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Abstract: The metric dimension of a connected graph G is the minimum number of vertices in a subset W of V(G)
such that all other vertices are uniquely determined by its vector distance to the vertices in W. In this paper, we con-
sider a connected graph G where every vertex of G has relatively same probability to resolve some distinct vertices
in G, namely a (μ, σ)-regular graph. We give tight lower and upper bounds on the metric dimension of a connected
(μ, σ)-regular graphs of order n ≥ 2 where 1 ≤ μ ≤ n − 1 and σ = n − 1.
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1. Introduction

Throughout this paper, all graphs are finite, simple, and con-
nected. The vertex set and the edge set of graph G are de-
noted by V (G) and E (G), respectively. The distance between
two distinct vertices u, v ∈ V (G), denoted by dG (u, v), is the
length of a shortest u − v path in G. Let W = {w1, w2, . . . , wk}
be an ordered subset of V (G). For v ∈ V (G), a representa-

tion of v with respect to W is defined as k-tuple r (v | W) =
(dG (v, w1) , dG (v, w2) , . . . , dG (v, wk)). A set W of vertices re-

solves a graph G if every two distinct vertices x, y ∈ V(G) satisfy
r(x | W) � r(y | W). The resolving set of G with minimum car-
dinality is called a basis of G, and we call its cardinality as the
metric dimension of G, denoted by β(G).

The resolving set problem was introduced independently by
Harary and Melter [12], and by Slater [18]. Slater considered the
minimum resolving set of a graph as the location of the place-
ment of a minimum number of sonar/loran detecting devices in
a network. So, the position of every vertex in the network can
be uniquely described in terms of its distances to the devices
in the set. This topic is also applied to various areas, includ-
ing coin weighing problem [17], drug discovery [6], robot naviga-
tion [13], network discovery and verification [2], connected joins
in graphs [17], and strategies for mastermind game [7].

In general, finding the metric dimension of a graph is a difficult
problem. There is no effective algorithm that can be used to deter-
mine the metric dimension of any graph. Garey and Johnson [11]
showed that determining the metric dimension of a graph is an
NP-complete problem. Diaz et al. [8] also stated that determining
the metric dimension of a graph is NP-hard even for bounded-
degree planar graphs. Epstein et al. [9] extended the hardness of
metric dimension for split graphs, bipartite graphs, co-bipartite
graphs, and line graphs of bipartite graphs. They showed that
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the metric dimension can be computed efficiently for cographs,
k-edge-augmented trees, and wheels. Kratica et al. [14] have de-
termined the metric dimension of hypercube graphs of order at
most 131072 and Hamming graph of order at most 4913, by us-
ing genetic algorithm. Meanwhile Fernau et al. [10] have proven
that a minimum resolving set of a chain graph can be constructed
in linear time.

The metric dimension for some certain classes of graphs is
known. Chartrand et al. [5] have shown that path graphs and com-
plete graphs are the only graph of order n with metric dimension
1 and n − 1, respectively. They also studied the metric dimen-
sion of cycles and trees. The metric dimension of random graph
has been studied in [3]. Zejnilović et al. [20] applied this topic
to graphs with missing edges. Some results on the metric dimen-
sion of a graph obtained from a graph operation, can be seen in
Refs. [4], [15], [16], [19].

In this paper, we consider a regular graph. The graph G is
called μ-regular if every vertex in G is adjacent to μ other ver-
tices. Thus, every vertex of G has the same probability to resolve
some distinct vertices of G. Chartrand et al. [5] have initiated the
research of metric dimension for regular graphs. They provided
the metric dimension of 2-regular and (n − 1)-regular graphs of
order n. The resolving set of regular bipartite graphs has been
investigated in Ref. [1]. Now, we consider a biregular graph. For
integers μ, σ ≥ 1, a graph G is called a (μ, σ)-regular graph if
every vertex of G is adjacent to μ or σ other vertices in G. In
case of μ = σ, we have a μ-regular graph (or σ-regular graph).
In this paper, we determine the metric dimension of a connected
(μ, σ)-regular graphs of order n ≥ 2 where 1 ≤ μ ≤ n − 1 and
σ = n − 1.

