≤ 5, and

Δ′i, j � w′i − w′j, 3 ≤ j < i ≤ 5,

further,

m1 � min{w′3, w3, Δ
′
4,3, Δ4,3, Δ

′
5,4, Δ5,4}, (7)

m2 � min{w3, Δ
′
4,3, Δ4,3, Δ

′
5,4, Δ5,4}, (8)

m3 � min{w′3, Δ3, w
′
4, Δ4, w

′
5, Δ5}, (9)

m4 � min{Δ′4,3, Δ4,3, Δ
′
5,4, Δ5,4}, (10)

m5 � min{w′4, w4, Δ
′
5,3, Δ5,3}, (11)

m6 � min{Δ4,3, Δ
′
5,4, Δ5,4}, (12)

m7 � min{Δ′5,4, Δ5,4}, (13)

m8 � min{Δ′5,3, Δ5,3}, (14)

m9 � min{w′3, Δ3, w
′
4, Δ4, Δ5}, (15)

m10 � min{w′3, w3, Δ
′
4,3, Δ4,3, Δ5,4}, and (16)

m11 � min{w′3, w3, w
′
4, w4 − w′3, w5 − w′4}. (17)

3.3 Main Results
We bring to the reader’s attention the fact that the number n of

vertices in the graph G remains unmodified throughout the pro-
cess of the reduction and the branching operations. In addition to
seeking a proper measure, we also require that the weight of each
vertex be at most 1, and therefore, the measure μ(I) will not be
greater than the number n of vertices in G. As a consequence, a
running time bound as a function of the measure μ(I) implies the
same running time bound as a function of n. The weight assigned
to each vertex type plays an important role, since the value of the
branching factor depends solely on these weights.

Let the vertex weight function ω(v) be chosen as follows:

ω(v) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w5 = 1.000000 for a u5-vertex v
w′5 = 0.714884 for an f5-vertex v
w4 = 0.653197 for a u4-vertex v
w′4 = 0.368082 for an f4-vertex v
w3 = 0.306395 for a u3-vertex v
w′3 = 0.160872 for an f3-vertex v

0 otherwise.

(18)

The vertex weight function ω(v) given in Eq. (18) is obtained
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Fig. 2 Illustration of forced and deleted edges by the branching operation
and reduction rules for an f3 vertex.

Fig. 3 Illustration of branching rule c-1, where vertex v ∈ Vf5 and vertex
t1 ∈ NU (v; Vf3) such that NU (v) ∩ NU (t1) = ∅.

as a solution to a quasiconvex program, according to the method
introduced by Eppstein [4]. All the branching vectors are in fact
constraints in the quasiconvex program.

Lemma 2 If the vertex weight function ω(v) is set as in
Eq. (18), then each branching operation in Algorithm tsp5(G, F)
has a branching factor not greater than 2.349978.

A proof of Lemma 2 will be derived analytically in the sev-
eral subsections which follow. From the lemma, we get our main
result as stated in Theorem 1.

Theorem 1 The TSP in an n-vertex graph G with maximum
degree 5 can be solved in O∗(2.3500n) time and polynomial space.

In the remainder of the analysis, for an optimal edge e = vt1,
we denote NU (v) by {t1, t2, . . . , ta}, a = dU (v), and NU (t1) \ {v}
by {ta+1, ta+2, . . . , ta+b}, b = dU (t1) − 1. If NU (v) ∩ NU (t1) � ∅,
then let c = |NU (v) ∩ NU (t1)|, and we can assume without loss of
generality that t1+i = ta+i for i = 1, 2, . . . , c.

If NU (v) ∩ NU (t1) = ∅, and there exists an f3-vertex ta+i in
NU (t1) \ {v}, let x ∈ NU (ta+i) \ {t1}. We see that the choice of ver-
tex x is unique, because ta+i is of type f3 and |NU (ta+i) \ {t1}| = 1.
This vertex x plays a key role in our analysis, namely in cases c-1
and c-11, as shown in Fig. 2.

3.4 Branching on Edges Around f5-vertices (Branching
Rules c-1 to c-9)

This section derives branching vectors for the branching op-
erations on an optimal edge e = vt1, incident to an f5-vertex v,
distinguishing nine cases for conditions c-1 to c-9.
Case c-1. There exist vertices v ∈ Vf5 and t1 ∈ NU (v; Vf3) such
that NU (v)∩NU (t1) = ∅ (see Fig. 3): We branch on edge vt1. Note
that NU (t1) \ {v} = {t5}.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation, and edges vt2, vt3, vt4 and t1t5 will be
deleted from G′ by the reduction rules. Both v and t1 will become
vertices of degree 2. From Eq. (18), the weight of vertices of de-
gree 2 is 0. So, the weight of vertex v decreases by w′5 and the
weight of vertex t1 decreases by w′3.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation, and the edge t1t5 will be added to F′

by the reduction rules. The weight of vertex v decreases by Δ′5,4
and the weight of vertex t1 decreases by w′3.

There are two cases for the vertex t5; 1) vertex t5 is of type f3,
and 2) otherwise. We will analyze these two cases separately for
each branch force(vt1) and delete(vt1).

First, we analyze the case where the vertex t5 is an f3-vertex
(see Fig. 2). Recall that in such a case we denote by x the unique
vertex in NU (t5) \ {t1}. There are two cases for the vertex x; a)
vertex x � NU (v), and b) vertex x ∈ NU (v).

First, we analyze the case where the vertex x � NU (v). In the
branch of force(vt1), the edge xt5 will be added to F′ by the reduc-
tion rules. Hence, each of the vertices t2, t3 and t4 must be one of
types f3, u3, f4, u4, f5, and a u5-vertex, and each of their weights
decreases by at least m1 = min{w′3, w3, Δ′4,3, Δ4,3, Δ′5,4, Δ5,4}. The
weight of vertex t5 decreases by w′3. If the vertex x is an f3-vertex
(resp., u3, f4, u4, f5, and a u5-vertex), then the weight decrease
α1 of vertex x will be w′3 (resp., Δ3, w′4, Δ4, w′5, and Δ5). Thus,
the total weight decrease for this case in the branch of force(vt1)
is at least w′5 + w

′
3 + 3m1 + w

′
3 + α1.

In the branch of delete(vt1), the edge xt5 will be deleted
from G′ by the reduction rules. Hence, the weight of vertex t5
decreases by w′3. If the vertex x is an f3-vertex (resp., u3, f4,
u4, f5, and a u5-vertex), then the weight decrease β1 of vertex x

will be w′3 (resp., w3, Δ′4,3, Δ4,3, Δ′5,4, and Δ5,4). Thus, the to-
tal weight decrease for this case in the branch of delete(vt1) is at
least w′5 − w′4 + w′3 + w′3 + β1.

