Regular Paper

On the Fixed Degree Tree Graph

Julián Fresán-Figueroa ${ }^{1, a)}$ Eduardo Rivera-Campo ${ }^{2, b}$ b

Received: November 4, 2016, Accepted: February 9, 2017

Abstract

A 2-switch on a simple graph G consists of deleting two edges $\{u, v\}$ and $\{x, y\}$ of G and adding the edges $\{u, x\}$ and $\{v, y\}$, provided the resulting graph is a simple graph. It is well known that if two graphs G and H have the same set of vertices and the same degree sequence, then H can be obtained from G by a finite sequence of 2 -switches. While the 2 -switch transformation preserves the degree sequence other conditions like connectivity may be lost. We study the restricted case where 2 -switches are applied to trees to obtain trees.

Keywords: tree graph, fixed degree, 2-switch

1. Introduction

The tree graph of a connected graph G is the graph $T(G)$ whose vertices are the spanning trees of G, and two trees P and Q are adjacent if P can be obtained from Q by deleting an edge p of P and adding an another edge q of Q. It is easy to prove that $T(G)$ is always connected and Cummins [4] proved that if G has a cycle, then $T(G)$ is hamiltonian.
Some variations of the tree graph have been studied, like the adjacency tree graph studied by Zhang and Chen [11] and by Heinrich and Liu [8], the leaf exchange tree graph studied by Broersma and Li [3] and by Harary, Mokken and Plantholt [6]; and the tree graph defined by a set of cycles studied by Li, Neumann-Lara and Rivera-Campo [9].
Let $n \geq 2$ be an integer and consider the complete graph K_{n} with vertices $v_{1}, v_{2}, \ldots, v_{n}$. Let $\sigma=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the degree sequence of a spanning tree T of K_{n}. We define the fixed degree tree graph of K_{n}, with respect to σ, as the graph $T_{\sigma}\left(K_{n}\right)$ whose vertices are the spanning trees of K_{n} with degree sequence σ; that is the spanning trees S of K_{n} such that $\operatorname{deg}_{S}\left(v_{i}\right)=d_{i}$ for $i=1,2, \ldots, n$. Two spanning trees P and Q of K_{n} are adjacent in $T_{\sigma}\left(K_{n}\right)$ if there are non-adjacent edges p and r of P and nonadjacent edges q and s of Q, such that Q can be obtained from P by deleting p and r and adding q and s. An example appears in Fig. 1.

This transformation of graphs is known as a 2 -switch. Havel [7] and Hakimi [5] (see also Berge [2]) proved that if two simple graphs G and H with vertex set V are such that $d_{G}(v)=$ $d_{H}(v)$ for each $v \in V$, then H can be obtained from G by a finite sequence of 2-switches. Bereg and Ito [1] gave a formula for the minimum number of 2-switches needed to obtain H from G.
A graph H obtained from a tree T by a 2 -switch may not be a

[^0]tree. In this article we present some results related to the connectivity and traversability of the graphs $T_{\sigma}\left(K_{n}\right)$, in which all vertices are trees. For a connected graph G, the distance $d(u, v)$ between two vertices u and v of G is the length of a shortest path joining u and v in G. The diameter, $\operatorname{diam}(G)$, of a connected graph G is the maximum distance among the vertices of G.

2. Preliminary Results

We say that a sequence of integers $\sigma=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is an arboreal sequence of order n if there exists a tree T with n vertices $v_{1}, v_{2}, \ldots v_{n}$ such that $d_{T}\left(v_{i}\right)=d_{i}$ for $i=1,2, \ldots, n$.

We need the following well known results.
Theorem 1. A sequence $\sigma=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of integers is an arboreal sequence if and only if

$$
\begin{aligned}
& 1 \leq d_{i} \leq n-1 \text { for } i=1,2, \ldots, n, \text { and } \\
& d_{1}+d_{2}+\ldots+d_{n}=2(n-1) .
\end{aligned}
$$

Theorem 2. [10] Let $\sigma=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be an arboreal sequence of order n. The number of spanning trees of K_{n} with degree sequence σ is

$$
\frac{(n-2)!}{\left(d_{1}-1\right)!\left(d_{2}-1\right)!\ldots\left(d_{n}-1\right)!} .
$$

Theorem 3. Let G be a graph with maximum degree Δ and for $i=1,2, \ldots, \Delta$ let n_{i} be the number vertices of G with degree i. Then

$$
\sum_{\{u, v\} \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)=\sum_{i=1}^{\Delta} i^{2} n_{i} .
$$

Theorem 2 gives the order of $T_{\sigma}\left(K_{n}\right)$. The degree of a vertex in $T_{\sigma}\left(K_{n}\right)$ corresponding to a tree P is given by the number of pairs of non-adjacent edges in P. Then by a counting argument we have the following theorem.
Theorem 4. For every arboreal sequence σ, the graph $T_{\sigma}\left(K_{n}\right)$ is $a\left(\binom{n}{2}-\frac{1}{2} \sum_{i=1}^{\Delta} i^{2} n_{i}\right)$-regular graph where n_{i} is the number of vertices of degree i and Δ is the largest integer in σ.