2. The Main Results

In this section, we define G as a (μ, n−1)-regular graph of order
n ≥ 2 for μ ∈ {1, 2, . . . , n − 1}. For a vertex v ∈ V(G), we recall
the degree of v in G, denoted by dG(v), is the number of adjacent
vertices to v in G.

Definition 1 Let G be a (μ, n−1)-regular graph of order n ≥ 2
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for μ ∈ {1, 2, . . . , n − 1}. Let A, B ⊆ V(G) such that:
• A = {v | dG(v) = n − 1, v ∈ V(G)}
• B = {v | dG(v) = μ, v ∈ V(G)}

Note that, since G is a (μ, n − 1)-regular graph of order n, then
A is non-empty. We can say that for (n − 1)-regular graph G,
A = V(G) and B = ∅. Chartrand et al. [5] have proven that the
metric dimension of (n − 1)-regular graph is n − 1. Now, we as-
sume that B � ∅. By Definition 1, an induced subgraph of G by
B may be disconnected.

Definition 2 Let G be a (μ, n−1)-regular graph of order n ≥ 2
for μ ∈ {1, 2, . . . , n−1}. For m ≥ 1, let {B1, B2, . . . , Bm} be the par-
tition of B such that for 1 ≤ i ≤ m, G[Bi] is a maximal connected
induced subgraph of G by Bi.

In four propositions below, we give some properties of (μ, n −
1)-regular graph of order n.

Proposition 3 Let G be a (μ, n − 1)-regular graph of order n

for μ ∈ {1, 2, . . . , n − 1}. Then diam(G) ≤ 2.
Proof. Let u and v be two non-adjacent vertices of G. Note
that, there exists a ∈ A such that au, av ∈ E(G). Therefore,
dG(u, v) ≤ 2.

Proposition 4 For 1 ≤ μ ≤ n− 1, the number of vertices of A

is at most μ. In particular, |A| ∈ {1, 2, . . . , μ}.
Proof. For v ∈ B, let TA(v) = {x ∈ A | xv ∈ E(G)} and
TB(v) = {x ∈ B | xv ∈ E(G)}. It is clear that |TA(v)| + |TB(v)| = μ.
Since |TB(v)| is non-negative integer, we have that |TA(v)| ≤ μ, and
since every vertex in A is adjacent to all other vertices in G, we
have |A| ≤ μ.

Proposition 5 For m ≥ 2, i, j ∈ {1, 2, . . . ,m}, and i � j,
if x and y are two distinct vertices in Bi and z ∈ Bj, then
dG(x, z) = dG(y, z) = 2.
Proof. By definition, it is clear that xz, yz � E(G). Let a

be a vertex in A. By definition of A, we have that dG(x, z) =
dG(x, a) + dG(a, z) = 2 = dG(y, a) + dG(a, z) = dG(y, z).

Proposition 6 For m ≥ 2, if there exists i ∈ {1, 2, . . . ,m} such
that |Bi| = 1, then every j ∈ {1, 2, . . . ,m} \ {i} satisfies |Bj| = 1.
Proof. Let v ∈ Bi. So, v is only adjacent to all vertices in A.
Suppose that there exists j ∈ {1, 2, . . . ,m} \ {i} such that |Bj| ≥ 2.
Let x and y be two distinct vertices in Bj. So, x and y are also
adjacent to all vertices in A. If xy ∈ E(G), then dG(x) � dG(v),
a contradiction. So, we assume that xy � E(G). It follows that
G[Bj] is a null graph, which is a graph without edges. Thus, we
have a contradiction with G[Bj] is a maximal connected induced
subgraph of G.

Let W be a resolving set of G. In Lemma 7 below, we show
that at most one vertex of A does not belong to W. Moreover, we
also prove that we can always find a resolving set W of G such
that one vertex of A does not belong to W, which can be seen in
Lemma 8.

Lemma 7 Let W be a resolving set of G. Then |A \W | ≤ 1.
Proof. Suppose that |A \W | ≥ 2. Let u and v be two distinct ver-
tices in A which are not in W. Since u and v are adjacent to every
vertex in V(G) \ {u, v}, then we have that r(u | W) = r(v | W), a
contradiction.

