
Electronic Preprint for Journal of Information Processing Vol.25

Regular Paper

Transforming Graphs with the Same Graphic Sequence

Sergey Bereg1,a) Hiro Ito2,b)

Received: November 8, 2016, Accepted: February 9, 2017

Abstract: Let G and H be two graphs with the same vertex set V . It is well known that a graph G can be transformed
into a graph H by a sequence of 2-switches if and only if every vertex of V has the same degree in both G and H. We
study the problem of finding the minimum number of 2-switches for transforming G into H.

Keywords: graphs, degree sequence, 2-switch, graph transformation, approximation algorithm

1. Introduction

A graphic sequence is the sequence of numbers that are ver-
tex degrees of a graph. Any degree sequence whose sum is even
can be realized by a multigraph having loops [8]. In this paper
we consider simple graphs (graphs without loops and multiple
edges). Erdös and Gallai [6] found a characterization of graphic
sequences.
Theorem 1 (Erdös and Gallai [6]) A sequence of positive

numbers d1 ≥ d2 ≥ . . . ≥ dn is graphic if and only if

d1 + d2 + . . . + dn is even and the inequalities

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}

hold for every k.

Hakimi [8] and Havel [10] found another characterization of
graphic sequences.
Theorem 2 (Hakimi [8], Havel [10]) For n ≥ 1, a sequence S

of n nonnegative integers is graphic if and only if S ′ is graphic,

where S ′ is the sequence of size n − 1 obtained from S by delet-

ing its largest element d and subtracting 1 from its d next largest

elements. The only 1-element graphic sequence is d1 = 0.

The following transformation of a graph preserves the degree
sequence.
Definition 3 A 2-switch is the replacement of a pair of edges

(a, b) and (c, d) in a simple graph by the edges (a, c) and (b, d),
given that (a, c) and (b, d) did not appear in the graph originally,

see Fig. 1.

It is clear that the degrees of the vertices remain unchanged
when a 2-switch is applied to a graph. The following theorem
shows that two graphs with the same graphic sequence can be
transformed one to the other using 2-switches.
Theorem 4 If G and H are two simple graphs with vertex set

1 Department of Computer Science, The University of Texas at Dallas,
Richardson, TX 75080, USA.

2 Department of Computer and Network Engineering, School of Informat-
ics and Engineering, The University of Electro-Communications, Tokyo
182–8585, Japan.

a) besp@utdallas.edu
b) itohiro@uec.ac.jp

V, then dG(v) = dH(v) for every v ∈ V if and only if there is a

sequence of 2-switches that transforms G into H.

The graphs G and H have the same set of vertices. It can also
be viewed as two labelled graphs with the same set of labels. We
assume that n is the number of vertices in G (and in H).

Probably the earliest reference of Theorem 4 is Berge [2] stat-
ing that the 2-switch graph on the set of graphs with fixed degree
sequence is connected. It also can be found in West [13, p.45]. In
the proof of Theorem 4 both G and H are reduced to a canonical

graph with vertex set V . Each reduction uses at most m− 1 trans-
formations where m is the number of edges in G (see more details
in Section 2). Thus, the smallest number of 2-switches transform-
ing G to H is at most 2m − 2. Finding the minimum number of
2-switches transforming given G and H is of particular interest of
this paper.

Let G = (V, EG) and H = (V, EH) be two simple graphs such
that dG(v) = dH(v) for every v ∈ V . We consider a new graph
F(G,H) or just F defined as (V, EF) where EF = EG ∪EH −EG ∩
EH . We color the edges of F with two colors as follows. An edge
e is colored (i) red if e ∈ EG − EH , and (ii) blue if e ∈ EH − EG.
The number of red edges and the number of blue edges in F are
equal. We denote it by r(G,H).

A red-blue alternating walk in F (or an alternating walk, sim-
ply) is an even length cycle such that (i) the edges in the walk
are pairwise distinct, and (ii) the edge colors in the walk alternate
(red-blue-red-..-blue). Note that the vertices of a walk may not be
pairwise distinct. The set of edges of F can be decomposed into
red-blue alternating walks. Let p(G,H) be the maximum num-
ber of walks in a decomposition of a F into red-blue alternating
walks. Our main result is the following theorem.
Theorem 5 Let G = (V, EG) and H = (V, EH) be two simple

graphs such that dG(v) = dH(v) for every v ∈ V. The small-

Fig. 1 2-switch.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

est number of 2-switches for transforming G into H is equal to

r(G,H) − p(G,H).

