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Abstract: A 2-switch on a simple graph G consists of deleting two edges {u, v} and {x, y} of G and adding the edges
{u, x} and {v, y}, provided the resulting graph is a simple graph. It is well known that if two graphs G and H have the
same set of vertices and the same degree sequence, then H can be obtained from G by a finite sequence of 2-switches.
While the 2-switch transformation preserves the degree sequence other conditions like connectivity may be lost. We
study the restricted case where 2-switches are applied to trees to obtain trees.
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1. Introduction

The tree graph of a connected graph G is the graph T (G) whose
vertices are the spanning trees of G, and two trees P and Q are
adjacent if P can be obtained from Q by deleting an edge p of P

and adding an another edge q of Q. It is easy to prove that T (G) is
always connected and Cummins [4] proved that if G has a cycle,
then T (G) is hamiltonian.

Some variations of the tree graph have been studied, like the
adjacency tree graph studied by Zhang and Chen [11] and by
Heinrich and Liu [8], the leaf exchange tree graph studied by
Broersma and Li [3] and by Harary, Mokken and Plantholt [6];
and the tree graph defined by a set of cycles studied by Li,
Neumann-Lara and Rivera-Campo [9].

Let n ≥ 2 be an integer and consider the complete graph Kn

with vertices v1, v2, . . . , vn. Let σ = (d1, d2, . . . , dn) be the de-
gree sequence of a spanning tree T of Kn. We define the fixed

degree tree graph of Kn, with respect to σ, as the graph Tσ(Kn)
whose vertices are the spanning trees of Kn with degree sequence
σ; that is the spanning trees S of Kn such that degS (vi) = di for
i = 1, 2, . . . , n. Two spanning trees P and Q of Kn are adjacent
in Tσ(Kn) if there are non-adjacent edges p and r of P and non-
adjacent edges q and s of Q, such that Q can be obtained from P

by deleting p and r and adding q and s. An example appears in
Fig. 1.

This transformation of graphs is known as a 2−switch.
Havel [7] and Hakimi [5] (see also Berge [2]) proved that if two
simple graphs G and H with vertex set V are such that dG(v) =
dH(v) for each v ∈ V , then H can be obtained from G by a finite
sequence of 2-switches. Bereg and Ito [1] gave a formula for the
minimum number of 2-switches needed to obtain H from G.

A graph H obtained from a tree T by a 2-switch may not be a
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tree. In this article we present some results related to the connec-
tivity and traversability of the graphs Tσ(Kn), in which all vertices
are trees. For a connected graph G, the distance d(u, v) between
two vertices u and v of G is the length of a shortest path joining u

and v in G. The diameter, diam(G), of a connected graph G is the
maximum distance among the vertices of G.

2. Preliminary Results

We say that a sequence of integers σ = (d1, d2, . . . , dn) is an ar-

boreal sequence of order n if there exists a tree T with n vertices
v1, v2, . . . vn such that dT (vi) = di for i = 1, 2, . . . , n.

We need the following well known results.
Theorem 1. A sequence σ = (d1, d2, . . . , dn) of integers is an

arboreal sequence if and only if

1 ≤ di ≤ n − 1 for i = 1, 2, . . . , n, and

d1 + d2 + . . . + dn = 2(n − 1).
Theorem 2. [10] Let σ = (d1, d2, . . . , dn) be an arboreal se-

quence of order n. The number of spanning trees of Kn with de-

gree sequence σ is

(n − 2)!
(d1 − 1)!(d2 − 1)! . . . (dn − 1)!

.

Theorem 3. Let G be a graph with maximum degree Δ and for

i = 1, 2, . . . ,Δ let ni be the number vertices of G with degree i.

Then

∑
{u,v}∈E(G)

(dG(u) + dG(v)) =
Δ∑

i=1

i2ni.

Theorem 2 gives the order of Tσ(Kn). The degree of a vertex
in Tσ(Kn) corresponding to a tree P is given by the number of
pairs of non-adjacent edges in P. Then by a counting argument
we have the following theorem.
Theorem 4. For every arboreal sequence σ, the graph Tσ(Kn) is

a

⎛⎜⎜⎜⎜⎜⎜⎝
(

n
2

)
− 1

2

Δ∑
i=1

i2ni

⎞⎟⎟⎟⎟⎟⎟⎠-regular graph where ni is the number of ver-

tices of degree i and Δ is the largest integer in σ.
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c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 1 Tσ(K5) with σ = (1, 2, 1, 3, 1).