Lemma 8 There exists a resolving set W of G such that
|A \W | = 1.
Proof. By considering Lemma 7, let S be a resolving set of G

where A ⊆ S . Let a ∈ A. We define a set S ′ = S \ {a}.
Note that a is adjacent to every vertex in S ′. If every vertex
z ∈ V(G)\S satisfies r(z | S ) � (1, 1, . . . , 1), then S ′ is a resolving
set of G. Otherwise, let x be a vertex in V(G) \ S which satisfies
r(x | S ) = (1, 1, . . . , 1). It follows that r(x | S ′) = (1, 1, . . . , 1).
Then, we define S ′′ = S ′ ∪ {x}. Since the representation of all
vertices of G are different, we obtain that S ′′ is also a resolving
set of G.

By considering Proposition 6, we use the following definition.
Definition 9 Let F and G are collections of all (μ, n − 1)-

regular graphs of order n ≥ 2 where for 1 ≤ i ≤ m, |Bi| = 1 and
|Bi| ≥ 2, respectively.

Note that, for an integer n ≥ 2, it may be exists μ ∈
{1, 2, . . . , n−1} such that for any construction of a graph G, either
G ∈ F or G ∈ G. For an example, it is easy to see that if G is a
(2, n − 1)-regular graph of order an even n ≥ 2, then G ∈ F .

In the following theorem, we give an exact value of the metric
dimension of a (μ, n− 1)-regular graph which is an element of F .

Theorem 10 Let G ∈ F . Then

β(G) = |A| + m − 2.

Proof. Let |A| = t. Note that |B| = m and G is isomorphic
to (m + 1)-complete partite graph where one part has t vertices
and the cardinality of other m parts is one for each. In the
other hand, G � Km,1,1,...,1. In Ref. [15], it has been proven that
β(Km,1,1,...,1) = t + m − 2 = |A| + m − 2.

Now, we assume that G ∈ G. Note that, by definition of
(μ, n − 1)-regular graph and Proposition 5, every vertex z ∈
V(G) \ Bi satisfies dG(u, z) = dG(v, z) where u and v are distinct
vertices in Bi. Therefore, G[Bi] must be resolved by itself.

Lemma 11 Let G ∈ G. Let W be a resolving set of G. Then
for m ≥ 1 and i ∈ {1, 2, . . . ,m}, Bi contributes at least β(G[Bi])
vertices in W.
Proof. Let W be a resolving set of G. Suppose that there ex-
ists i ∈ {1, 2, . . . ,m} such that Bi contributes at most β(G[Bi]) − 1
vertices in W. Let Wi = W ∩ Bi. Since |Wi| < β(G[Bi]), then it
is clear that there exist two different vertices u, v ∈ Bi such that
r(u | Wi) = r(v | Wi). By considering definition of G and Propo-
sition 5, we obtain that for z ∈ V(G) \ Bi, dG(u, z) = dG(v, z). It
follows that if W ′ = W \ Wi, then r(u | W ′) = r(v | W ′), which
implies r(u | W) = r(v | W), a contradiction.

The direct consequence of Lemmas 8 and 11 above is Corol-
lary 12 below.

Corollary 12 Let G ∈ G. Then

β(G) ≥
⎛⎜⎜⎜⎜⎜⎝

m∑

i=1

β(G[Bi])

⎞⎟⎟⎟⎟⎟⎠ + |A| − 1.

We recall that the joint graph of H1 and H2, denoted by
H1 + H2, is a graph with V(H1 + H2) = V(H1) ∪ V(H2) with
V(H1) ∩ V(H2) = ∅ and E(H1 + H2) = E(H1) ∪ E(H2) ∪ {xy |
x ∈ V(H1), y ∈ V(H2)}. Now, let us consider a subgraph of G. Let
a ∈ A. For i ∈ {1, 2, . . . ,m}, we have that G[Bi∪{a}] is isomorphic
to a graph G[Bi] + K1. Lemma 13 below, proved in Ref. [16], is a
useful property to determine β(G).