[^1]

Fig. $1 \quad T_{\sigma}\left(K_{5}\right)$ with $\sigma=(1,2,1,3,1)$.
Proof. Let σ be an arboreal sequence, let P be a vertex of $T_{\sigma}\left(K_{n}\right)$ and let $e=\{u, v\}$ be and edge of P. Since the number of adjacent edges to e is $d_{P}(u)+d_{P}(v)-1$, the number of nonadjacent edges to e is $n-d_{P}(u)-d_{P}(v)$. Adding over all edges of P and using Theorem 3 we obtain:

$$
\begin{aligned}
\sum_{\{u, v\} \in E(P)} \frac{n-d_{P}(u)-d_{P}(v)}{2} & =\frac{n(n-1)}{2}-\sum_{\{u, v\} \in E(P)} \frac{d_{P}(u)+d_{P}(v)}{2} \\
& =\binom{n}{2}-\frac{1}{2} \sum_{i=1}^{\Delta} i^{2} n_{i}
\end{aligned}
$$

3. Main Results

Let $\sigma=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be an arboreal sequence. For any vertex v of K_{n} we denote by $\sigma(v)$ the integer d_{i}, where i is such that $v=v_{i}$. Let v be a vertex in K_{n} such that $\sigma(v)=1$. For each vertex u with $\sigma(u)>1$, let $H_{v}(u)$ be the subgraph of $T_{\sigma}\left(K_{n}\right)$ induced by those spanning trees of K_{n} with degree sequence σ in which v is adjacent to u.
Lemma 5. Let σ be an arboreal sequence of order $n \geq 4$. Let v be a vertex of K_{n} such that $\sigma(v)=1$. For each vertex u of K_{n} with $\sigma(u)>1$ the graph $H_{v}(u)$ is isomorphic to $T_{\lambda_{u}}\left(K_{n}-v\right)$, where λ_{u} is the arboreal sequence of order $n-1$ given by $\lambda_{u}(u)=\sigma(u)-1$ and $\lambda_{u}(w)=\sigma(w)$ for each vertex w with $w \in V\left(K_{n}\right)-\{u, v\}$.
Proof. Let $\Theta: V\left(H_{v}(u)\right) \rightarrow V\left(T_{\lambda_{u}}\left(K_{n}-v\right)\right)$ be given by $\Theta(P)=$ $P-v$. Since $\{v, u\}$ is a terminal edge of P and $d_{P}(v)=1$, then $P-v$ is a spanning tree of $K_{n}-v$; it is clear that Θ is a bijective function. If two trees P and Q are adjacent in $H_{v}(u)$, then there exist edges p and r in P different from $e=\{v, u\}$ and edges q and s in Q, also different from e, such that $Q=(P-\{p, r\})+\{q, s\}$. Clearly $\Theta(Q)=Q-v=((P-v)-\{p, r\})+\{q, s\}=(\Theta(P)-\{p, r\})+\{q, s\}$. Therefore $\Theta(P)$ and $\Theta(Q)$ are adjacent in $T_{\lambda_{u}}\left(K_{n}-v\right)$. Analogously if $\Theta(P)$ and $\Theta(Q)$ are adjacent in $T_{\lambda_{u}}\left(K_{n}-v\right)$, then P and Q are adjacent in $H_{v}(u)$.
Lemma 6. Let σ be an arboreal sequence and let Q be a spanning tree of K_{n} with degree sequence σ. Let v be a vertex of K_{n} such that $\sigma(v)=1$. For each vertex u not adjacent to v in Q with $\sigma(u)>1$, there exists a spanning tree P of K_{n}, also with degree sequence σ, containing the edge $\{v, u\}$, and such that P is adjacent to Q in $T_{\sigma}\left(K_{n}\right)$.
Proof. Let u be a vertex not adjacent to v in Q and let x be the vertex adjacent to v in Q. Since $\sigma(u)>1$, there is a ver-

Fig. $2 \quad T_{(3,1,1,1)}\left(K_{4}\right)$ and $T_{(1,2,2,1)}\left(K_{4}\right)$.
tex y adjacent to u in Q not lying in the $v u$ path of Q. Let $P=(Q-\{\{v, x\},\{u, y\}\})+\{\{v, u\},\{x, y\}\}$. Clearly $\{v, u\}$ is an edge of P, and Q is adjacent to P in $T_{\sigma}\left(K_{n}\right)$.
Theorem 7. Let $n \geq 4$ be an integer. For every arboreal sequence $\sigma, \operatorname{diam}\left(T_{\sigma}\left(K_{n}\right)\right) \leq n-3$. In particular, $T_{\sigma}\left(K_{n}\right)$ is connected.
Proof. The result holds for $n=4$, see Fig. 2. We proceed by induction assuming that for an integer $m \geq 4, \operatorname{diam}\left(T_{\lambda}\left(K_{m}\right)\right) \leq m-3$ for every arboreal sequence λ. We prove that $\operatorname{diam}\left(T_{\sigma}\left(K_{m+1}\right)\right) \leq$ $m-2$ for any arboreal sequence σ.