As a result, for the ordered pair (α1, β1) taking values in
{(w′3, w′3), (Δ3, w3), (w′4,Δ

′
4,3), (Δ4,Δ4,3), (w′5,Δ

′
5,4), (Δ5,Δ5,4)}, we

get the following six branching vectors:

(w′5 + 2w′3 + 3m1 + α1, w
′
5 − w′4 + 2w′3 + β1). (19)

Second, we analyze the case where the vertex x ∈ NU (v). With-
out loss of generality, we assume that x is t2. In the branch of
force(vt1), the edge t2t5 will be added to F′ by the reduction rules.
Each of the vertices t3 and t4 must be one of types f3, u3, f4, u4,
f5, and a u5-vertex, and each of their weights decreases by at least
m1 = min{w′3, w3, Δ′4,3, Δ4,3, Δ′5,4, Δ5,4}. The weight of vertex t5
decreases by w′3. If the vertex t2 is an f3-vertex (resp., u3, f4, u4,
f5, and a u5-vertex), then the weight decrease α2 of vertex x will
be w′3 (resp., w3, w′4, w4 − w′3, w′5, and w5 − w′4). Thus, the total
weight decrease for this case in the branch of force(vt1) is at least
w′5 + w

′
3 + 2m1 + w

′
3 + α2.

In the branch of delete(vt1), the edge t2t5 will be deleted
from G′ by the reduction rules. Hence, the weight of vertex t5
decreases by w′3. If the vertex t2 is an f3-vertex (resp., u3, f4,
u4, f5, and a u5-vertex), then the weight decrease β2 of vertex x

will be w′3 (resp., w3, Δ′4,3, Δ4,3, Δ′5,4, and Δ5,4). Thus, the to-
tal weight decrease for this case in the branch of delete(vt1) is at
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Fig. 4 Illustration of branching rule c-2, where vertex v ∈ Vf5 and vertex
t1 ∈ NU (v; Vf3) such that NU (v) ∩ NU (t1) = {t2}.

least w′5 − w′4 + w′3 + w′3 + β2.
As a result, for the ordered pair (α2, β2) taking values in

{(w′3, w′3), (w3, w3), (w′4,Δ
′
4,3), (w4 − w′3,Δ4,3), (w′5,Δ

′
5,4), (w5 −

w′4,Δ5,4)}, we get the following six branching vectors:
(
w′5 + 2w′3 + 2m1 + α2, w

′
5 − w′4 + 2w′3 + β2

)
. (20)

Next, we examine the case where the vertex t5 is not an f3-
vertex. In the branch of force(vt1), if the vertex t5 is a u3-vertex
(resp., f4, u4, f5, and a u5-vertex), then the weight decrease α3

of vertex t5 will be w3 (resp., Δ′4,3, Δ4,3, Δ′5,4, and Δ5,4). Thus, the
total weight decrease for this case in the branch of force(vt1) is at
least w′5 + w

′
3 + 3m1 + α3.

In the branch of delete(vt1), if the vertex t5 is a u3-vertex (resp.,
f4, u4, f5, and a u5-vertex), then the weight decrease β3 of ver-
tex t5 will be Δ3 (resp., w′4, Δ4, w′5, and Δ5). Thus, the total weight
decrease for the case where t5 is not an f3-vertex in the branch of
delete(vt1) is at least w′5 − w′4 + w′3 + β3.

As a result, for the ordered pair (α3, β3) taking values in
{(w3,Δ3), (Δ′4,3, w

′
4), (Δ4,3,Δ4), (Δ′5,4, w

′
5), (Δ5,4,Δ5)}, we get the

following five branching vectors:
(
w′5 + w

′
3 + 3m1 + α3, w

′
5 − w′4 + w′3 + β3

)
. (21)

Case c-2. Case c-1 is not applicable, and there exist vertices
v ∈ Vf5 and t1 ∈ NU (v; Vf3) such that NU (v) ∩ NU (t1) = {t2}
(see Fig. 4): We branch on edge vt1.

In the branch of force(vt1), the edge vt1 will be added to F′

by the branching operation, and edges vt2, vt3, vt4 and t1t2 will
be deleted from G′ by the reduction rules. So, the weight of ver-
tex v decreases by w′5, and the weight of vertex t1 decreases by w′3.
Each of the vertices t3 and t4 must be one of types f3, u3, f4, u4,
f5, and a u5-vertex, and each of their weights decreases by at least
m1 = min{w′3, w3,Δ

′
4,3,Δ4,3,Δ

′
5,4,Δ5,4}.

If the vertex t2 is an f3 or a u3-vertex, after performing the
branching operation, t2 becomes a vertex of degree 1. From Ob-
servation 1, case (i), this is infeasible, and the algorithm will re-
turn ∞ and terminate. Otherwise, if the vertex t2 is an f4-vertex
(resp., u4, f5, and a u5-vertex), then the weight decrease α4 of ver-
tex t2 will be w′4 (resp., w4, Δ′5,3, and Δ5,3). Thus, the total weight
decrease in the branch of force(vt1) is at least w′5 +w

′
3 + 2m1 +α4.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation, and the edge t1t2 will be added to F′

by the reduction rules. So, the weights of vertices v and t1 de-
crease by Δ′5,4 and w′3, respectively. If the vertex t2 is an f4-vertex
(resp., u4, f5, and a u5-vertex), then the weight decrease β4 of

Fig. 5 Illustration of branching rule c-3, where vertex v ∈ Vf5 and vertex
t1 ∈ NU (v; Vu3).

vertex t2 will be w′4 (resp., Δ4, w′5, and Δ5). Thus, the total weight
decrease in the branch of delete(vt1) is at least w′5 − w′4 + w′3 + β4.

As a result, for the ordered pair (α4, β4) taking values in
{(w′4, w′4), (w4,Δ4), (Δ′5,3, w

′
5), (Δ5,3,Δ5)}, we get the following

four branching vectors:

(w′5 + w
′
3 + 2m1 + α4, w

′
5 − w′4 + w′3 + β4). (22)

Case c-3. Cases c-1 and c-2 are not applicable, and there exist
vertices v ∈ Vf5 and t1 ∈ NU (v; Vu3) (see Fig. 5): We branch on
edge vt1. Note that NU (t1) \ {v} = {t5, t6}.