Lemma 13 [16] Let Q be a connected graph. There exists a
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basis S of Q + K1 such that S ⊆ V(Q).
The direct consequence of Lemma 13 above is Corollary 14

below.
Corollary 14 Let Q be a connected graph. Let S be a ba-

sis of Q + K1 satisfying Lemma 13. For v ∈ V(Q + K1),
r(v | S ) = (1, 1, . . . , 1) if and only if v is a vertex from K1.

For m ≥ 1 and 1 ≤ i ≤ m, let S i be a basis of Bi + K1 satisfying
Lemma 13. For a vertex a ∈ A, we define S (a) = A\{a}. Note that
|S (a)| = |A|−1. Then we define a vertex set W = S (a)∪⋃1≤i≤m S i.
In most cases, W resolves V(G). In Lemma 15 below, we give a
condition for W such that W does not resolve V(G).

Lemma 15 Let G ∈ G. For m ≥ 1 and 1 ≤ i ≤ m, let S i

be a basis of G[Bi] + K1 satisfying Lemma 13. For a ∈ A, let
S (a) = A \ {a}. Let W = S (a) ∪ ⋃1≤i≤m S i. For x, y ∈ V(G),
r(x | W) = r(y | W) if and only if x ∈ Bi, y ∈ Bj, r(x | S i) =
(2, 2, . . . , 2), r(y | S j) = (2, 2, . . . , 2), and i � j.
Proof. (⇐) Let z1, z2 ∈ V(G). By the definition of G, z1 is ad-
jacent to x and y if and only if z1 ∈ A. Now we assume that
z1, z2 � A. By considering Propositions 3 and 5, if z1 � Bi

and z2 � Bj then we have dG(x, z1) = 2 = dG(y, z2). So,
r(x | S ) = (2, 2, . . . , 2) = r(y | S ) for S ∈ {S 1, S 2, . . . , S m}
and r(x | S (a)) = (1, 1, . . . , 1) = r(y | S (a)), which implies
r(x | W) = r(y | W).

(⇒) Since |A \ W | = 1, by considering Lemma 8 and Corol-
lary 14, both x, y � A. For i, j ∈ {1, 2, . . . ,m}, let x ∈ Bi and
y ∈ Bj. Note that, i and j must be different since S i is a basis of
G[Bi]+K1 which implies every two distinct vertices in G[Bi]+K1

has distinct representation with respect to S i.
Now, let w ∈ W. If w ∈ A, then it is clear that dG(x, w) =

dG(y, w) = 1. Now, we assume that w ∈ B. If w � Bi ∪ Bj, then
dG(x, w) = dG(y, w) = 2. Otherwise, we have either w ∈ Bi or
w ∈ Bj. Let w ∈ Bi. If xw ∈ E(G), then dG(x, w) = 1 � 2 =
dG(y, w). Therefore, w must be non-adjacent to x. It implies that
r(x | S i) = (2, 2, . . . , 2). By a similar argument, we also have
r(y | S j) = (2, 2, . . . , 2).

So, if the condition in Lemma 15 occurs, then we need to add
some vertices in W = S (a) ∪ ⋃1≤i≤m S i such that a new set is a
resolving set of G.

Lemma 16 Let G ∈ G. Then

β(G) ≤
⎛⎜⎜⎜⎜⎜⎝

m∑

i=1

β(G[Bi] + K1)

⎞⎟⎟⎟⎟⎟⎠ + |A| + m − 2.

Proof. For an m ≥ 1 and 1 ≤ i ≤ m, let S i be a basis of
G[Bi] + K1 satisfying Lemma 13. For a ∈ A, let S (a) = A \ {a}.
Let S = S (a) ∪⋃1≤i≤m S i. We distinguish two cases.
( 1 ) S does not satisfy the condition in Lemma 15

Then choose W = S . Since S i is a basis of G[Bi] + K1, S i

resolves Bi, which implies that W resolves V(G). Therefore,

β(G)≤
m∑

i=1

β(G[Bi]+K1)<

⎛⎜⎜⎜⎜⎜⎝
m∑

i=1

β(G[Bi] + K1)

⎞⎟⎟⎟⎟⎟⎠+ |A|+m−2.