Let v be a vertex of K_{m+1} for which $\sigma(v)=1$ and let P and Q be vertices of $T_{\sigma}\left(K_{m+1}\right)$. If there is a vertex u of K_{m+1} with $\sigma(u)>1$ such that both P and Q are vertices of $H_{v}(u)$, then $d(P, Q) \leq \operatorname{diam}\left(H_{v}(u)\right)=\operatorname{diam}\left(T_{\sigma}\left(K_{m+1}\right)-v\right) \leq m-3$ by Lemma 5 and by the induction hypothesis, where λ is the arboreal sequence of order m given by $\lambda(u)=\sigma(u)-1$ and $\lambda(w)=\sigma(w)$ for $w \in V\left(K_{m}\right)-\{u, v\}$.

If P is a vertex of $H_{v}(u)$ and Q is a vertex of $H_{v}(w)$ with $u \neq w$, then by Lemma 6 there is a vertex R of $H_{v}(u)$ which is adjacent to Q in $T_{\sigma}\left(K_{m+1}\right)$. In this case $d(P, Q) \leq d(P, R)+1 \leq$ $\operatorname{diam}\left(H_{v}(u)\right)+1=\operatorname{diam}\left(T_{\sigma}\left(K_{m+1}\right)-v\right)+1 \leq(m-3)+1=m-2 . \quad \square$
Theorem 8. Let $n \geq 4$ be an integer and σ an arboreal sequence.
For each tree in $T_{\sigma}\left(K_{n}\right)$, there exists a hamiltonian path in $T_{\sigma}\left(K_{n}\right)$ that starts in P.
Proof. The result holds for $n=4$, see Fig. 2. We proceed by induction assuming that for an integer $m \geq 4$ and for every arboreal sequence λ and every spanning tree Q of K_{m} with degree sequence λ, the graph $T_{\lambda}\left(K_{m}\right)$ contains a hamiltonian path starting in Q. We prove the result for $T_{\sigma}\left(K_{m+1}\right)$.
As in the proof of the previous theorem consider a vertex v of K_{m+1} for which $\sigma(v)=1$ and let $u_{1}, u_{2}, \ldots, u_{r}$ be the vertices of K_{m+1} with $\sigma\left(u_{i}\right)>1$. For $i=1,2, \ldots, r$ let λ_{i} be the arboreal sequence of order m given by $\lambda_{i}\left(u_{i}\right)=\sigma\left(u_{i}\right)-1$ and $\lambda_{i}(w)=\sigma(w)$ for $v \neq w \neq u_{i}$.
Let P be a vertex of $T_{\sigma}\left(K_{m+1}\right)$. Without loss of generality let us suppose P is a vertex of $H_{v}\left(u_{1}\right)$. By Lemma 5 the graph $H_{v}\left(u_{1}\right)$ is isomorphic to $T_{\lambda_{1}}\left(K_{m+1}-v\right)$ and by the induction hypothesis $T_{\lambda_{1}}\left(K_{m+1}-v\right)$ contains a hamiltonian path that starts in $P-v$; this implies that $H_{v}\left(u_{1}\right)$ contains a hamiltonian path T_{1} that starts in P. Let Q_{1} denote the other end of T_{1}. By Lemma 6 there exists a vertex P_{2} of $H_{v}\left(u_{2}\right)$ which is adjacent to Q_{1} in $T_{\sigma}\left(K_{m+1}\right)$. Again by Lemma 5 and by the induction hypothesis, there is a hamilto-

Fig. 3 Hamiltonian path joining P_{5} and Q_{5} in $T_{\sigma}\left(K_{5}\right)$.
nian path T_{2} of $H_{v}\left(u_{2}\right)$ that starts in P_{2} and ends at some vertex Q_{2}. Clearly this process can be continued to obtain a hamiltonian path of $T_{\sigma}\left(K_{m+1}\right)$ that starts in P.
Theorem 9. If $n \geq 5$ and $\sigma_{n}=(1,2,2, \ldots, 2,1)$, then $T_{\sigma_{n}}\left(K_{n}\right)$ is hamiltonian.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ denote the vertices of K_{n}. We prove by induction that for each integer $n \geq 5$ and for each ordering $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}$ of the vertices of K_{n}, the graph $T_{\sigma_{n}}\left(K_{n}\right)$ contains a hamiltonian path that starts in $P_{n}=\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}\right)$ and ends in $Q_{n}=\left(v_{i_{1}}, v_{i_{n-1}}, v_{i_{n-2}}, \ldots, v_{i_{2}}, v_{i_{n}}\right)$. The result follows since P_{n} and Q_{n} are adjacent in $T_{\sigma_{n}}\left(K_{n}\right)$.