In the branch of force(vt1), the edge vt1 will be added to F′

by the branching operation, and edges vt2, vt3 and vt4 will be
deleted from G′ by the reduction rules. So, the weights of ver-
tices v and t1 decrease by w′5 and Δ3, respectively. None of the
vertices t2, t3 and t4 can be an f3-vertex because it would have
been chosen as an optimal edge in some previous case. Hence,
each of the vertices t2, t3 and t4 must be one of types u3, f4, u4,
f5, and a u5-vertex, and each of their weights decreases by at
least m2 = min{w3,Δ

′
4,3,Δ4,3,Δ

′
5,4,Δ5,4}. Thus, the total weight

decrease in the branch of force(vt1) is at least w′5 +w3 −w′3 + 3m2.
In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation and edges t1t5 and t1t6 will be added
to F′ by the reduction rules. So, the weight of vertex v decreases
by Δ′5,4 and the weight of vertex t1 decreases by w3. Each of
the vertices t5 and t6 must be one of types f3, u3, f4, u4, f5,
and a u5-vertex, and each of their weights decreases by at least
m3 = min{w′3,Δ3, w

′
4,Δ4, w

′
5,Δ5}. Thus, the total weight decrease

in the branch of delete(vt1) is at least w′5 − w′4 + w3 + 2m3.
As a result, we get the following branching vector:

(w′5 + w3 − w′3 + 3m2, w
′
5 − w′4 + w3 + 2m3). (23)

Case c-4. None of the previous cases are applicable, and
there exist vertices v ∈ Vf5 and t1 ∈ NU (v; Vf4) such that
NU (v) ∩ NU (t1) = ∅ (see Fig. 6): We branch on edge vt1. Note
that NU (t1) \ {v} = {t5, t6}.

In the branch of force(vt1), the edge vt1 will be added to F′

by the branching operation, and edges vt2, vt3, vt4, t1t5 and t1t6
will be deleted from G′ by the reduction rules. So, the weight
of vertex v decreases by w′5 and the weight of vertex t1 de-
creases by w′4. Each of the vertices t2, t3 and t4 must be one
of types f4, u4, f5, and a u5-vertex, and each of their weights
decreases by at least m4 = min{Δ′4,3,Δ4,3,Δ

′
5,4,Δ5,4}. Each of

the vertices t5 and t6 must be one of types f3, u3, f4, u4, f5,
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Fig. 6 Illustration of branching rule c-4, where vertex v ∈ Vf5 and vertex
t1 ∈ NU (v; Vf4), such that NU (v) ∩ NU (t1) = ∅.

Fig. 7 Illustration of branching rule c-5(I), where vertex v ∈ Vf5 and vertex
t1 ∈ NU (v; Vf4), such that NU (v) ∩ NU (t1) = {t2}.

and a u5-vertex, and each of their weights decreases by at least
m1 = min{w′3, w3,Δ

′
4,3,Δ4,3,Δ

′
5,4,Δ5,4}. Thus, the total decrease in

the branch of force(vt1) is at least w′5 + w
′
4 + 3m4 + 2m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation. So, the weight of vertex v decreases
by Δ′5,4 and the weight of vertex t1 decreases by Δ′4,3. Thus, the to-
tal weight decrease in the branch of delete(vt1) is at least w′5 −w′3.

As a result, we get the following branching vector:

(w′5 + w
′
4 + 3m4 + 2m1, w

′
5 − w′3). (24)

Case c-5. None of the previous cases are applicable, and
there exist vertices v ∈ Vf5 and t1 ∈ NU (v; Vf4) such that
NU (v) ∩ NU (t1) � ∅. We distinguish two sub-cases, according
to the cardinality of the intersection NU (v) ∩ NU (t1),

c-5(I) |NU (v) ∩ NU (t1)| = 1, and
c-5(II) |NU (v) ∩ NU (t1)| = 2.
Case c-5(I). Without loss of generality, assume that NU (v) ∩

NU (t1) = {t2} (see Fig. 7): We branch on edge vt1. Note that
NU (t1) \ {v} = {t5}.

In the branch of force(vt1), the edge vt1 will be added to F′

by the branching operation, and edges vt2, vt3, vt4, t1t2, and t1t5
will be deleted from G′ by the reduction rules. So, the weight of
vertex v decreases by w′5 and the weight of vertex t1 decreases by
w′4. The vertex t2 must be one of types f4, u4, f5, and a u5-vertex,
and its weight decreases by at least m5 = min{w′4, w4,Δ

′
5,3,Δ5,3}.

Each of the vertices t3 and t4 must be one of types f4, u4, f5,
and a u5-vertex, and each of their weights decreases by at least
m4 = min{Δ′4,3,Δ4,3,Δ

′
5,4,Δ5,4}. The vertex t5 must be one of

types f3, u3, f4, u4, f5, and a u5-vertex, and its weight de-
creases by at least m1 = min{w′3, w3,Δ

′
4,3,Δ4,3,Δ

′
5,4,Δ5,4}. Thus,

the total weight decrease in the branch of force(vt1) is at least

Fig. 8 Illustration of branching rule c-5(II), where vertex v ∈ Vf5 and vertex
t1 ∈ NU (v; Vf4) such that NU (v) ∩ NU (t1) = {t2, t3}.

Fig. 9 Illustration of branching rule c-6, where vertex v ∈ Vf5 and vertex
t1 ∈ NU (v; Vu4).

w′5 + w
′
4 + m5 + 2m4 + m1.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation. So, the weight of vertex v decreases
by Δ′5,4, and the weight of vertex t1 decreases by Δ′4,3. Thus,
the total weight decrease in the branch of delete(vt1) is at least
w′5 − w′3.

As a result, we get the following branching vector:

(w′5 + w
′
4 + m5 + 2m4 + m1, w

′
5 − w′3). (25)

Case c-5(II). Without loss of generality, assume that NU (v) ∩
NU (t1) = {t2, t3} (see Fig. 8): We branch on edge vt1.

In the branch of force(vt1), the edge vt1 will be added to F′

by the branching operation, and edges vt2, vt3, vt4, t1t2 and t1t3
will be deleted from G′ by the reduction rules. So, the weight of
vertex v decreases by w′5 and the weight of vertex t1 decreases by
w′4. Each of the vertices t2 and t3 must be one of types f4, u4, f5,
and a u5-vertex, and each of their weights decreases by at least
m5 = min{w′4, w4,Δ

′
5,3,Δ5,3}. The vertex t4 must be one of types

f4, u4, f5, and a u5-vertex, and its weight decreases by at least
m4 = min{Δ′4,3,Δ4,3,Δ

′
5,4,Δ5,4}. Thus, the total weight decrease in

the branch of force(vt1) is at least w′5 + w
′
4 + 2m5 + m4.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation. So, the weight of vertex v decreases
by Δ′5,4, and the weight of vertex t1 decreases by Δ′4,3. Thus,
the total weight decrease in the branch of delete(vt1) is at least
w′5 − w′3.

As a result, we get the following branching vector:

(w′5 + w
′
4 + 2m5 + m4, w

′
5 − w′3). (26)

Case c-6. None of the previous cases are applicable, and there
exist vertices v ∈ Vf5 and t1 ∈ NU (v; Vu4) (see Fig. 9): We branch
on edge vt1.
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Fig. 10 Illustration of branching rule c-7, where vertex v ∈ Vf5 and vertex
t1 ∈ NU (v; Vf5), such that NU (v) ∩ NU (t1) = ∅.