2. Preliminaries

We call the coloring of graph F (defined in the previous sec-
tion) even since, for any vertex v, equal number of red and blue
edges are incident to v. It implies that the number of red edges
and the number of blue edges in F are equal (it is denoted by
r(G,H)). It also implies that the edges of F can be decomposed
into edge-disjoint cycles such that each cycle is a red-blue alter-
nating walk. We denote by p(G,H) the smallest number of cycles
in such a decomposition.

We also consider the complete graph Kn with the set of vertices
V . Clearly, F is the subgraph of Kn. We color the edges of Kn:
the common edges of F and Kn are colored red and blue as before
and the other edges are colored black and white as follows. An
edge e is colored
• black if e ∈ EH ∩ EG,
• white if e � EG ∪ EH .
The proof Theorem 4 uses a canonical graph C with vertex

set V defined inductively as follows. Let v1, v2, . . . , vn be the ver-
tices of V sorted such that their degrees form a non-increasing
sequence d(v1) ≥ d(v2) ≥ . . . d(vn). Consider the sequence

d(v2) − 1, d(v3) − 1, . . . , d(vk+1) − 1, d(vk+2), . . . , d(vn)

where k = d(v1). By Theorem 2 it is a graphic sequence.
Let C′ be a canonical graph corresponding to it. Then C

is obtained from C′ by adding a new vertex v1 and edges
(v1, v2), (v1, v3), . . . , (v1, vk+1).

The main argument in the proof of Theorem 4 is as follows.
Consider two sets S = {v2, v3, . . . , vk+1} and N(v1), the set of
neighbors of v1. If S = N(v1), then the theorem holds by in-
duction hypothesis. If S � N(v1), then any edge connecting v1

and a vertex z � S can be flipped to an edge connecting v1 and
a vertex x ∈ S − N(v1) using a 2-switch. By repeating this step
we spend at most k transformations for the induction step. With
every 2-switch we insert a new edge of the canonical graph C. In
the last 2-switch we add two edges of C. So, the total number of
2-switches is at most m − 1.

This gives an upper bound of 2m − 2 for the number of 2-
switches to transform the graph G to the graph H. Theorem 5
implies that, if m > 0, then at most (m − 1) 2-switches suffice
since r(G,H) ≤ m and p(G,H) ≥ 1.

3. Main Result

Our main result (Theorem 5) characterizes the 2-switch dis-
tance between two graphs, i.e., the smallest number of 2-switches
for transforming one graph into the other. Let ψ(G,H) =
r(G,H)− p(G,H) for two graphs satisfying the condition of The-
orem 5. Then, Theorem 5 states that the 2-switch distance be-
tween G and H is equal to ψ(G,H). We prove that ψ(G,H) is a
lower bound (Lemma 6) and an upper bound (Lemma 7) for the
2-switch distance between G and H.
Lemma 6 (Lower Bound) Let G′ be the graph obtained by a

2-switch from G. Then

ψ(G′,H) ≥ ψ(G,H) − 1. (1)

Proof: Consider any 2-switch of edges ab and cd by the edges
ac and bd. The edges ab and cd are each colored red or black.
The edges ac and bd are each colored blue or white. Let C′ be a
partition of F(G′,H) into p(G′,H) alternating walks.
Case 1. Both edges (a, b) and (c, d) are red.

Suppose that the colors of (a, c) and (b, d) are blue, see
Fig. 2 (a). Then r(G,H) = r(G′,H) + 2. The walks of C′ and
abdca form a partition of the set of edges of F(G,H) into alter-
nating walks. Therefore p(G,H) ≥ p(G′,H) + 1. The bound
Eq. (1) follows.