We show the case $n=5$ and the inductive step for the ordering $v_{i_{k}}=v_{k}$ for $k=1,2, \ldots, n$. All other orderings may be treated analogously. Figure 3 shows that $T_{\sigma_{5}}\left(K_{5}\right)$ contains a hamiltonian path that starts in P_{5} and ends in Q_{5}. We proceed by induction assuming that for certain integer $m \geq 5$ and for each spanning path $P=\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{m}}\right)$ of K_{m} the graph $T_{\sigma_{m}}\left(K_{m}\right)$ contains a hamiltonian path that starts in P and ends in $Q=$ $\left(v_{i_{1}}, v_{i_{m-1}}, v_{i_{m-2}}, \ldots, v_{i_{2}}, v_{i_{m}}\right)$ and consider the graph $T_{\sigma_{m+1}}\left(K_{m+1}\right)$, where σ_{m+1} is the arboreal sequence $(1,2,2, \ldots, 2,1)$ of order $m+1$. Let

$$
\begin{aligned}
& P_{m+1}^{1}=\left(v_{1}, v_{2}, \ldots, v_{m+1}\right)=P_{m+1} \\
& Q_{m+1}^{1}=\left(v_{1}, v_{2}, v_{m}, v_{m-1}, \ldots, v_{3}, v_{m+1}\right)
\end{aligned}
$$

For $i=2, \ldots, m-2$, let

$$
\begin{aligned}
P_{m+1}^{i} & =\left(v_{1}, v_{i+1}, v_{i+2}, \ldots, v_{m}, v_{2}, v_{3}, \ldots, v_{i}, v_{m+1}\right) \\
Q_{m+1}^{i} & =\left(v_{1}, v_{i+1}, v_{i}, \ldots, v_{2}, v_{m}, v_{m-1}, \ldots, v_{i+2}, v_{m+1}\right)
\end{aligned}
$$

and let

$$
\begin{aligned}
& P_{m+1}^{m-1}=\left(v_{1}, v_{m}, v_{2}, v_{3}, \ldots, v_{m-1}, v_{m+1}\right) \\
& Q_{m+1}^{m-1}=\left(v_{1}, v_{m}, v_{m-1}, \ldots, v_{2}, v_{m+1}\right)=Q_{m+1}
\end{aligned}
$$

For $i=1,2, \ldots, m-1$ let H_{i} be the subgraph of $T_{\sigma_{m+1}}\left(K_{m+1}\right)$, induced by the spanning paths of K_{m+1} in which v_{1} is adjacent to v_{i+1}. By Lemma 5, H_{i} is isomorphic to $T_{\lambda_{i+1}}\left(K_{m+1}-v_{1}\right)$, where λ_{i+1} is the arboreal sequence of order m given by $\lambda_{i+1}\left(v_{i+1}\right)=1$ and $\lambda_{i+1}\left(v_{j}\right)=2$ if $1 \neq j \neq i+1$. By the induction hypothesis $T_{\lambda_{i+1}}\left(K_{m+1}-v_{1}\right)$ contains a hamiltonian path that starts in $P_{m+1}^{i}-v_{1}$ and ends in $Q_{m+1}^{i}-v_{1}$. This implies that H_{i} contains a hamiltonian path R_{i} that starts in P_{m+1}^{i} and ends in Q_{m+1}^{i}.

Finally, observe that for $i=1,2, \ldots, m-2, P_{m+i}^{i+1}=$ $Q_{m+1}^{i}-\left\{\left\{v_{1}, v_{i+1}\right\},\left\{v_{i+2}, v_{m+1}\right\}\right\}+\left\{\left\{v_{1}, v_{i+2}\right\},\left\{v_{i+1}, v_{m+1}\right\}\right\}$ which implies that Q_{m+1}^{i} and P_{m+i}^{i+1} are adjacent in $T_{\sigma_{m+1}}\left(K_{m+1}\right)$. Therefore $R_{1}, R_{2}, \ldots, R_{m-1}$ can be joined to form a hamiltonian path in $T_{\sigma_{m+1}}\left(K_{m+1}\right)$ that starts in $P_{m+1}=P_{m+1}^{1}$ and ends in $Q_{m+1}=Q_{m+1}^{m-1}$,

Fig. 4 Case $m+1=7$ in Theorem 9.

Fig. $5 T_{(2,2,1,1,2,2)}(G)$ is disconected.
see Fig. 4 for the case $m+1=7$.
The fixed degree tree graph may be defined for any connected graph G as follows: Let σ be the degree sequence of a spanning tree Q of G and let $T_{\sigma}(G)$ be the graph whose vertices are the spanning trees S of G such that $d_{S}(u)=d_{Q}(u)$ for each vertex u of G. As in the case $G=K_{n}$, two trees P and S are adjacent in $T_{\sigma}(G)$ if there are non-adjacent edges p and r of P and nonadjacent edges t and s of S, such that S can be obtained from P by deleting p and r and adding t and s.