In the branch of force(vt1), the edge vt1 will be added to F′

by the branching operation, and edges vt2, vt3 and vt4 will be
deleted from G′ by the reduction rules. So, the weight of ver-
tex v decreases by w′5 and the weight of vertex t1 decreases by Δ4.
Each of the vertices t2, t3 and t4 must be one of types u4, f5,
and a u5-vertex, and each of their weights decreases by at least
m6 = min{Δ4,3,Δ

′
5,4,Δ5,4}. Thus, the total weight decrease in the

branch of force(vt1) is at least w′5 + w4 − w′4 + 3m6.
In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation. So, the weight of vertex v decreases
by Δ′5,4 and the weight of vertex t1 decreases by Δ4,3. Thus,
the total weight decrease in the branch of delete(vt1) is at least
w′5 − w′4 + w4 − w3.

As a result, we get the following branching vector:

(w′5 + w4 − w′4 + 3m6, w
′
5 − w′4 + w4 − w3). (27)

Case c-7. None of the previous cases are applicable, and
there exist vertices v ∈ Vf5 and t1 ∈ NU (v; Vf5) such that
NU (v) ∩ NU (t1) = ∅ (see Fig. 10): We branch on edge vt1. Note
that NU (t1) \ {v} = {t5, t6, t7}.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation, and edges vt2, vt3, vt4, t1t5, t1t6 and t1t7
will be deleted from G′ by the reduction rules. So, both weights
of vertex v and vertex t1 each decrease by w′5. Each of the ver-
tices t2, t3, t4, t5, t6 and t7 must be a type f5, or a u5-vertex, and
each of their weights decreases by at least m7 = min{Δ′5,4,Δ5,4}.
Thus, the total weight decrease in the branch of force(vt1) is at
least 2w′5 + 6m7.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation. So, both weights of vertices v and
t1 each decrease by Δ′5,4. Thus, the total weight decrease in the
branch of delete(vt1) is at least 2w′5 − 2w′4.

As a result, we get the following branching vector:

(2w′5 + 6m7, 2w′5 − 2w′4). (28)

Case c-8. None of the previous cases are applicable, and
there exist vertices v ∈ Vf5 and t1 ∈ NU (v; Vf5) such that
NU (v)∩ NU (t1) � ∅. We distinguish three sub-cases, according to
the cardinality of the intersection NU (v) ∩ NU (t1),

c-8(I) |NU (v) ∩ NU (t1)| = 1,
c-8(II) |NU (v) ∩ NU (t1)| = 2, and
c-8(III) |NU (v) ∩ NU (t1)| = 3.
Case c-8(I). Without loss of generality, assume that NU (v) ∩

Fig. 11 Illustration of branching rule c-8(I), where vertex v ∈ Vf5 and vertex
t1 ∈ NU (v; Vf5), such that NU (v) ∩ NU (t1) = {t2}.

Fig. 12 Illustration of branching rule c-8(II), where vertex v ∈ Vf5 and ver-
tex t1 ∈ NU (v; Vf5), such that NU (v) ∩ NU (t1) = {t2, t3}.

NU (t1) = {t2} (see Fig. 11): We branch on edge vt1. Note that
NU (t1) \ {v} = {t5, t6}.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation, and edges vt2, vt3, vt4, t1t2, t1t5 and t1t6
will be deleted from G′ by the reduction rules. So, both weights
of vertex v and vertex t1 each decrease by w′5. The vertex t2 must
be a type f5 or a u5-vertex, and its weight decreases by at least
m8 = min{Δ′5,3,Δ5,3}. Each of the vertices t3, t4, t5 and t6 must be
a type f5, or a u5-vertex, and each of their weights decreases by
at least m7 = min{Δ′5,4,Δ5,4}. Thus, the total weight decrease in
the branch of force(vt1) is at least 2w′5 + 4m7 + m8.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation. So, both weights of vertices v and t1
each decreases by Δ′5,4. Thus, the total weight decrease in the
branch of delete(vt1) is at least 2w′5 − 2w′4.

As a result, we get the following branching vector:

(2w′5 + 4m7 + m8, 2w′5 − 2w′4). (29)

Case c-8(II). Without loss of generality, assume that NU (v) ∩
NU (t1) = {t2, t3} (see Fig. 12): We branch on edge vt1. Note that
NU (t1) \ {v} = {t5}.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation, and edges vt2, vt3, vt4, t1t2, t1t3 and t1t5
will be deleted from G′ by the reduction rules. So, both weights
of vertex v and vertex t1 each decrease by w′5. Each of the ver-
tices t2 and t3 must be a type f5, or a u5-vertex, and each of their
weights decreases by at least m8 = min{Δ′5,3,Δ5,3}. Each of the
vertices t4 and t5 must be a type f5, or a u5-vertex, and each of
their weights decreases by at least m7 = min{Δ′5,4,Δ5,4}. Thus,
the total weight decrease in the branch of force(vt1) is at least
2w′5 + 2m8 + 2m7.
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Fig. 13 Illustration of branching rule c-8(III), where vertex v ∈ Vf5 and ver-
tex t1 ∈ NU (v; Vf5), such that NU (v) ∩ NU (t1) = {t2, t3, t4}.

Fig. 14 Illustration of branching rule c-9, where vertex v ∈ Vf5 and vertex
t1 ∈ NU (v; Vu5).

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation. So, both weights of vertex v and ver-
tex t1 each decreases by Δ′5,4. Thus, the total weight decrease in
the branch of delete(vt1) is at least 2w′5 − 2w′4.

As a result, we get the following branching vector:

(2w′5 + 2m8 + 2m7, 2w′5 − 2w′4). (30)

Case c-8(III). We have that NU (v) ∩ NU (t1) = {t2, t3, t4}
(see Fig. 13): We branch on edge vt1.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation, and edges vt2, vt3, vt4, t1t2, t1t3 and t1t4
will be deleted from G′ by the reduction rules. So, both weights
of vertex v and vertex t1 each decrease by w′5. Each of the vertices
t2, t3, and t4 must be a type f5, or a u5-vertex, and each of their
weights decreases by at least m8 = min{Δ′5,3,Δ5,3}. Thus, the total
weight decrease in the branch of force(vt1) is at least 2w′5 + 3m8.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation. So, both weights of vertex v and ver-
tex t1 each decrease by Δ′5,4. Thus, the total weight decrease in
the branch of delete(vt1) is at least 2w′5 − 2w′4.