Suppose that the colors of (a, c) and (b, d) are blue and white
respectively, see Fig. 2 (b). Then r(G,H) = r(G′,H) + 1. One
of the walks of C′ contains (b, d). We replace (b, d) with bacd to
obtain the set of alternating walks for F(G,H). Thus p(G,H) ≥
p(G′,H). The bound Eq. (1) follows.

Suppose that the colors of (a, c) and (b, d) are white, see
Fig. 2 (c) and (d). Then r(G,H) = r(G′,H). If the red edges
(a, c) and (b, d) belong to different walks C1 and C2 of C′, then
C1 − {(a, c)} and C2 − {(b, d)} can be combined in one alternat-
ing walk with (a, b) and (c, d) in F(G,H), see Fig. 2 (c). Thus
p(G,H) ≥ p(G′,H) − 1. The bound Eq. (1) follows.

If the red edges (a, c) and (b, d) are connected in one alternating
walk C, then p(G,H) ≥ p(G′,H) + 1, see Fig. 2 (d). The bound
Eq. (1) follows.
Case 2. The edge (a, b) is red and the edge (c, d) is black.

Suppose that the colors of (a, c) and (b, d) are blue, see
Fig. 3 (a). Then r(G,H) = r(G′,H) + 1. By replacing the
edge (c, d) in an alternating walk from C′ by cabd we bound
p(G,H) ≥ p(G′,H). The bound Eq. (1) follows.

Suppose that the colors of (a, c) and (b, d) are blue and white
respectively, see Fig. 3 (b). Then r(G,H) = r(G′,H). If the
edges (b, d) and (c, d) are in two alternating walks C1 and C2

of C′, then they can be combined in one alternating walk C1 ∪
C2 ∪ {(a, b), (a, c)} − {(b, d), (c, d)}, see Fig. 3 (c). If the edges
(b, d) and (c, d) are in a same alternating walk, then they can
be replaced by (a, b) and (a, c), see Fig. 3 (d). In both cases
p(G,H) ≥ p(G′,H) − 1. The bound Eq. (1) follows.

Suppose that the colors of (a, c) and (b, d) are white, see
Fig. 3 (e). Then r(G,H) = r(G′,H) − 1. To bound p(G,H) we
check the walks of C′ containing the edges (a, c), (c, d) and (b, d).
If there are three walks, then they can be combined in one walk
for G, see Fig. 3 (e). The number of walks can be two or one,
see Fig. 3 (f). In all cases p(G,H) ≥ p(G′,H) − 2 and the bound
Eq. (1) follows.
Case 3. The edges (a, b) and (c, d) are black.

Suppose that the colors of (a, c) and (b, d) are blue, see
Fig. 4 (a). Then r(G,H) = r(G′,H) and p(G,H) ≥ p(G′,H) − 1
by an argument similar to Case 1 where (a, c) and (b, d) are white.
The bound Eq. (1) follows.

Suppose that the colors of (a, c) and (b, d) are blue and white
respectively, see Fig. 4 (b). Then r(G,H) = r(G′,H) − 1 and
p(G,H) ≥ p(G′,H) − 2 by an argument similar to Case 2 where
(a, c) and (b, d) are white. The bound Eq. (1) follows.

Suppose that the colors of (a, c) and (b, d) are white, see
Fig. 4 (c). Then r(G,H) = r(G′,H) − 2. If abcda is a walk of
C′, then p(G,H) ≥ p(G′,H) − 1. If the edges of abcda par-

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 2 Case 1 of the lower bound. Red and blue edges are shown as solid lines, bold and thin respectively.
Black and white edges are shown as dashed lines, bold and thin respectively. The edges (a, b) and
(c, d) are red and the edges (a, c) and (b, d) are (a) both blue, and (b) blue and white, and (c), (d)
both white.

Fig. 3 Case 2 of the lower bound.

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 4 Case 3 of the lower bound.