( 2 ) S satisfies the condition in Lemma 15
For i ∈ {1, 2, . . . ,m}, let Qi = {x ∈ Bi | r(x | S i) =
(2, 2, . . . , 2)}. We also define Q =

⋃
1≤i≤m Qi. For a ver-

tex y ∈ Q, let Q(y) = Q \ {y}. Now, we define W = S ∪Q(y).
Since S i resolves Bi for 1 ≤ i ≤ m, S (a) resolves A, and Q(y)

resolves Q, then W is a resolving set of G. Note that |Q| ≤ m

which implies |Q(y)| ≤ m − 1. Therefore,

β(G) ≤ |W | ≤
⎛⎜⎜⎜⎜⎜⎝

m∑

i=1

β(G[Bi] + K1)

⎞⎟⎟⎟⎟⎟⎠ + |A| + m − 2.

Combining the results in Corollary 12 and Lemma 16, we ob-
tain the following bounds of metric dimension of (μ, n−1)-regular
graphs.

Theorem 17 Let G ∈ G. Then
⎛⎜⎜⎜⎜⎜⎝

m∑

i=1

β(G[Bi])

⎞⎟⎟⎟⎟⎟⎠

+|A| − 1 ≤ β(G) ≤
⎛⎜⎜⎜⎜⎜⎝

m∑

i=1

β(G[Bi] + K1)

⎞⎟⎟⎟⎟⎟⎠ + |A| + m − 2.

In Theorems 18 and 19 below, we give an existence of a
(μ, n − 1)-regular graph G ∈ G, such that β(G) is equal to either
lower bound or upper bound of Theorem 17, respectively.

Theorem 18 There exists a graph G ∈ G, such that

β(G) =

⎛⎜⎜⎜⎜⎜⎝
m∑

i=1

β(G[Bi])

⎞⎟⎟⎟⎟⎟⎠ + |A| − 1.

Proof. For μ ≥ 2 and 2 ≤ i ≤ m, let G[Bi] be isomorphic to
complete graph Kt of order t ≥ 2, and |A| = r = μ − t + 1. Note
that n = (m− 1)t+ μ+ 1. We will show that the metric dimension
of this (μ, n − 1)-regular graph G is equal to the lower bound of
Theorem 17. Also by Theorem 17, we only need to prove that
β(G) ≤

(∑m
i=1 β(G[Bi])

)
+ |A| − 1.

Let A = {a1, a2, . . . , ar} and Bi = {bi,1, bi,2, . . . bi,t}. Chartrand
et al. [5] have shown that β(Kt) = t − 1. Let Wi = Bi \ {bi,t}
for 1 ≤ i ≤ m, and WA = A \ {ar}. Now, we define W =

WA ∪W1 ∪W2 ∪ . . . ∪Wm. Let x, y ∈ V(G) \W. We assume that
x ∈ Bi. Then there exists j � i such that a vertex z ∈ W ∩Bj satis-
fies yz ∈ E(G) but xy � E(G). It follows that r(x | W) � r(y | W).

Theorem 19 There exists a graph G ∈ G, such that

β(G) =

⎛⎜⎜⎜⎜⎜⎝
m∑

i=1

β(G[Bi] + K1)

⎞⎟⎟⎟⎟⎟⎠ + |A| + m − 2.

Proof. For μ ≥ 3 and 1 ≤ i ≤ m, let G[Bi] be isomorphic to
cycle graph C8 of order 8, and |A| = r = μ − 2. Note that
n = 8m + μ − 2. We will show that the metric dimension of
this (μ, n − 1)-regular graph G is equal to upper bound of The-
orem 17. Also by Theorem 17, we only need to prove that
β(G) ≥

(∑m
i=1 β(G[Bi] + K1)

)
+ |A| + m − 2. Caceres et al. [4]

have proven that β(C8+K1) = 3. Therefore, we have to show that
β(G) ≥ 4m + |A| − 2.