A fixed degree tree graph $T_{\sigma}(G)$ of a connected graph may no longer be connected as shown in Fig. 5. For complete bipartite graphs we have the following results.

Let n and m be positive integers. A sequence σ of order $n+m$ is (n, m)-arboreal if there is an spanning tree T of $K_{n, m}$ that has σ as its degree sequence.

Let $\left(X_{m}, Y_{n}\right)$ be the bipartition of the complete bipartite graph $K_{m, n}$. Let $X_{m}=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, Y_{n}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and $\sigma=$ $\left(a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{n}\right)$ be an (m, n)-arboreal sequence. For any vertex x of X_{m}, we denote by $\sigma(x)$ the integer a_{i}, where i is such that $x=x_{i}$ and we denote $\sigma(y)$ the integer b_{i}, where i is such that $y=y_{i}$ for any vertex y of Y_{n}. Let x be a vertex in X_{m} such that $\sigma(x)=1$. For each vertex y with $\sigma(y)>1$, let $H_{x}(y)$ be the subgraph of $T_{\sigma}\left(K_{m, n}\right)$ induced by those spanning trees of $K_{m, n}$ with degree sequence σ in which x is adjacent to y.
Lemma 10. Let σ be an (m, n)-arboreal sequence with $m \geq 3$

Fig. 6 The graph $T_{\sigma_{3,3}}\left(K_{3,3}\right)$.
and $n \geq 3$, and let $\left(X_{m}, Y_{n}\right)$ be the bipartition of the complete bipartite graph $K_{m, n}$. Let x be a vertex of X_{m} such that $\sigma(x)=1$. For each vertex y of Y_{n} with $\sigma(y)>1$ the graph $H_{x}(y)$ is isomorphic to $T_{\lambda_{y}}\left(K_{m, n}-x\right)$, where λ_{y} is the $(m-1, n)$-arboreal sequence given by $\lambda_{y}(y)=\sigma(y)-1, \lambda_{y}(w)=\sigma(w)$ for each vertex w in Y_{n} with $w \neq y$ and $\lambda_{y}(v)=\sigma(v)$ for each vertex v in X_{m} with $v \neq x$.
Theorem 11. Let n and m be positive integers. The graph $T_{\sigma}\left(K_{m, n}\right)$ is connected for every (m, n)-arboreal sequence σ.

The proofs are similar to those of Lemma 5 and Theorem 7, respectively, and are omitted here.

For $n \geq 3$, let $\sigma_{n, n}$ be the (n, n)-arboreal sequence given by $\sigma_{n, n}\left(x_{1}\right)=1=\sigma_{n, n}\left(y_{n}\right), \sigma_{n, n}\left(x_{i}\right)=2$ for $i=2,3, \ldots, n$ and $\sigma_{n, n}\left(y_{j}\right)=2$ for $j=1,2, \ldots, n-1$; and let $\sigma_{n+1, n}$ be the $(n+1, n)$ arboreal sequence given by $\sigma_{n+1, n}\left(x_{1}\right)=1=\sigma_{n+1, n}\left(x_{n+1}\right)$, $\sigma_{n+1, n}\left(x_{i}\right)=2$ for $i=2,3, \ldots, n$ and $\sigma_{n+1, n}\left(y_{j}\right)=2$ for $j=$ $1,2, \ldots, n$.
Theorem 12. Let $n \geq 3$ be an integer. The graphs $T_{\sigma_{n, n}}\left(K_{n, n}\right)$ and $T_{\sigma_{n+1, n}}\left(K_{n+1, n}\right)$ are hamiltonian.
Proof. We prove that for any ordering $x_{i_{1}}, x_{i_{2}}, \ldots x_{i_{n}}$ of X_{n} and any ordering $y_{j_{1}}, y_{j_{2}}, \ldots, y_{j_{n}}$ of Y_{n}, the graph $T_{\sigma_{n, n}}\left(K_{n, n}\right)$ contains a hamiltonian path that starts in $P_{n, n}=\left(x_{i_{1}}, y_{j_{1}}, x_{i_{2}}, y_{j_{2}}, \ldots, x_{i_{n}}, y_{j_{n}}\right)$ and ends in $Q_{n, n}=\left(x_{i_{1}}, y_{j_{n-1}}, x_{j_{n-1}}, \ldots, x_{i_{2}}, y_{j_{1}}, x_{i_{n}}, y_{j_{n}}\right)$ and that for any ordering $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}, x_{i_{n+1}}$ of X_{n+1} and any ordering $y_{j_{1}}, y_{j_{2}}, \ldots, y_{j_{n}}$ of Y_{n}, the graph $T_{\sigma_{n+1, n}}\left(K_{n+1, n}\right)$ contains a hamiltonian path that starts in $R_{n+1, n}=\left(x_{i_{1}}, y_{j_{1}}, x_{i_{2}}, y_{j_{2}}, \ldots, x_{i_{n}}, y_{j_{n}}, x_{i_{n+1}}\right)$ and ends in $S_{n+1, n}=\left(x_{i_{1}}, y_{j_{n}}, x_{i_{n}}, \ldots, x_{i_{2}}, y_{j_{1}}, x_{i_{n+1}}\right)$. The results follows since $P_{n, n}$ and $Q_{n, n}$ are adjacent in $T_{\sigma_{n, n}}\left(K_{n, n}\right)$, and since $R_{n+1, n}$ and $S_{n+1, n}$ are adjacent in $T_{\sigma_{n+1, n}}\left(K_{n+1, n}\right)$.