Proof. Let σ be an arboreal sequence, let P be a vertex of
Tσ(Kn) and let e = {u, v} be and edge of P. Since the number
of adjacent edges to e is dP(u) + dP(v) − 1, the number of non-
adjacent edges to e is n − dP(u) − dP(v). Adding over all edges of
P and using Theorem 3 we obtain:

∑
{u,v}∈E(P)

n − dP(u) − dP(v)
2

=
n(n − 1)

2
−

∑
{u,v}∈E(P)

dP(u) + dP(v)
2

=

(
n
2

)
− 1

2

Δ∑
i=1

i2ni.

�

3. Main Results

Let σ = (d1, d2, . . . , dn) be an arboreal sequence. For any ver-
tex v of Kn we denote by σ(v) the integer di, where i is such that
v = vi. Let v be a vertex in Kn such that σ(v) = 1. For each vertex
u with σ(u) > 1, let Hv(u) be the subgraph of Tσ(Kn) induced by
those spanning trees of Kn with degree sequence σ in which v is
adjacent to u.
Lemma 5. Let σ be an arboreal sequence of order n ≥ 4. Let v

be a vertex of Kn such that σ(v) = 1. For each vertex u of Kn with

σ(u) > 1 the graph Hv(u) is isomorphic to Tλu (Kn − v), where λu

is the arboreal sequence of order n − 1 given by λu(u) = σ(u) − 1
and λu(w) = σ(w) for each vertex w with w ∈ V(Kn) − {u, v}.
Proof. Let Θ : V(Hv(u)) → V(Tλu (Kn − v)) be given by Θ(P) =
P− v. Since {v, u} is a terminal edge of P and dP(v) = 1, then P− v
is a spanning tree of Kn − v; it is clear that Θ is a bijective func-
tion. If two trees P and Q are adjacent in Hv(u), then there exist
edges p and r in P different from e = {v, u} and edges q and s in
Q, also different from e, such that Q = (P−{p, r})+{q, s}. Clearly
Θ(Q) = Q− v = ((P− v)− {p, r})+ {q, s} = (Θ(P)− {p, r})+ {q, s}.
Therefore Θ(P) and Θ(Q) are adjacent in Tλu (Kn − v). Analo-
gously if Θ(P) and Θ(Q) are adjacent in Tλu (Kn − v), then P and
Q are adjacent in Hv(u). �
Lemma 6. Let σ be an arboreal sequence and let Q be a span-

ning tree of Kn with degree sequence σ. Let v be a vertex of Kn

such that σ(v) = 1. For each vertex u not adjacent to v in Q

with σ(u) > 1, there exists a spanning tree P of Kn, also with

degree sequence σ, containing the edge {v, u}, and such that P is

adjacent to Q in Tσ(Kn).
Proof. Let u be a vertex not adjacent to v in Q and let x be
the vertex adjacent to v in Q. Since σ(u) > 1, there is a ver-

Fig. 2 T(3,1,1,1)(K4) and T(1,2,2,1)(K4).

tex y adjacent to u in Q not lying in the vu path of Q. Let
P = (Q − {{v, x}, {u, y}}) + {{v, u}, {x, y}}. Clearly {v, u} is an edge
of P, and Q is adjacent to P in Tσ(Kn). �
Theorem 7. Let n ≥ 4 be an integer. For every arboreal sequence

σ, diam(Tσ(Kn)) ≤ n − 3. In particular, Tσ(Kn) is connected.

Proof. The result holds for n = 4, see Fig. 2. We proceed by in-
duction assuming that for an integer m ≥ 4, diam(Tλ(Km)) ≤ m−3
for every arboreal sequence λ . We prove that diam(Tσ(Km+1)) ≤
m − 2 for any arboreal sequence σ.

Let v be a vertex of Km+1 for which σ(v) = 1 and let P and
Q be vertices of Tσ(Km+1). If there is a vertex u of Km+1 with
σ(u) > 1 such that both P and Q are vertices of Hv(u), then
d(P,Q) ≤ diam(Hv(u)) = diam(Tσ(Km+1) − v) ≤ m − 3 by
Lemma 5 and by the induction hypothesis, where λ is the arboreal
sequence of order m given by λ(u) = σ(u) − 1 and λ(w) = σ(w)
for w ∈ V(Km) − {u, v}.