As a result, we get the following branching vector:

(2w′5 + 3m8, 2w′5 − 2w′4). (31)

Case c-9. None of the previous cases are applicable, and there
exist vertices v ∈ Vf5 and t1 ∈ NU (v; Vu5) (see Fig. 14): We branch
on edge vt1.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation, and edges vt2, vt3 and vt4 will be deleted
from G′ by the reduction rules. So, the weight of vertex v de-
creases by w′5, and the weight of vertex t1 decreases by Δ5. Each
of the vertices t2, t3 and t4 must be a type u5-vertex, and each of
their weights decrease by Δ5,4. Thus, the total weight decrease in

Fig. 15 Illustration for c-10(I) where vertices v ∈ Vu5 and t1 ∈ NU (v; Vf3),
such that NU (v) ∩ NU (t1) = {t2}, t2 is an f3-vertex.

the branch of force(vt1) is at least 4w5 − 3w4.
In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation. Thus, the weight of vertex v de-
creases by Δ′5,4, and the weight of vertex t1 decreases by Δ5,4.
The total weight decrease in the branch of delete(vt1) is at least
w5 + w

′
5 − w4 − w′4.

Then, we get the following branching vector:

(4w5 − 3w4, w5 + w
′
5 − w4 − w′4). (32)

3.5 Branching on Edges Around u5-vertices (Branching
Rules c-10 to c-15)

If none of the first nine conditions can be executed, this means
that the instance of forced TSP has no f5-vertices. But this does
not mean that the maximum degree of the reduced instance at this
point is at most 4, since there might still be u5-vertices. This sec-
tion derives branching vectors for branchings on an optimal edge
e = vt1 incident to a u5-vertex v, distinguishing the conditions of
six cases, c-10 to c-15.

When branching on an edge vt1 incident to a u5-vertex v, let
a and b be lower bound on the decrease in measure due to the
force(e) and delete(e) operations, respectively. In the branch of
force(vt1), the vertex v will become an f5-vertex. Therefore, at
this point, some of the branching rules of cases c-1 to c-9 become
immediately applicable. Let (A, B) be the branching vectors of
the branching rules that become immediately applicable. Then
we regard the overall branching vectors to be (a+ A, a+ B, b) [7].

Case c-10. There are no more f5-vertices, and there exist ver-
tices v ∈ Vu5 and t1 ∈ NU (v; Vf3) such that NU (v) ∩ NU (t1) � ∅.
Note that it holds |NU (v) ∩ NU (t1)| = 1. Without loss of gen-
erality, assume that NU (v) ∩ NU (t1) = {t2}. We distinguish five
sub-cases, according to the type of vertex t2, the unique vertex in
the intersection NU (v) ∩ NU (t1),

c-10(I) t2 is an f3-vertex,
c-10(II) t2 is a u3-vertex,
c-10(III) t2 is an f4-vertex,
c-10(IV) t2 is a u4-vertex, and
c-10(V) t2 is a u5-vertex.
Case c-10(I). Vertex t2 is an f3-vertex (see Fig. 15): We branch

on edge vt1.
In the branch of force(vt1), the edge vt1 will be added to F′ by

the branching operation, edges vt3, vt4, vt5 and t1t2 will be deleted
from G′ by the reduction rules, and the edge vt2 will be added
to F′ by the reduction rules. Hence, the weight of vertex v de-
creases by w5, and the weight of each of the vertices t1 and t2
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Fig. 16 Illustration for c-10(II) where vertices v ∈ Vu5 and t1 ∈ NU (v; Vf3),
such that NU (v) ∩ NU (t1) = {t2}, t2 is a u3-vertex, and the unique
neighbor of t2 not in {t1, v} is in NU (v).

Fig. 17 Illustration for c-10(II) where vertices v ∈ Vu5 and t1 ∈ NU (v; Vf3),
such that NU (v) ∩ NU (t1) = {t2}, t2 is a u3-vertex, and the unique
neighbor of t2 not in {t1, v} is not in NU (v).

decrease by w′3. Each of the vertices t3, t4 and t5 must be one of
types f3, u3, f4, u4, and a u5-vertex, and each of their weights
decreases by at least m10 = min{w′3, w3,Δ

′
4,3,Δ4,3,Δ5,4}. Thus,

the total weight decrease in the branch of force(vt1) is at least
(w5 + 2w′3 + 3m10).

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation, the edge vt2 will be deleted from G′

by the reduction rules, and the edge t1t2 will be added to F′ by the
reduction rules. Hence, the weight of vertex v decreases by Δ5,3,
and both weights of vertices t1 and t2 each decrease by w′3. Thus,
the total weight decrease in the branch of delete(vt1) is at least
w5 − w3 + 2w′3.

As a result, we get the following branching vector:

(w5 + 2w′3 + 3m10, w5 − w3 + 2w′3). (33)

Case c-10(II). Vertex t2 is a u3-vertex (see Figs. 16 and 17):
We branch on edge vt1. Note that NU (t2) \ {v, t1} = {t6}.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation, and the edge t1t2 will be added to F′

by the reduction rules. Hence, the weight of vertex v decreases
by Δ5,4, and the weight of vertex t1 decreases by w′3, and the
weight of vertex t2 decreases by Δ3. Thus, the total weight de-
crease in the branch of delete(vt1) is at least w5−w4+w

′
3+w3−w′3.

In the branch of force(vt1), the edge vt1 will be added to F′

by the branching operation, the edge vt2 will be added to F′ by
the reduction rules, and edges vt3, vt4, vt5 and t1t2 will be deleted
from G′ by the reduction rules.

For vertex t6 it holds either a) t6 ∈ NU (v) (see Fig. 16), or b)
t6 � NU (v) (see Fig. 17).

If the vertex t6 ∈ NU (v) ∩ NU (t2), then without loss of gen-
erality we assume that t6 is t3 (see Fig. 16). Then, the edge t2t3
will be added to F′ by the reduction rules. Hence, the weight of

Fig. 18 Illustration for c-10(III) where vertices v ∈ Vu5 and t1 ∈ NU (v; Vf3),
such that NU (v) ∩ NU (t1) = {t2}, t2 is an f4-vertex, and NU (v) ∩
NU (t2) \ {t1} = ∅.

vertex v decreases by w5, the weight of vertex t1 decreases by w′3,
and the weight of vertex t2 decreases by w3. The vertex t3 must
be one of types f3, u3, f4, u4, and a u5-vertex, and its weight de-
creases by at least m11 = min{w′3, w3, w

′
4, w4 − w′3, w5 − w′4}. Each

of the vertices t4 and t5 must be one of types f3, u3, f4, u4, and a
u5-vertex, and each of their weights decreases by at least m10 =

min{w′3, w3,Δ
′
4,3,Δ4,3,Δ5,4}. Thus, the total weight decrease in the

branch of force(vt1) is at least w5 + w
′
3 + w3 + m11 + 2m10.