We show the base of induction and the inductive steps for $T_{\sigma_{m+1, m}}\left(K_{m+1, m}\right)$ and $T_{\sigma_{m+1, m+1}}\left(K_{m+1, m+1}\right)$ for the ordering $x_{i_{k}}=x_{k}$, $y_{j_{l}}=y_{l}$ for all corresponding values of k and l. All other orderings may be treated in an analogous way.

Let p be the order of the complete bipartite graph $K_{n, n}$ or $K_{n+1, n}$. For $p=6$, Fig. 6 shows that $T_{\sigma_{3,3}}\left(K_{3,3}\right)$ contains a path that starts in $P_{3,3}$ and ends in $Q_{3,3}$.

We proceed by induction assuming $p=t \geq 6$, that $T_{\sigma_{m, m}}\left(K_{m, m}\right)$ contains a hamiltonian path between the vertices $P_{m, m}$ and $Q_{m, m}$ for $t=2 m$, and that $T_{\sigma_{m+1, m}}\left(K_{m+1, m}\right)$ contains a hamiltonian path between the vertices $R_{m+1, m}$ and $S_{m+1, m}$ for $t=2 m+1$. We then consider the case with $p=t+1$ vertices.

For p odd, in $T_{\sigma}\left(K_{m+1, m}\right)$, let

$$
\begin{aligned}
& P_{m+1, m}^{1}=\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{m+1}\right)=R_{m+1, m} \\
& Q_{m+1, m}^{1}=\left(x_{1}, y_{1}, x_{m}, y_{m-1}, x_{m-1}, \ldots, x_{2}, y_{m}, x_{m+1}\right)
\end{aligned}
$$

For $k=2, \ldots, m-1$, let

$$
\begin{aligned}
& P_{m+1, m}^{k}=\left(x_{1}, y_{k}, x_{k+1}, y_{k+1} \ldots, x_{m}, y_{1}, x_{2}, \ldots, x_{k}, y_{m}, x_{m+1}\right) \\
& Q_{m+1, m}^{k}=\left(x_{1}, y_{k}, x_{k}, y_{k-1}, \ldots, y_{1}, x_{m}, y_{m-1}, \ldots, x_{k+1}, y_{m}, x_{m+1}\right)
\end{aligned}
$$

and let

$$
\begin{aligned}
& P_{m+1, m}^{m}=\left(x_{1}, y_{m}, x_{m}, y_{1}, x_{2}, y_{2}, \ldots, y_{m-1}, x_{m+1}\right) \\
& Q_{m+1, m}^{m}=\left(x_{1}, y_{m}, x_{m}, y_{m-1}, \ldots, y_{1}, x_{m+1}\right)=S_{m+1, m}
\end{aligned}
$$

For $k=1,2, \ldots, m$ let H_{k} be the subgraph of $T_{\sigma_{m+1, m}}\left(K_{m+1, m}\right)$, induced by the spanning paths of $K_{m+1, m}$ in which x_{1} is adjacent to y_{k}. By Lemma 10, H_{k} is isomorphic to $T_{\sigma_{m, m}^{k}}\left(K_{m+1, m}-x_{1}\right)$ where $\sigma_{m, m}^{k}$ is the (m, m)-arboreal sequence given by $\sigma_{m, m}^{k}\left(y_{k}\right)=1$, $\sigma_{m, m}^{k}\left(y_{i}\right)=2$ if $i \neq k, \sigma_{m, m}^{k}\left(x_{m}\right)=1$ and $\sigma_{m, m}^{k}\left(x_{j}\right)=2$ if $1 \neq j \neq m$.

By the induction hypothesis, for $k=1,2, \ldots, m-1$, $T_{\sigma_{m, m}^{k}}\left(K_{m+1, m}-x_{1}\right)$ contains a hamiltonian path that starts in $P_{m+1, m}^{k}-x_{1}$ and ends in $Q_{m+1, m}^{k}-x_{1}$. This implies that H_{k} contains a hamiltonian path A_{k} that starts in $P_{m+1, m}^{k}$ and ends in $Q_{m+1, m}^{k}$.