If P is a vertex of Hv(u) and Q is a vertex of Hv(w) with u � w,
then by Lemma 6 there is a vertex R of Hv(u) which is adja-
cent to Q in Tσ(Km+1). In this case d(P,Q) ≤ d(P,R) + 1 ≤
diam(Hv(u))+1 = diam(Tσ(Km+1)−v)+1 ≤ (m−3)+1 = m−2. �
Theorem 8. Let n ≥ 4 be an integer and σ an arboreal sequence.

For each tree in Tσ(Kn), there exists a hamiltonian path in Tσ(Kn)
that starts in P.

Proof. The result holds for n = 4, see Fig. 2. We proceed by
induction assuming that for an integer m ≥ 4 and for every ar-
boreal sequence λ and every spanning tree Q of Km with degree
sequence λ, the graph Tλ(Km) contains a hamiltonian path starting
in Q. We prove the result for Tσ(Km+1).

As in the proof of the previous theorem consider a vertex v of
Km+1 for which σ(v) = 1 and let u1, u2, . . . , ur be the vertices of
Km+1 with σ(ui) > 1. For i = 1, 2, . . . , r let λi be the arboreal
sequence of order m given by λi(ui) = σ(ui)− 1 and λi(w) = σ(w)
for v � w � ui.

Let P be a vertex of Tσ(Km+1). Without loss of generality let
us suppose P is a vertex of Hv(u1). By Lemma 5 the graph Hv(u1)
is isomorphic to Tλ1 (Km+1 − v) and by the induction hypothesis
Tλ1 (Km+1 − v) contains a hamiltonian path that starts in P− v; this
implies that Hv(u1) contains a hamiltonian path T1 that starts in
P. Let Q1 denote the other end of T1. By Lemma 6 there exists a
vertex P2 of Hv(u2) which is adjacent to Q1 in Tσ(Km+1). Again
by Lemma 5 and by the induction hypothesis, there is a hamilto-

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 3 Hamiltonian path joining P5 and Q5 in Tσ(K5).

nian path T2 of Hv(u2) that starts in P2 and ends at some vertex
Q2. Clearly this process can be continued to obtain a hamiltonian
path of Tσ(Km+1) that starts in P. �
Theorem 9. If n ≥ 5 and σn = (1, 2, 2, . . . , 2, 1), then Tσn (Kn) is

hamiltonian.

Proof. Let v1, v2, . . . , vn denote the vertices of Kn. We prove
by induction that for each integer n ≥ 5 and for each ordering
vi1 , vi2 , . . . , vin of the vertices of Kn, the graph Tσn (Kn) contains a
hamiltonian path that starts in Pn = (vi1 , vi2 , . . . , vin ) and ends in
Qn = (vi1 , vin−1 , vin−2 , . . . , vi2 , vin ). The result follows since Pn and
Qn are adjacent in Tσn (Kn).

We show the case n = 5 and the inductive step for the ordering
vik = vk for k = 1, 2, . . . , n. All other orderings may be treated
analogously. Figure 3 shows that Tσ5 (K5) contains a hamilto-
nian path that starts in P5 and ends in Q5. We proceed by in-
duction assuming that for certain integer m ≥ 5 and for each
spanning path P = (vi1 , vi2 , . . . , vim ) of Km the graph Tσm (Km)
contains a hamiltonian path that starts in P and ends in Q =

(vi1 , vim−1 , vim−2 , . . . , vi2 , vim ) and consider the graph Tσm+1 (Km+1),
where σm+1 is the arboreal sequence (1, 2, 2, . . . , 2, 1) of order
m + 1. Let

P1
m+1 = (v1, v2, . . . , vm+1) = Pm+1,

Q1
m+1 = (v1, v2, vm, vm−1, . . . , v3, vm+1).

For i = 2, . . . ,m − 2, let

Pi
m+1 = (v1, vi+1, vi+2, . . . , vm, v2, v3, . . . , vi, vm+1),

Qi
m+1 = (v1, vi+1, vi, . . . , v2, vm, vm−1, . . . , vi+2, vm+1),

and let

Pm−1
m+1 = (v1, vm, v2, v3, . . . , vm−1, vm+1),

Qm−1
m+1 = (v1, vm, vm−1, . . . , v2, vm+1) = Qm+1.