As a result, we get the following branching vector:

(w5 + w
′
3 + w3 + m11 + 2m10, w5 − w4 + w3). (34)

Next, if the vertex t6 � NU (v) ∩ NU (t2) (see Fig. 17), then the
edge t2t6 will be added to F′ by the reduction rules. Hence, the
weight of vertex v decreases by w5, the weight of vertex t1 de-
creases by w′3, and the weight of vertex t2 decreases by w3. The
vertex t6 must be one of types f3, u3, f4, u4, and a u5-vertex,
and its weight decreases by at least m9 = min{w′3,Δ3, w

′
4,Δ4,Δ5}.

Each of the vertices t3, t4 and t5 must be one of types f3, u3,
f4, u4, and a u5-vertex, and each of their weights decreases by at
least m10 = min{w′3, w3,Δ

′
4,3,Δ4,3,Δ5,4}. Thus, the total weight de-

crease in the branch of force(vt1) is at least w5+w3+w
′
3+m9+3m10.

As a result, we get the following branching vector:

(w5 + w3 + w
′
3 + m9 + 3m10, w5 − w4 + w3). (35)

Case c-10(III). Vertex t2 is an f4-vertex (see Fig. 18): We
branch on edge vt1. Note that NU (t2) \ {v, t1} = {t6}.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation, and the edge t1t2 will be deleted from G′

by the reduction rules. Hence, the weight of vertex v decreases
by Δ5, the weight of vertex t1 decreases by w′3, and the weight of
vertex t2 decreases by Δ′4,3. Thus, the total weight decrease in the
branch of force(vt1) is at least w5 − w′5 + w′3 + w′4 − w′3.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation, the edge t1t2 will be added to F′ by
the reduction rules, and edges vt2 and t2t6 will be deleted from G′

by the reduction rules. Hence, the weight of vertex v decreases
by Δ5,3, the weight of vertex t1 decreases by w′3, and the weight
of vertex t2 decreases by w′4. The vertex t6 must be one of types
f3, u3, f4, u4, and a u5-vertex, and its weight decreases by at
least m10 = min{w′3, w3,Δ

′
4,3,Δ4,3,Δ5,4}. Thus, the total weight de-

crease in the branch of delete(vt1) is at least w5−w3+w
′
3+w

′
4+m10.

As a result, we get the following branching vector:

(w5 − w′5 + w′4, w5 − w3 + w
′
3 + w

′
4 + m10).
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Fig. 19 Illustration for c-10(IV) where vertices v ∈ Vu5 and t1 ∈ NU (v; Vf3),
such that NU (v) ∩ NU (t1) = {t2}, t2 is a u4-vertex.

In the branch of force(vt1), the vertex v will become an f5-
vertex, and at this point, one of the branching rules of cases c-
1 and c-2 becomes immediately applicable, because an optimal
edge for the next branching operation is at least as good as the
edge vt2. Therefore, for the case where the vertex t3 is either an
f3 or a u3-vertex, for each of the 19 branching vectors (A, B) of
cases c-1 and c-2, we get the following branching vector:

(w5−w′5+w′4+A, w5−w′5+w′4+B, w5−w3+w
′
3+w

′
4+m10).

(36)

Case c-10(IV). Vertex t2 is a u4-vertex (see Fig. 19): We
branch on edge vt1.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation, and the edge t1t2 will be deleted from G′

by the reduction rules. Hence, the weight of vertex v decreases
by Δ5, the weight of vertex t1 decreases by w′3, and the weight of
vertex t2 decreases by Δ4,3. Thus, the total weight decrease in the
branch of force(vt1) is at least w5 − w′5 + w′3 + w4 − w3.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation, and the edge t1t2 will be added to F′

by the reduction rules. Hence, the weight of vertex v decreases
by Δ5,4, the weight of vertex t1 decreases by w′3, and the weight
of vertex t2 decreases by Δ4. Thus, the total weight decrease in
the branch of delete(vt1) is at least w5 − w4 + w

′
3 + w4 − w′4.

As a result, we get the following branching vector:

(w5 − w′5 + w′3 + w4 − w3, w5 + w
′
3 − w′4).

In the branch of force(vt1), the vertex v will become an f5-
vertex, and at this point, one of the branching rules of cases c-1,
c-2 and c-3 becomes immediately applicable, because an optimal
edge for the next branching operation is at least as good as the
edge vt2. Therefore, for each of the 20 branching vectors (A, B)
of cases c-1 to c-3, we get the following branching vector:

(w5−w′5+w′3+w4−w3+A, w5−w′5+w′3+w4−w3+B, w5+w
′
3−w′4).

(37)

Case c-10(V). Vertex t2 is a u5-vertex (see Fig. 20): We branch
on edge vt1.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation, and the edge t1t2 will be deleted from G′

by the reduction rules. Hence, the weight of vertex v decreases
by Δ5, the weight of vertex t1 decreases by w′3, and the weight of
vertex t2 decreases by Δ5,4. Thus, the total weight decrease in the
branch of force(vt1) is at least w5 − w′5 + w′3 + w5 − w4.

Fig. 20 Illustration for c-10(V) where vertices v ∈ Vu5 and t1 ∈ NU (v; Vf3),
such that NU (v) ∩ NU (t1) = {t2}, t2 is a u5-vertex.

Fig. 21 Illustration for c-11 where vertices v ∈ Vu5 and t1 ∈ NU (v; Vf3).

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation, and the edge t1t2 will be added to F′

by the reduction rules. Hence, the weight of vertex v decreases
by Δ5,4, the weight of vertex t1 decreases by w′3, and the weight
of vertex t2 decreases by Δ5. Thus, the total weight decrease in
the branch of delete(vt1) is at least w5 − w4 + w

′
3 + w5 − w′5.

As a result, we get the following branching vector:

(2w5 − w′5 + w′3 − w4, 2w5 − w4 + w
′
3 − w′5).

In the branch of force(vt1), the vertex v will become an f5-
vertex, and at this point, one of the branching rules of cases c-1
to c-6 becomes immediately applicable, because an optimal edge
for the next branching operation is at least as good as the edge vt2.
Therefore, for each of the 24 branching vectors (A, B) of cases c-1
to c-6, we get the following branching vector:

(2w5−w′5+w′3−w4+A, 2w5−w′5+w′3−w4+B, 2w5−w4+w
′
3−w′5).

(38)

Case c-11. None of the previous cases are applicable, and
there exist vertices v ∈ Vu5 and t1 ∈ NU (v; Vf3) such that
NU (v) ∩ NU (t1) = ∅ (see Fig. 21): We branch on edge vt1. Note
that NU (t1) \ {v} = {t6}.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation, and the edge t1t6 will be deleted from G′

by the reduction rules. So, the weight of vertex v decreases by Δ5,
and the weight of vertex t1 decreases by w′3.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation, and the edge t1t6 will be added to F′

by the reduction rules. The weight of vertex v decreases by Δ5,4,
and the weight of vertex t1 decreases by w′3.