Also by the induction hypothesis, $T_{\sigma_{m, m}^{m}}\left(K_{m+1, m}-x_{1}\right)$ contains a hamiltonian path that starts in $\left(x_{i_{1}}, y_{j_{1}}, x_{i_{2}}, y_{j_{2}}, \ldots, x_{i_{m}}, y_{j_{m}}\right)=$ $\left(x_{m+1}, y_{m-1}, \ldots, y_{2}, x_{2}, y_{1}, x_{m}, y_{m}\right)$ and ends in $\left(x_{i_{1}}, y_{j_{m-1}}\right.$, $\left.x_{j_{m-1}}, \ldots, x_{i_{2}}, y_{j_{1}}, x_{i_{m}}, y_{j_{m}}\right)=\left(x_{m+1}, y_{1}, x_{2}, \ldots, x_{m}, y_{m}\right) . \quad$ As above, this implies that H_{m} contains a hamiltonian path A_{m} that starts in $\left(x_{m+1}, y_{m-1}, \ldots, y_{2}, x_{2}, y_{1}, x_{m}, y_{m}, x_{1}\right)$ and ends in $\left(x_{m+1}, y_{1}, x_{2}, \ldots, x_{m}, y_{m}, x_{1}\right)$.

Notice that $\left(x_{m+1}, y_{m-1}, \ldots, y_{2}, x_{2}, y_{1}, x_{m}, y_{m}, x_{1}\right)$ and $\left(x_{m+1}, y_{1}, x_{2}, \ldots, y_{m}, x_{1}\right)$ are, respectively, the paths $P_{m+1, m}^{m}$ and $Q_{m+1, m}^{m}$ traversed backwards. Therefore A_{m} is a hamiltonian path of H_{m} that starts in $P_{m+1, m}^{m}$ and ends in $Q_{m+1, m}^{m}$.

Observe that for $k=2,3, \ldots, m-1, P_{m, m+1}^{k+1, m}=Q_{m, m+1}^{k-1}-$ $\left\{\left\{x_{1}, y_{k-1}\right\},\left\{x_{k}, y_{k}\right\}\right\}+\left\{\left\{x_{1}, y_{k}\right\},\left\{x_{k}, y_{k-1}\right\}\right\}$ and that $P_{m, m+1}^{m}=$ $Q_{m+1, m}^{m-1}-\left\{\left\{x_{1}, y_{m-1}\right\},\left\{x_{m+1}, y_{m}\right\}\right\}+\left\{\left\{x_{1}, y_{m}\right\},\left\{x_{m+1}, y_{m-1}\right\}\right\}$, which implies that $P_{m+1, m}^{k}$ and $Q_{m+1, m}^{k-1}$ are adjacent in $T_{\sigma_{m+1, m}}\left(K_{m+1, m}\right)$ for $k=2,3, \ldots, m$. Therefore $A_{1}, A_{2}, \ldots, A_{m}$ can be joined to form a hamiltonian path in $T_{\sigma_{m+1, m}}\left(K_{m+1, m}\right)$ that starts in $R_{m+1, m}=P_{m+1, m}^{1}$ and ends in $S_{m+1, m}=Q_{m+1, m}^{m}$, see Fig. 7 for the case $p=9$.

For p even, in $T_{\sigma}\left(K_{m+1, m+1}\right)$ let

$$
\begin{aligned}
& R_{m+1, m+1}^{1}=\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{m}, y_{m}\right)=P_{m+1, m+1} \\
& S_{m+1, m+1}^{1}=\left(x_{1}, y_{1}, x_{m}, y_{m-1}, x_{m-1}, \ldots, x_{2}, y_{m}\right)
\end{aligned}
$$

And for $k=2, \ldots, m$, let

$$
\begin{aligned}
R_{m+1, m+1}^{k} & =\left(x_{1}, y_{k}, x_{k+1}, y_{k+1}, \ldots, x_{m}, y_{1} x_{2}, y_{2}, \ldots, x_{k}, y_{m}\right) \\
S_{m+1, m+1}^{k} & =\left(x_{1}, y_{k}, x_{k}, y_{k-1}, \ldots, y_{n-1}, x_{m}, y_{m-1}, \ldots, x_{k+1}, y_{m}\right) \\
& =Q_{m+1, m+1}
\end{aligned}
$$

For $k=1,2, \ldots, m$ let H_{k} be the subgraph of $T_{\sigma_{m+1, m+1}}\left(K_{m+1, m+1}\right)$, induced by the spanning paths of $K_{m+1, m+1}$ in which x_{1} is adjacent to y_{k}. By Lemma $10, H_{k}$ is isomorphic to $T_{\sigma_{m+1, m}^{k}}\left(K_{m+1, m+1}-x_{1}\right)$ where $\sigma_{m+1, m}^{k}$ is the $(m+1, m)$-arboreal sequence given by $\sigma_{m+1, m}^{k}\left(y_{k}\right)=1, \sigma_{m+1, m}^{k}\left(y_{m}\right)=1, \sigma_{m+1, m}^{k}\left(y_{i}\right)=2$ if $m \neq i \neq k$, and $\sigma_{m, m}^{k}\left(x_{j}\right)=2$ if $j \neq 1$.