For i = 1, 2, . . . ,m − 1 let Hi be the subgraph of Tσm+1 (Km+1), in-
duced by the spanning paths of Km+1 in which v1 is adjacent to
vi+1. By Lemma 5, Hi is isomorphic to Tλi+1 (Km+1 − v1), where
λi+1 is the arboreal sequence of order m given by λi+1(vi+1) = 1
and λi+1(v j) = 2 if 1 � j � i + 1. By the induction hypothesis
Tλi+1 (Km+1−v1) contains a hamiltonian path that starts in Pi

m+1−v1
and ends in Qi

m+1−v1. This implies that Hi contains a hamiltonian
path Ri that starts in Pi

m+1 and ends in Qi
m+1.

Finally, observe that for i = 1, 2, . . . ,m − 2, Pi+1
m+i =

Qi
m+1 − {{v1, vi+1}, {vi+2, vm+1}} + {{v1, vi+2}, {vi+1, vm+1}} which im-

plies that Qi
m+1 and Pi+1

m+i are adjacent in Tσm+1 (Km+1). There-
fore R1,R2, . . . ,Rm−1 can be joined to form a hamiltonian path in
Tσm+1 (Km+1) that starts in Pm+1 = P1

m+1 and ends in Qm+1 = Qm−1
m+1,

Fig. 4 Case m + 1 = 7 in Theorem 9.

Fig. 5 T(2,2,1,1,2,2)(G) is disconected.

see Fig. 4 for the case m + 1 = 7. �
The fixed degree tree graph may be defined for any connected

graph G as follows: Let σ be the degree sequence of a spanning
tree Q of G and let Tσ(G) be the graph whose vertices are the
spanning trees S of G such that dS (u) = dQ(u) for each vertex
u of G. As in the case G = Kn, two trees P and S are adjacent
in Tσ(G) if there are non-adjacent edges p and r of P and non-
adjacent edges t and s of S , such that S can be obtained from P

by deleting p and r and adding t and s.
A fixed degree tree graph Tσ(G) of a connected graph may no

longer be connected as shown in Fig. 5. For complete bipartite
graphs we have the following results.

Let n and m be positive integers. A sequence σ of order n + m

is (n,m)-arboreal if there is an spanning tree T of Kn,m that has σ
as its degree sequence.

Let (Xm, Yn) be the bipartition of the complete bipartite graph
Km,n. Let Xm = {x1, x2, . . . , xm}, Yn = {y1, y2, . . . , yn} and σ =
(a1, a2, . . . , am, b1, b2, . . . , bn) be an (m, n)-arboreal sequence. For
any vertex x of Xm, we denote by σ(x) the integer ai, where i is
such that x = xi and we denote σ(y) the integer bi, where i is
such that y = yi for any vertex y of Yn. Let x be a vertex in Xm

such that σ(x) = 1. For each vertex y with σ(y) > 1, let Hx(y) be
the subgraph of Tσ(Km,n) induced by those spanning trees of Km,n

with degree sequence σ in which x is adjacent to y.
Lemma 10. Let σ be an (m, n)-arboreal sequence with m ≥ 3
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Fig. 6 The graph Tσ3,3 (K3,3).

and n ≥ 3, and let (Xm, Yn) be the bipartition of the complete bi-

partite graph Km,n. Let x be a vertex of Xm such that σ(x) = 1.

For each vertex y of Yn with σ(y) > 1 the graph Hx(y) is isomor-

phic to Tλy (Km,n− x), where λy is the (m−1, n)-arboreal sequence

given by λy(y) = σ(y) − 1, λy(w) = σ(w) for each vertex w in Yn

with w � y and λy(v) = σ(v) for each vertex v in Xm with v � x.

Theorem 11. Let n and m be positive integers. The graph

Tσ(Km,n) is connected for every (m, n)-arboreal sequence σ.

The proofs are similar to those of Lemma 5 and Theorem 7,
respectively, and are omitted here.