There are two cases for the vertex t6; a) vertex t6 is of type
f3, and b) otherwise. We analyze the branches force(vt1) and
delete(vt1) for these two cases separately.

First, we analyze the case where the vertex t6 is an f3-vertex
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(see Fig. 2). Recall that in such a case we denote by x the unique
neighbor of t6 different from t1. In the branch of force(vt1), the
edge xt6 will be added to F′ by the reduction rules. Hence, the
weight of vertex t6 decreases by w′3. If the vertex x is an f3-vertex
(resp., u3, f4, u4, and a u5-vertex), then the weight decrease α5

of vertex x will be w′3 (resp., Δ3, w′4, Δ4, and Δ5). Thus, the total
weight decrease for this case in the branch of force(vt1) is at least
w5 − w′5 + w′3 + w′3 + α5.

In the branch of delete(vt1), the edge xt6 will be deleted
from G′ by the reduction rules. Hence, the weight of vertex t6
decreases by w′3. If the vertex x is an f3-vertex (resp., u3, f4, u4,
and a u5-vertex), then the weight decrease β5 of vertex x will be
w′3 (resp., w3, Δ′4,3, Δ4,3, and Δ5,4). Thus, the total weight decrease
for the case where t6 is an f3-vertex in the branch of delete(vt1) is
at least w5 − w4 + w

′
3 + w

′
3 + β5.

As a result, for the ordered pair (α5, β5) taking values in
{(w′3, w′3), (Δ3, w3), (w′4,Δ

′
4,3), (Δ4,Δ4,3), (Δ5,Δ5,4)}, we get the fol-

lowing five branching vectors:

(w5 − w′5 + 2w′3 + α5, w5 − w4 + 2w′3 + β5).

In the branch of force(vt1), the vertex v will become an f5-
vertex, and at this point, one of the branching rules of cases c-1
to c-9 becomes immediately applicable. Therefore, for the case
where the vertex t6 is an f3-vertex, for each of the 29 branching
vectors (A, B) of cases c-1 to c-9, we get the following branching
vector:

(w5−w′5+2w′3+α5+A, w5−w′5+2w′3+α5+B, w5−w4+2w′3+β5).

(39)

Next, we examine the case where the vertex t6 is not an f3-
vertex. In the branch of force(vt1), if the vertex t6 is a u3-vertex
(resp., f4, u4, and a u5-vertex), then the weight decrease α6 of
vertex t6 will be w3 (resp., Δ′4,3, Δ4,3, and Δ5,4). Thus, the total
weight decrease for this case in the branch of force(vt1) is at least
w5 − w′5 + w′3 + α6.

In the branch of delete(vt1), if the vertex t6 is a u3-vertex (resp.,
f4, u4, and a u5-vertex), then the weight decrease β6 of vertex t6
will be Δ3 (resp., w′4, Δ4, and Δ5). Thus, the total weight de-
crease for the case where t6 is not an f3-vertex in the branch of
delete(vt1) is at least w5 − w4 + w

′
3 + β6.

As a result, for the ordered pair (α6, β6) taking values in
{(w3,Δ3), (Δ′4,3, w

′
4), (Δ4,3,Δ4), (Δ5,4,Δ5)}, we get the following

four branching vectors:

(w5 − w′5 + w′3 + α6, w5 − w4 + w
′
3 + β6).

In the branch of force(vt1), for each of the 29 branching vectors
(A, B) of cases c-1 to c-9, we get the following branching vector:

(w5−w′5+w′3+α6+A, w5−w′5+w′3+α6+B, w5−w4+w
′
3+β6).

(40)

Case c-12. None of the previous cases are applicable, and there
exist vertices v ∈ Vu5 and t ∈ NU (v; Vu3) (see Fig. 22): We branch
on edge vt1. Note that NU (t1) \ {v} = {t6, t7}.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation. So, the weight of vertex v decreases by

Fig. 22 Illustration of branching rule c-12, where vertex v ∈ Vu5 and vertex
t ∈ NU (v; Vu3).

Fig. 23 Illustration for c-13 where vertices v ∈ Vu5 and t1 ∈ NU (v; Vf4).

Δ5, and the weight of vertex t1 decreases by Δ3. The total weight
decrease in the branch of force(vt1) is at least w5 − w′5 + w3 − w′3.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation, and edges t1t6 and t1t7 will be added
to F′ by the reduction rules. So, the weight of vertex v de-
creases by Δ5,4, and the weight of vertex t1 decreases by w3.
Each of the vertices t6 and t7 must be one of types f3, u3, f4, u4,
and a u5-vertex, and each of their weights decreases by at least
m9 = min{w′3,Δ3, w

′
4,Δ4,Δ5}. Thus, the total weight decrease in

the branch of delete(vt1) is at least w5 − w4 + w3 + 2m9.
As a result, we get the following branching vector:

(w5 − w′5 + w3 − w′3, w5 − w4 + w3 + 2m9).

In the branch of force(vt1), the vertex v will become an f5-
vertex, and at this point, one of the branching rules of cases c-3 to
c-6 and c-9 becomes immediately applicable, since there are no
more f3 vertices and no other f5 vertices, thus cases c-1, c-2, c-7
and c-8 cannot occur following this branching operation. There-
fore, for each of the six branching vectors (A, B) of cases c-3 to
c-6 and case c-9, we get the following branching vector:

(w5−w′5+w3−w′3+A, w5−w′5+w3−w′3+B, w5−w4+w3+2m9).

(41)

Case c-13. None of the previous cases are applicable, and there
exist vertices v ∈ Vu5 and t1 ∈ NU (v; Vf4) (see Fig. 23): We branch
on edge vt1. Note that NU (t1) \ {v} = {t6, t7}.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation, and edges t1t6 and t1t7 will be deleted
from G′ by the reduction rules. So, the weight of vertex v de-
creases by Δ5, and the weight of vertex t1 decreases by w′4. Each
of the vertices t6 and t7 must be one of types f3, u3, f4, u4,
and a u5-vertex, and each of their weights decreases by at least
m10 = min{w′3, w3,Δ

′
4,3,Δ4,3,Δ5,4}. Thus, the total weight de-

crease in the branch of force(vt1) is at least w5 − w′5 + w′4 + 2m10.
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Fig. 24 Illustration of branching rule c-14, where vertex v ∈ Vu5 and vertex
t1 ∈ NU (v; Vu4).

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation. So, the weight of vertex v de-
creases by Δ5,4, and the weight of vertex t1 decreases by Δ′4,3.
The total weight decrease in the branch of delete(vt1) is at least
w5 − w4 + w

′
4 − w′3.

As a result, we get the following branching vector:

(w5 − w′5 + w′4 + 2m10, w5 − w4 + w
′
4 − w′3).