By the induction hypothesis, $T_{\sigma_{m+1, m}^{k}}\left(K_{m+1, m+1}-x_{1}\right)$ contains a hamiltonian path that starts in $R_{m+1, m+1}^{k}-x_{1}$ and ends in $S_{m+1, m+1}^{k}-x_{1}$ for $k=1,2, \ldots, m$. As above, this implies that H_{k} contains a hamiltonian path B_{k} that starts in $R_{m+1, m+1}^{k}$ and ends

Fig. 7 Case $p=9$ in Theorem 12.

Fig. 8 Case $p=10$ in Theorem 12.
in $S_{m+1, m+1}^{k}$.
Finally observe that for $k=2,3, \ldots, m, R_{m+1, m+1}^{k}=$ $S_{m+1, m+1}^{k-1}-\left\{\left\{x_{1}, y_{k-1}\right\},\left\{x_{k}, y_{k}\right\}\right\}+\left\{\left\{x_{1}, y_{k}\right\},\left\{x_{k}, y_{k-1}\right\}\right\}$ which implies that $R_{m+1, m+1}^{k}$ and $S_{m+1, m+1}^{k-1}$ are adjacent in $T_{\sigma_{m+1, m+1}}\left(K_{m+1, m+1}\right)$. Therefore $B_{1}, B_{2}, \ldots, B_{m}$ can be joined to form a hamiltonian path in $T_{\sigma_{m+1, m+1}}\left(K_{m+1, m+1}\right)$ that starts in $P_{m+1, m+1}=R_{m+1, m+1}^{1}$ and ends in $Q_{m+1, m+1}=S_{m+1, m+1}^{m}$, see Fig. 8 for the case $p=10$.

References

[1] Bereg, S. and Ito, H.: Transforming graphs with the same degree sequence, Ito, H. et al. (Eds.): Kyoto CGGT 2007, LNCS 4535, pp.25-32 (2008).
[2] Berge, C.: Graphes et hypergraphes, Monographies Universitaires de Mathématiques, Vol.37, Dunod, Paris (1970).
[3] Broersma, H.J. and Li, X.: The connectivity of the leaf-exchange spanning tree graph of a graph, Ars. Combin, Vol.43, pp.225-231 (1996).
[4] Cummins, R.: Hamilton circuits in tree graphs, IEEE Trans. Circuits and Systems, Vol.13, pp.82-90 (1966).
[5] Hakimi, S.L.: On the realizability of a set of integers as degrees of the vertices of a graph, SIAM Journal on Applied Mathematics Vol.10, pp.496-506 (1962).
[6] Harary, F., Mokken, R.J. and Plantholt, M.J.: Interpolation theorem for diameters of spanning trees, IEEE Trans. Circuits and Systems, Vol.30, No.7, pp.429-432 (1983).
[7] Havel, V.: A remark on the existence of finite graphs, C̆asopis pro P̌estováni Matematiky, Vol.80, pp.477-480 (1955) [Czech].
[8] Heinrich, K. and Liu, G.: A lower bound on the number of spanning trees with k endvertices, J. Graph Theory, Vol.12, No.1, pp.95-100 (1988).
[9] Li, X., Neumann-Lara, V. and Rivera-Campo, E.: On the tree graph defined by a set of cycles, Discrete Math, Vol.271, No.1-3, pp.303310 (2003).
[10] Moon, J.W.: Counting labelled tees, From lectures delivered to the Twelfth Biennial Seminar of the Canadian Mathematical Congress (Vancouver, 1969), Canadian Mathematical Monographs, No. 1 Canadian Mathematical Congress, Montreal, Que. (1970).
[11] Zhang, F.J. and Chen, Z.: Conectivity of (adjacency) tree graphs, J. Xinjiang Univ. Natur. Science, Vol.3, No.4, pp.1-5 (1983).

Julián Fresán-Figueroa was born in 1988. He received his M.S. degree from Universidad Autónoma Metropolitana - Iztapalapa in 2013. He became a professor at Universidad Autónoma Metropolitana - Cuajimalpa in 2014. His research interest is Graph Theory and its applications.

Eduardo Rivera-Campo received his B. Math degree from the Universidad Nacional Autónoma de México in 1980, his M. Math degree from the University of Waterloo in 1983 and his Ph.D. degree from the Universidad Autónoma Metropolitana - Iztapalapa in 1993. His research interests are Graph Theory and Combinatorial Geometry.

[^0]: 1 Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana-C, Mexico City 05348, Mexico
 2 Departamento de Matemáticas, Universidad Autónoma Metropolitana-I, Mexico City 09340, Mexico
 a) jfresan@correo.cua.uam.mx
 b) erc@xanum.uam.mx

[^1]: Research supported by Conacyt, México, project 178910.