For n ≥ 3, let σn,n be the (n, n)-arboreal sequence given by
σn,n(x1) = 1 = σn,n(yn), σn,n(xi) = 2 for i = 2, 3, . . . , n and
σn,n(y j) = 2 for j = 1, 2, . . . , n−1; and let σn+1,n be the (n+1, n)-
arboreal sequence given by σn+1,n(x1) = 1 = σn+1,n(xn+1),
σn+1,n(xi) = 2 for i = 2, 3, . . . , n and σn+1,n(y j) = 2 for j =

1, 2, . . . , n.
Theorem 12. Let n ≥ 3 be an integer. The graphs Tσn,n (Kn,n) and

Tσn+1,n (Kn+1,n) are hamiltonian.

Proof. We prove that for any ordering xi1 , xi2 , . . . xin of Xn and
any ordering y j1 , y j2 , . . . , y jn of Yn, the graph Tσn,n (Kn,n) contains a
hamiltonian path that starts in Pn,n = (xi1 , y j1 , xi2 , y j2 , . . . , xin , y jn )
and ends in Qn,n = (xi1 , y jn−1 , x jn−1 , . . . , xi2 , y j1 , xin , y jn ) and that
for any ordering xi1 , xi2 , . . . , xin , xin+1 of Xn+1 and any ordering
y j1 , y j2 , . . . , y jn of Yn, the graph Tσn+1,n (Kn+1,n) contains a hamilto-
nian path that starts in Rn+1,n = (xi1 , y j1 , xi2 , y j2 , . . . , xin , y jn , xin+1 )
and ends in S n+1,n = (xi1 , y jn , xin , . . . , xi2 , y j1 , xin+1 ). The results
follows since Pn,n and Qn,n are adjacent in Tσn,n (Kn,n), and since
Rn+1,n and S n+1,n are adjacent in Tσn+1,n (Kn+1,n).

We show the base of induction and the inductive steps for
Tσm+1,m (Km+1,m) and Tσm+1,m+1 (Km+1,m+1) for the ordering xik = xk,
y jl = yl for all corresponding values of k and l. All other order-
ings may be treated in an analogous way.

Let p be the order of the complete bipartite graph Kn,n or Kn+1,n.
For p = 6, Fig. 6 shows that Tσ3,3 (K3,3) contains a path that starts
in P3,3 and ends in Q3,3.

We proceed by induction assuming p = t ≥ 6, that Tσm,m (Km,m)
contains a hamiltonian path between the vertices Pm,m and Qm,m

for t = 2m, and that Tσm+1,m (Km+1,m) contains a hamiltonian path
between the vertices Rm+1,m and S m+1,m for t = 2m + 1. We then
consider the case with p = t + 1 vertices.

For p odd, in Tσ(Km+1,m), let

P1
m+1,m = (x1, y1, x2, y2, . . . , xm+1) = Rm+1,m

Q1
m+1,m = (x1, y1, xm, ym−1, xm−1, . . . , x2, ym, xm+1).

For k = 2, . . . ,m − 1, let

Pk
m+1,m = (x1, yk, xk+1, yk+1 . . . , xm, y1, x2, . . . , xk, ym, xm+1)

Qk
m+1,m = (x1, yk, xk, yk−1, . . . , y1, xm, ym−1, , . . . , xk+1, ym, xm+1)

and let

Pm
m+1,m = (x1, ym, xm, y1, x2, y2, . . . , ym−1, xm+1)

Qm
m+1,m = (x1, ym, xm, ym−1, . . . , y1, xm+1) = S m+1,m.

For k = 1, 2, . . . ,m let Hk be the subgraph of Tσm+1,m (Km+1,m),
induced by the spanning paths of Km+1,m in which x1 is adjacent to
yk. By Lemma 10, Hk is isomorphic to Tσk

m,m
(Km+1,m − x1) where

σk
m,m is the (m,m)-arboreal sequence given by σk

m,m(yk) = 1,
σk

m,m(yi) = 2 if i � k, σk
m,m(xm) = 1 andσk

m,m(x j) = 2 if 1 � j � m.
By the induction hypothesis, for k = 1, 2, . . . ,m − 1,

Tσk
m,m

(Km+1,m − x1) contains a hamiltonian path that starts in
Pk

m+1,m− x1 and ends in Qk
m+1,m− x1. This implies that Hk contains

a hamiltonian path Ak that starts in Pk
m+1,m and ends in Qk

m+1,m.
Also by the induction hypothesis, Tσm

m,m
(Km+1,m − x1) contains

a hamiltonian path that starts in (xi1 , y j1 , xi2 , y j2 , . . . , xim , y jm ) =
(xm+1, ym−1, . . . , y2, x2, y1, xm, ym) and ends in (xi1 , y jm−1 ,

x jm−1 , . . . , xi2 , y j1 , xim , y jm ) = (xm+1, y1, x2, . . . , xm, ym). As
above, this implies that Hm contains a hamiltonian path Am

that starts in (xm+1, ym−1, . . . , y2, x2, y1, xm, ym, x1) and ends in
(xm+1, y1, x2, . . . , xm, ym, x1).