Fig. 5 Lemma 7. (a) v1 � v4 or v2 � v5. (b) (v1, v4) is red. (c) (v1, v4) is blue.

ticipate in two walks of C′, then p(G,H) ≥ p(G′,H) − 1, see
Fig. 4 (d). If the edges of abcda participate in three cycles of C′,
then p(G,H) ≥ p(G′,H) − 2, see Fig. 4 (e). If the edges of abcda

participate in four cycles of C′, then p(G,H) ≥ p(G′,H) − 3,
see Fig. 4 (f). In all cases p(G,H) ≥ p(G′,H) − 3 and the bound
Eq. (1) follows. �
Lemma 7 (Upper Bound) Let G = (V, EG) and H = (V, EH) be

two simple graphs such that dG(v) = dH(v) for every v ∈ V. There

exists a 2-switch in G or H that decreases the value of ψ(G,H) by

exactly one.

Proof: The graph F(G,H) can be partitioned into p(G,H) alter-
nating walks. From all partitions of F(G,H) into p(G,H) alter-
nating walks, we select a partition C such that its shortest walk
C = v1v2 . . . vk has the least length. We prove Lemma 7 by induc-
tion on k.

Suppose that |C| = 4. We apply a 2-switch in G replacing edges
(v1, v2) and (v3, v4) with (v2, v3) and (v1, v4). Let G′ be the new
graph. Then r(G′,H) = r(G,H) − 2 and p(G′,H) = p(G,H) − 1.
Thus, ψ(G′,H) = ψ(G,H) − 1.

Now suppose that |C| ≥ 6. Then v1 � v4 or v2 � v5 since
the edges (v1, v2) and (v4, v5) have different colors, see Fig. 5 (a).
Without loss of generality we assume that v1 � v4. We consider 4
cases depending on the color of (v1, v4).

Suppose that (v1, v4) is red. Let C′ be a walk in C containing
(v1, v4). The edges of C ∪C′ can be partitioned into two walks so
that one walk is v1v4v5 . . . vk, see Fig. 5 (b). This walk is shorter

than C. This is a contradiction.
If (v1, v4) is blue, then again C ∪C′ can be partitioned into two

walks so that one walk is 4-cycle v1v2v3v4, see Fig. 5 (c). This is a
contradiction again.

If (v1, v4) is white, then apply a 2-switch to G replacing edges
(v1, v2) and (v3, v4) with (v1, v4) and (v2, v3). Let G′ be the new
graph. Then r(G′,H) = r(G,H) − 1 and p(G′,H) = p(G,H), see
Fig. 6 (a). Then ψ(G′,H) = ψ(G,H) − 1 by induction hypothesis.

If (v1, v4) is black, then apply a 2-switch to H replacing edges
(v1, v2) and (v3, v4) with (v1, v4) and (v2, v3). Let H′ be the new
graph. Then r(G,H′) = r(G,H) − 1 and p(G,H′) = p(G,H), see
Fig. 6 (b). Then ψ(G,H′) = ψ(G,H) − 1 by induction hypothesis.
The lemma follows. �

Theorem 5 simply follows from the upper and lower bounds.

4. Computing Distance ψ(G, H)

A plausible approach to compute a smallest sequence of 2-
switches is as follows. Find a largest size decomposition of F into
alternating walks and then find a sequence of ψ(G,H) 2-switches
transforming G to H. We show that the second step can be done
in polynomial time for any (not necessary the largest) decompo-
sition of F. Unfortunately the first step is a NP-hard problem. We
develop an approximation algorithm for computing d(G,H).

4.1 Computing 2-switches
We design an algorithm for computing 2-switches based on

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

Fig. 6 An illustration of the proof of Lemma 7. (a) Graph F(G,H) with white edge (v1, v4) and graph
F(G′,H). (b) Graph F(G,H) with black edge (v1, v4) and graph F(G,H′).

a given decomposition C of F(G,H) into red-blue alternating
walks. We define ψ(G,H,C) = r(G,H) − |C|.
Lemma 8 Let G = (V, EG) and H = (V, EH) be two simple

graphs such that dG(v) = dH(v) for every v ∈ V. Let C be a

decomposition of the edges of F(G,H) into red-blue alternating

walks. Then a sequence of ψ(G,H,C) 2-switches transforming G

into H can be computed in O(|V | · |C|) time.

Proof: The algorithm follows the steps of the proof of Lemma 7.
However we cannot use the proof directly since C is not assumed
to have the largest size. The algorithm repeats the following step
until C = ∅.