Suppose that β(G) ≤ 4m + |A| − 3 and S is a basis of G.
By Lemma 8, there are at most 4m − 2 vertices of B in S . For
i ∈ {1, 2, . . . ,m}, let S i = S ∩ Bi. If there exists i ∈ {1, 2, . . . ,m}
such that |S i| < β(C8 + K1) = 3, then it is clear that there exist
two different vertices x and y in Bi with the same representation
with respect to S i, which implies r(x | S ) = r(y | S ). So, for
1 ≤ i ≤ m, we have |S i| ≥ 3. Since |S ∩ B| ≤ 4m − 2, there exist
i, j ∈ {1, 2, . . . ,m} with i � j such that |S i| = 3 = |S j|. Note that,
for k ∈ {i, j}, there exists xk ∈ Bk such that r(xk | S k) = (2, 2, 2).
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Since xkz ∈ E(G) where z ∈ A and xkz � E(G) where z ∈ B \ Bk,
by considering Proposition 3, we obtain that r(xi | S ) = r(x j | S ),
a contradiction.

In Theorem 20 below, we give an example of a (μ, n−1)-regular
graph G ∈ G, such that G does not satisfy conditions in Lemma 15
and having metric dimension

(∑m
i=1 β(G[Bi] + K1)

)
+ |A| − 1.

Theorem 20 There exists a graph G ∈ G, such that

β(G) =

⎛⎜⎜⎜⎜⎜⎝
m∑

i=1

β(G[Bi] + K1)

⎞⎟⎟⎟⎟⎟⎠ + |A| − 1

Proof. For μ ≥ 3 and 1 ≤ i ≤ m, let G[Bi] be isomorphic to cycle
graph C7 of order 7, and |A| = r = μ−2. Note that n = 7m+μ−2.
We will show that the metric dimension of this (μ, n − 1)-regular
graph G is equal to

(∑m
i=1 β(G[Bi] + K1)

)
+ |A| − 1. Caceres et

al. [4] have proven that β(C7 + K1) = 3. Therefore, we will show
that β(G) = 3m + |A| − 1.

Let b1, b2, . . . , b7 be seven vertices in C7 where E(C7) =
{bibi+1, b7b1 | 1 ≤ i ≤ 6}. Let Λ be a basis of C7 + K1 sat-
isfying Lemma 13 such that for every vertex x ∈ V(C7 + K1),
r(x | Λ) � (2, 2, 2). Now, for 1 ≤ i ≤ m, let A = {a1, a2, . . . , ar}
and Bi = {bi,1, bi,2, . . . bi,6}.

For the upper bound, we define WA = A \ {ar}, Wi = {bi, j | b j ∈
Λ} for 1 ≤ i ≤ m, and W = WA∪⋃m

i=1 Wi. Since WA resolves A, Wi

resolves Bi, and W does not satisfy the condition in Lemma 15,
then we obtain that W is a resolving set of G. Therefore,

β(G) ≤ |W | = 3m + |A| − 1.

Now, suppose that β(G) ≤ 3m + |A| − 2 and S is a basis of G.
By Lemma 8, there are at most 3m − 1 vertices of B in S . For
i ∈ {1, 2, . . . ,m}, let S i = S ∩ Bi. So, there exists i ∈ {1, 2, . . . ,m}
such that |S i| < β(C7 + K1) = 3. Thus, it is clear that there exist
two different vertices x and y in Bi with the same representation
with respect to S i, which implies r(x | S ) = r(y | S ), a contradic-
tion. Therefore, we obtain that

β(G) ≥ |W | = 3m + |A| − 1.

We also give an existence of a (μ, n − 1)-regular graph G ∈ G
such that β(G) = k where k ∈ {α + 1, α + 2, . . . , γ − 1} with
α =
(∑m

i=1 β(G[Bi])
)
+|A|−1 and γ =

(∑m
i=1 β(G[Bi] + K1)

)
+|A|−1.

Theorem 21 There exists a graph G ∈ G, such that β(G) = k

where k ∈ {α+1, α+2, . . . , γ−1}with α =
(∑m

i=1 β(G[Bi])
)
+|A|−1

and γ =
(∑m

i=1 β(G[Bi] + K1)
)
+ |A| − 1.