Notice that (xm+1, ym−1, . . . , y2, x2, y1, xm, ym, x1) and
(xm+1, y1, x2, . . . , ym, x1) are, respectively, the paths Pm

m+1,m

and Qm
m+1,m traversed backwards. Therefore Am is a hamiltonian

path of Hm that starts in Pm
m+1,m and ends in Qm

m+1,m.
Observe that for k = 2, 3, . . . ,m − 1, Pk

m,m+1 = Qk−1
m,m+1 −

{{x1, yk−1}, {xk, yk}} + {{x1, yk}, {xk, yk−1}} and that Pm
m,m+1 =

Qm−1
m+1,m − {{x1, ym−1}, {xm+1, ym}} + {{x1, ym}, {xm+1, ym−1}}, which

implies that Pk
m+1,m and Qk−1

m+1,m are adjacent in Tσm+1,m (Km+1,m) for
k = 2, 3, . . . ,m. Therefore A1, A2, . . . , Am can be joined to form a
hamiltonian path in Tσm+1,m (Km+1,m) that starts in Rm+1,m = P1

m+1,m

and ends in S m+1,m = Qm
m+1,m, see Fig. 7 for the case p = 9.

For p even, in Tσ(Km+1,m+1) let

R1
m+1,m+1 = (x1, y1, x2, y2, . . . , xm, ym) = Pm+1,m+1,

S 1
m+1,m+1 = (x1, y1, xm, ym−1, xm−1, . . . , x2, ym).

And for k = 2, . . . ,m, let

Rk
m+1,m+1 = (x1, yk, xk+1, yk+1, . . . , xm, y1x2, y2, . . . , xk, ym)

S k
m+1,m+1 = (x1, yk, xk, yk−1, . . . , yn−1, xm, ym−1, . . . , xk+1, ym)

= Qm+1,m+1.

For k = 1, 2, . . . ,m let Hk be the subgraph of
Tσm+1,m+1 (Km+1,m+1), induced by the spanning paths of Km+1,m+1 in
which x1 is adjacent to yk. By Lemma 10, Hk is isomorphic to
Tσk

m+1,m
(Km+1,m+1 − x1) where σk

m+1,m is the (m+ 1,m)-arboreal se-

quence given by σk
m+1,m(yk) = 1, σk

m+1,m(ym) = 1, σk
m+1,m(yi) = 2

if m � i � k, and σk
m,m(x j) = 2 if j � 1.

By the induction hypothesis, Tσk
m+1,m

(Km+1,m+1 − x1) contains

a hamiltonian path that starts in Rk
m+1,m+1 − x1 and ends in

S k
m+1,m+1 − x1 for k = 1, 2, . . . ,m. As above, this implies that

Hk contains a hamiltonian path Bk that starts in Rk
m+1,m+1 and ends

c© 2017 Information Processing Society of Japan
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Fig. 7 Case p = 9 in Theorem 12.

Fig. 8 Case p = 10 in Theorem 12.

in S k
m+1,m+1.

Finally observe that for k = 2, 3, . . . ,m, Rk
m+1,m+1 =

S k−1
m+1,m+1−{{x1, yk−1}, {xk, yk}}+ {{x1, yk}, {xk, yk−1}} which implies

that Rk
m+1,m+1 and S k−1

m+1,m+1 are adjacent in Tσm+1,m+1 (Km+1,m+1).
Therefore B1, B2, . . . , Bm can be joined to form a hamiltonian path
in Tσm+1,m+1 (Km+1,m+1) that starts in Pm+1,m+1 = R1

m+1,m+1 and ends
in Qm+1,m+1 = S m

m+1,m+1, see Fig. 8 for the case p = 10. �
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