Find a shortest walk C = v1v2 . . . vk in C. If |C| = 4 then ap-
ply a 2-switch to the edges of C producing the graph G′. Then
C − C is the decomposition of F(G′,H) into |C| − 1 alternating
walks. Since r(G′,H) = r(G,H) − 2, we have ψ(G′,H,C) =
ψ(G,H,C −C) − 1. The algorithm continues with C −C.

Suppose that |C| ≥ 6. As in the proof of Lemma 7, v1 � v4 or
v2 � v5. We consider only the case v1 � v4 since the case v2 � v5

is similar.
Suppose that (v1, v4) is red. Find a walk C′ in C containing

(v1, v4). There are two paths p1 = v1v4 and p2 = v1v2v3v4 from
v1 to v4. Replace p1 in C′ by p2 and replace p2 in C by p1. The
length of walk C decreases by 2. Repeat the main step for C.

If (v1, v4) is blue, then apply a 2-switch to v1v2v3v4 producing
the graph G′. Two walks C and C′ are transformed into one walk.
Let C′ be the new set of walks. Then r(G′,H) = r(G,H) − 2 and
ψ(G′,H,C′) = ψ(G,H,C) − 1.

If (v1, v4) is white, then apply a 2-switch in G replacing edges
(v1, v2) and (v3, v4) with (v1, v4) and (v2, v3). The walk C is
changed as in Fig. 6 (a) producing new set of walks C′. Then
r(G′,H) = r(G,H) − 1 and |C′| = |C|. Thus, ψ(G′,H,C′) =
ψ(G,H,C) − 1.

If (v1, v4) is black, then apply a 2-switch in H replacing edges
(v1, v4) and (v2, v3) with (v1, v2) and (v3, v4). Again ψ(G′,H,C′) =
ψ(G,H,C) − 1, see Fig. 6 (b).

The number of 2-switches computed by the algorithm is equal
to ψ(G,H,C). We analyze the implementation details and the run-
ning time.

We store the walks in a list. With every walk we store its size.
With every edge (u, v) of G ∪ H, we store its color and a pointer
to the corresponding walk if the color is red or blue. Note that
a found 2-switch can be applied to either G or H. We store 2-
switches in two lists accordingly. When the algorithm finishes
we concatenate two lists into one.

One iteration of the algorithm takes a constant time. After each

iteration, either a new 2-switch is found or the size of C is re-
duced. Since the maximum size of C is |V |, the lemma follows.

�
To compute ψ(G,H), it remains to compute the largest C by

Lemma 8. Unfortunately this problem is NP-hard.

4.2 NP-hardness
The decision problem of computing distance ψ(G,H) is as fol-

lows.
2-switches problem. Given an integer k and graphs G =

(V, EG) and H = (V, EH) such that dG(v) = dH(v) for every v ∈ V ,
determine whether G can be transformed to H with at most k 2-
switches, i.e., ψ(G,H) ≤ k.

Caprara [4] proved that the problem of computing the
maximum-cardinality decomposition of a balanced graph into al-
ternating walks is NP-hard. By Theorem 5 the 2-switches prob-
lem is NP-complete.

4.3 Approximation
The main idea of our approximation algorithm is a reduction to

the maximum independent set problem where one wants to find a
maximum-cardinality independent set of a graph. The problem
is known to be NP-hard [7]. Furthermore, for some positive con-
stant ε > 0, finding an approximation of the size of maximum
independent set within a factor of nε is NP-hard [1]. For some
classes of graphs, there exist approximation algorithms with a
constant factor [3], [9], [11], [14].

A k-claw in an undirected graph is an induced subgraph K1,k. A
graph is k-claw free if no vertex has k distinct independent neigh-
bors. k-claw free graphs admit a polynomial time approximation
algorithms.
Theorem 9 (Refs. [9], [11], [14]) Let ε > 0 and k ≥ 3 be con-

stants. Let I∗ be a maximum independent set in a k-claw free

graph G. An independent set I of size bounded by

|I∗| ≤
(

k − 1
2
+ ε

)
|I|

can be computed in polynomial time.