Proof. For μ ≥ 3, 1 ≤ i ≤ t, and t + 1 ≤ j ≤ m, let
G[Bi] and G[Bj] be isomorphic to cycle graph C3 of order 3,
and C7 of order 7, respectively. Let |A| = r = μ − 2. Note
that n = 3t + 7(m − t) + μ − 2. Chartrand et al. [5] have shown
that for s ≥ 3, β(Cs) = 2. Meanwhile, Caceres et al. [4] have
proven that β(C3 + K1) = 3 = β(C7 + K1). We will show that
β(G) = 2t + 3(m − t) + |A| − 1 = 3m − t + |A| − 1. Note that,
⎛⎜⎜⎜⎜⎜⎝

m∑

i=1

β(G[Bi])

⎞⎟⎟⎟⎟⎟⎠ + |A| − 1 = 2m + |A| − 1

< 3m − t + |A| − 1

= β(G)

< 3m + |A| − 1

=

⎛⎜⎜⎜⎜⎜⎝
m∑

i=1

β(G[Bi] + K1)

⎞⎟⎟⎟⎟⎟⎠ + |A| − 1.

Let V(C3) = {b1, b2, b3} and E(C3) = {bibi+1, b3b1 | 1 ≤ i ≤ 2}.
Let V(C7) = {c1, c2, . . . , c7} and E(C7) = {cici+1, c7c1 | 1 ≤ i ≤ 6}.
Let Γ be a basis of C3, and Λ be a basis of C7 + K1 satis-
fying Lemma 13 such that for every vertex x ∈ V(C7 + K1),
r(x | Λ) � (2, 2, 2). Now, for 1 ≤ i ≤ t, and t + 1 ≤ j ≤ m, let A =

{a1, a2, . . . , ar}, Bi = {bi,1, bi,2, bi,3}, and Bj = {c j,1, c j,2, . . . , c j,7}.
For the upper bound, we define WA = A \ {ar}, Wi = {bi,l |

bl ∈ Γ} for 1 ≤ i ≤ t, Wj = {c j,l | bl ∈ Λ} for t + 1 ≤ j ≤ m,
and W = WA ∪ ⋃t

i=1 Wi
⋃m

j=t+1 Wj. Since WA resolves A, Wi re-
solves Bi, Wj resolves Bj, and W does not satisfy the condition in
Lemma 15, we obtain that W is a resolving set of G. Therefore,

β(G) ≤ |W | = 3m − t + |A| − 1.

Now, suppose that β(G) ≤ 3m − t + |A| − 2 and S is a ba-
sis of G. By Lemma 8, there are at most 3m − t − 1 vertices
of B in S . For i ∈ {1, 2, . . . ,m}, let S i = S ∩ Bi. So, there
exists i ∈ {1, 2, . . . , t} or j ∈ {t + 1, t + 2, . . . ,m} such that
|S i| < β(C3) = 2 or |S j| < β(C6 + K1) = 3. If |S i| < β(C3) = 2,
it is clear that there exist two different vertices x1 and x2 in Bi

with the same representation with respect to S i, which implies
r(x1 | S ) = r(x2 | S ), a contradiction. By the same argument, if
|S j| < β(C6 + K1) = 3, there exist two different vertices y1 and y2

in Bj such that r(x1 | S ) = r(x2 | S ), a contradiction. Therefore,
we obtain that

β(G) ≥ |W | = 3m − t + |A| − 1.

3. Conclusion

Let G be a (μ, n − 1)-regular graph of order n for μ ∈
{1, 2, . . . , n − 1}. Let A, B ⊆ V(G) where A = {v | dG(v) =
n − 1, v ∈ V(G)} and B = {v | dG(v) = μ, v ∈ V(G)}. For m ≥ 1, let
B1, B2, . . . , Bm be partitions of B such that for 1 ≤ i ≤ m, G[Bi] is
a maximal connected induced subgraph of G.

In this paper, we provide an exact value of the metric dimen-
sion of a connected (μ, n − 1)-regular graphs G of order n ≥ 2
where for 1 ≤ i ≤ m, |Bi| = 1. We also give tight lower and upper
bound of β(G) where for 1 ≤ i ≤ m, |V(G[Bi])| ≥ 2. We also
show an existence of a connected (μ, n − 1)-regular graph G of
order n ≥ 2 where for 1 ≤ i ≤ m, |V(G[Bi])| ≥ 2, such that β(G)
is not equal to those either lower or upper bound above.
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