In the branch of force(vt1), the vertex v will become an f5-
vertex, and at this point, one of the branching rules of cases c-4
to c-9 becomes immediately applicable. Therefore, for each of
the nine branching vectors (A, B) of cases c-4 to c-9, we get the
following branching vector:

(w5−w′5+w′4+2m10+A, w5−w′5+w′4+2m10+B, w5−w4+w
′
4−w′3).

(42)

Case c-14. None of the previous cases are applicable, and there
exist vertices v ∈ Vu5 and t1 ∈ NU (v; Vu4) (see Fig. 24): We branch
on edge vt1.

In the branch of force(vt1), the edge vt1 will be added to F′ by
the branching operation. So, the weight of vertex v decreases
by Δ5, and the weight of vertex t1 decreases by Δ4. Thus,
the total weight decrease in the branch of force(vt1) is at least
w5 − w′5 + w4 − w′4.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation. So, the weight of vertex v decreases
by Δ5,4, and the weight of vertex t1 decreases by Δ4,3. Thus,
the total weight decrease in the branch of delete(vt1) is at least
w5 − w3.

Then, we get the following branching vector:

(w5 − w′5 + w4 − w′4, w5 − w3).

In the branch of force(vt1), the vertex v will become an f5-
vertex, and at this point, one of the branching rules of cases c-6
and c-9 becomes immediately applicable, since there are only u4
and u5 vertices that remain, and thus only cases c-6 and c-9 can
occur following to this branching operation. Therefore, for each
of the two branching vectors (A, B) of cases c-6 and c-9, we get
the following branching vector:

(w5 − w′5 + w4 − w′4 + A, w5 − w′5 + w4 − w′4 + B, w5 − w3).

(43)

Case c-15. None of the previous cases are applicable, and there
exist vertices v ∈ Vu5 and t1 ∈ NU (v; Vu5) (see Fig. 25): We branch

Fig. 25 Illustration of branching rule c-15, where vertex v ∈ Vu5 and vertex
t1 ∈ NU (v; Vu5).

on edge vt1.
In the branch of force(vt1), the edge vt1 will be added to F′ by

the branching operation. So, both weights of vertex v and ver-
tex t1 each decrease by Δ5. Thus, the total weight decrease in the
branch of force(vt1) is at least 2w5 − 2w′5.

In the branch of delete(vt1), the edge vt1 will be deleted from G′

by the branching operation. So, both weights of vertex v and ver-
tex t1 each decrease by Δ5,4. Thus, the total weight decrease in
the branch of delete(vt1) is at least 2w5 − 2w4.

Then, we get the following branching vector:

(2w5 − 2w′5, 2w5 − 2w4).

In the branch of force(vt1), the vertex v will become an f5-
vertex, and at this point, the branching rule of case c-9 becomes
immediately applicable, since there are only u5 vertices that re-
main, and thus only case c-9 can occur following to this branching
operation. Therefore, for the branching vector (A, B) of case c-9,
we get the following branching vector:

(2w5 − 2w′5 + A, 2w5 − 2w′5 + B, 2w5 − 2w4). (44)

3.6 Switching to TSP in Degree-4 Graphs
If none of the above 15 cases can be executed, then this means

that the graph has no more degree-5 vertices and the maximum
degree of the graph at this point is 4 or less. In that case, we can
switch and use a fast algorithm for TSP in degree-4 graphs, called
tsp4(G, F) to solve the remaining instance I = (G, F). Since at
the point when tsp4(G, F) is called the instance I = (G, F) is a re-
duced instance, it has no vertices of degree 1 or less, nor vertices
with three or more incident forced edges. Moreover, without loss
of generality we can assume that there is also no vertex v ∈ V(G)
of degree 2, as its weight ω(v) is set to be 0 in Eq. (18), and to-
gether with the two forced edges incident with v can be replaced
by a single forced edge [15], [16]. Then, let n′3, n3, n′4 and n4 be
the numbers of f3, u3, f4 and u4 vertices in I, respectively, where
n′3 + n3 + n′4 + n4 = |V(G)|, and by Eq. (1) the measure μ(I) of
instance I is μ(I) = w′3n′3 + w3n3 + w

′
4n′4 + w4n4.

At this step, we switch to use the O∗ (1.69193n)-time algorithm
for the TSP in degree-4 graphs by Xiao and Nagamochi [16]. Let
μ̂(I) denote the measure of the TSP in the degree-4 instance I,
where μ̂(I) = ŵ′3n′3+ ŵ3n3+ ŵ

′
4n′4+ ŵ4n4, and the weight ŵ′3 for an

f3-vertex is 0.21968, the weight ŵ3 for an u3-vertex is 0.45540,
the weight ŵ′4 for an f4-vertex is 0.59804 and the weight ŵ4 for an
u4-vertex is 1 [16]. Hence, the running time bound of the TSP in
the degree-4 instance I with measure μ̂(I) is given by 1.69193μ̂(I).
Since the bound on the running time of tsp5(G, F) is expressed
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by τμ(I), we get a constraint on the value of τ:

1.69193μ̂(I) ≤ τμ(I)

for any partition {n′3, n3, n′4, n4} of |V(G)|. In other words,

1.691930.21968 ≤ τw′3 , (45)

1.691930.45540 ≤ τw3 , (46)

1.691930.59804 ≤ τw′4 , and (47)

1.691931 ≤ τw4 . (48)

Equations (45) to (48) will become constraints in the quasiconvex
program.

3.7 Overall Analysis
The branching factors of each of the branching vectors from

Eqs. (19) to (44) and the switching constraints of Eqs. (45) to (48)
do not exceed 2.349978. The tight constraints in the quasiconvex
program are in conditions c-11, c-12, c-14, c-15 and the switching
constraints. This completes the proof of Lemma 2, and therefore,
Theorem 1.

4. Conclusion

In this paper, we have presented an exact algorithm for TSP
in degree-5 graphs. Our algorithm is a simple branching algo-
rithm, following the branch-and-reduce paradigm, and it can be
implemented to operate in space which is polynomial of the size
of an input instance. For the analysis of the running time of the
proposed algorithm, we used the measure and conquer method,
and have obtained an upper bound of O∗(2.3500n), where n is the
number of vertices in a given instance. This result improves a pre-
vious time bound on the TSP in degree-5 graphs by Md Yunos et
al. [13].

The greatest challenge in obtaining a non-trivial time-bound
for the algorithm is to derive a proper case analysis, and the inter-
dependence of the branching rules makes the problem ever more
difficult with graphs of higher degree. In contrast, the above re-
sults offer a purely theoretically improved time-bound on the run-
ning time. With regards to a recent result by Akiba and Iwata [1],
algorithms with theoretically improved running time can indeed
be also superior in practice, and it would be of much interest to
implement the proposed algorithms and evaluate their empirical
performance. This branch of research would also open the ques-
tion of devising bounding rules which might not have an impact
on the theoretical running time bound, but might contribute mean-
ingfully to the algorithm’s performance in practice.
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