We define a graph F4 using alternating walks of length four in
F: a vertex of F4 corresponds to an alternating walk of length four
in F, two vertices are connected by an edge if the corresponding
walks have at least one common edge in F.
Lemma 10 The graph F4 is 5-claw free.

Proof: Suppose that F4 has a 5-claw with center v. Let C be the
corresponding 4-walk in F. There are two neighbors u and w of

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

v in the 5-claw such that their 4-walks share the same edge of C

(otherwise v has at most 4 neighbors in F4). Then (u, w) is an
edge of F4 which contradicts the definition of 5-claw. �
Theorem 11 Let ε > 0 be a positive constant and let G =

(V, EG) and H = (V, EH) be graphs such that dG(v) = dH(v) for

every v ∈ V. There is a polynomial time algorithm for computing

a (3/2+ε)-approximation of the 2-switch distance between G and

H.

Proof: We assume that ε < 1/2.

Algorithm ApproxDistance (ε,G,H)
Given ε > 0 and two graphs G and H, find a sequence of at most
(3/2 + ε)d(G,H) 2-switches transforming G into H.

(1) Construct F4 which is a 5-claw free graph. Set

δ =
2

1 − 2ε
− 2. (2)

Find an independent set I of size at least |I∗|/(2 + δ) using
Theorem 9 where I∗ is a maximum independent set in F4.
Let C4 be the set of alternating walks corresponding to I.

(2) Remove the walks of C4 from F and decompose the remain-
ing edges into alternating walks. This decompositionD can
be done arbitrarily. Let C′4 = D ∪ C4 be the set of all walks,
i.e. C′4 is a decomposition of F(G,H).

(3) Find a list of 2-switches according to C′4 using the algorithm
from Lemma 8. The number of 2-switches is r(G,H) − |C′4|.

Set r = r(G,H). Let P be a maximum walk decomposition of
EF and set p = |P|. Let p′ be the number of walks produced by
our algorithm. By Theorem 5, it suffices to prove that

r − p′ ≤
(

3
2
+ ε

)
(r − p). (3)

By Lemma 10, F4 is 5-claw free graph. By Theorem 9 the in-
dependent set of F4 computed in Step 1 is a (2+δ)-approximation.
Set p′4 = |C4| and let p∗4 be the size of largest set of independent
4-walks in F. Let p4 be the number of 4-walks in P. Then

(2 + δ)p′4 ≥ p∗4 ≥ p4. (4)

There are two groups of walks in P: p4 walks of length four
and p − p4 walks of length at least six. Then

r ≥ 2p4 + 3(p − p4) = 3p − p4.

By Eq. (4)

r ≥ 3p − (2 + δ)p′4 ≥ 3p − (2 + δ)p′. (5)

By Eq. (2), δ > 0 (since ε < 1/2) and

ε =
1
2
− 1

2 + δ
.

It can be verified that

(2 + δ)(1 + 2ε) − 2 = (2 + δ)

(
3
2
+ ε

)
− 3. (6)

Since every walk in P contains at least two red edges, we have

r ≥ 2p. (7)

Multiplying left hand sides and right hand sides of Eqs. (6) and
(7) (and dividing by two), we obtain

(
(2 + δ)

(
1
2
+ ε

)
− 1

)
r ≥

(
(2 + δ)

(
3
2
+ ε

)
− 3

)
p.

It can be written as

3p − r ≥ (2 + δ)

((
3
2
+ ε

)
p −

(
1
2
+ ε

)
r

)
. (8)

By Eq. (5) we have (2 + δ)p′ ≥ 3p − r. Combining it with
Eq. (8) we get

p′ ≥
(

3
2
+ ε

)
p −

(
1
2
+ ε

)
r

which implies Eq. (3). �

5. Conclusions

It is well known that, for any two graphs with the same degree
sequence, one graph can be transformed into the other graph by
a sequence of 2-switches. We studied the problem of finding the
minimum number of 2-switches for transforming one graph into
the other. Our main result is Theorem 5 that provides a formula
for the number of 2-switches. Since the problem of computing
the cycle decomposition is NP-hard, we design an approximation
algorithm with the approximation factor close to 1.5. An inter-
esting open problem is to improve the approximation guarantee.
One can explore a recent development in an approximation of the
k-set packing [5], [12].

Acknowledgments We thank CREST, JST, Grant Number
JPMJCR1402 and JSPS KAKENHI Grant Numbers 15K11985
through which this work was partially supported.

References

[1] Arora, S., Lund, C., Motwani, R., Sudan, M. and Szegedy, M.: Proof
verification and the hardness of approximation problems, J. ACM,
Vol.45, No.3, pp.501–555 (1998).

[2] Berge, C.: Graphes et hypergraphes, Number 37 in Monographies
Universitaires de Mathématiques, Dunod, Paris (1970).

[3] Berman, P.: A d/2 approximation for maximum weight independent
set in d-claw free graphs, Proc. 7th Scand. Workshop Algorithm The-
ory, pp.214–219 (2000).

[4] Caprara, A.: Sorting permutations by reversals and Eulerian cycle de-
compositions, SIAM Journal on Discrete Mathematics, Vol.12, No.1,
pp.91–110 (1999).

[5] Cygan, M.: Improved approximation for 3-dimensional matching via
bounded pathwidth local search, Proc. 54th Annu. IEEE Sympos.
Found. Comput. Sci., FOCS, pp.509–518 (2013).

[6] Erdös, P. and Gallai, T.: Graphs with prescribed degrees of vertices,
Mat. Lapok, Vol.11, pp.264–274 (1960).

[7] Garey, M.R. and Johnson, D.S.: Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman, New York,
NY (1979).

[8] Hakimi, S.L.: On the realizability of a set of integers as degrees of the
vertices of a graph, SIAM Journal on Applied Mathematics, Vol.10,
pp.496–506 (1962).

[9] Halldórsson, M.M.: Approximating discrete collections via local
improvements, Proc. 6th ACM-SIAM Sympos. Discrete Algorithms,
pp.160–169 (1995).

[10] Havel, V.: A remark on the existence of finite graphs, Časopis pro
Pěstováni Matematiky, Vol.80, pp.477–480, (1955). [in Czech].

[11] Hurkens, C.A.J. and Schrijver, A.: On the size of systems of sets ev-
ery t of which have an SDR, with an application to the worst-case ratio
of heuristics for packing problems, SIAM Journal on Discrete Mathe-
matics, Vol.2, No.1, pp.68–72 (1989).

[12] Sviridenko, M. and Ward, J.: Large neighborhood local search for the
maximum set packing problem, Proc. 40th Internat. Colloq. Automata
Lang. Prog., Part I, pp.792–803 (2013).

c© 2017 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.25

[13] West, D.: An Introduction to Graph Theory, Prentice Hall (1995).
[14] Yu, G. and Goldschmidt, O.: Local optimality and its applications on

independent sets for k-claw free graphs, Journal of Combinatorial Op-
timization, Vol.1, No.2, pp.151–164 (1997).

Sergey Bereg received M.S. in Computer
Science from Ural State University in
1985 and Ph.D. in Computer Science from
Minsk Institute of Mathematics in 1992.
He is currently an Associate Professor at
the University of Texas at Dallas. His re-
search interests are in the foundations of
computer science, in particular Computa-

tional Geometry, Computational Biology and Coding Theory. Dr.
Bereg is a member of ACM.

Hiro Ito received B.E., M.E., and Ph.D.
degrees in the Department of Applied
Mathematics and Physics from the Fac-
ulty of Engineering, Kyoto University
in 1985, 1987, and 1995, respectively.
1987-1996, 1996-2001, and 2001-2012,
he was a member of NTT Laboratories,
Toyohashi University of Technology, and

Kyoto University, respectively. Since 2012, he has been a Full
Professor in School of Informatics and Engineering at The Uni-
versity of Electro-Communications (UEC). He has been engaged
in research on discrete algorithms mainly on graphs and net-
works, discrete mathematics, recreational mathematics, and algo-
rithms for big data. Dr. Ito is a member of IEICE, the Operations
Research Society of Japan, IPSJ, and the European Association
for Theoretical Computer Science.

c© 2017 Information Processing Society of Japan

