
Vol. 47 No. SIG 12(ACS 15) IPSJ Transactions on Advanced Computing Systems Sep. 2006

Regular Paper

Implementation and Evaluation of Multiple GridRPC Services

for Molecular Dynamics Simulations of Proteins

Takashi Amisaki† and Shin-ichi Fujiwara†

This paper reports a protein-simulation grid that uses grid remote procedure calls (GridR-
PCs) to a special-purpose cluster machine for molecular dynamics simulations. The grid was
implemented using Ninf-G, Torque, LAM, and the Globus Toolkit. To avoid the inefficiency
of a single GridRPC session using all the nodes of the cluster, we designed the grid so that
it works efficiently when multiple GridRPC sessions share the cluster. This was done by
putting the dedicated nodes (PCs with special computation boards) under the management
of the Torque system, thus enabling the manager to dynamically configure a cluster with the
requested number of dedicated nodes. In addition, a new job type was added to the Globus
toolkit and new backend procedure was added to Ninf-G. The Ninf-G stub was separated from
processes that actually perform the force evaluation on the dedicated nodes. Simulations for
two proteins gave promising results. Simulations performed using a four-node cluster and a
100-Mbps LAN for GridRPC sessions were 4.6–17.0 times faster than the same simulation
performed on the local client PC, while their communication overhead was less than 20% of
total execution time. Even when the the four-node cluster machine was shared between two
distinct simulations of proteins, the two GridRPC communications did not interfere with each
other. This showed the efficacy of multiple GridRPC sessions.

1. Introduction

Proteins are essential biomolecules, and un-
derstanding their properties is important for
understanding diseases and designing therapeu-
tic agents. Extensive efforts are therefore be-
ing devoted to analyzing their structures and
functions. The three-dimensional structures of
many proteins, for example, have been deter-
mined experimentally by using X-ray diffrac-
tion methods and nuclear magnetic resonance
spectroscopy. The structures of a number of
proteins are also being investigated in struc-
tural genomics projects.

Among the computational approaches being
developed are molecular simulations that pro-
vide results complementary to those of conven-
tional experiments. Molecular dynamics (MD)
simulations, for example, have been used not
only for predicting the structure of a protein
and for analyzing the kinetics of protein fold-
ing but also for estimating the free energy of
drug binding. MD simulations of large proteins,
however, require vast computational resources
which are not widely available.

Grid computing may circumvent this prob-
lem because it can deliver the great computa-
tional power of expensive parallel computers to
remote researchers. There have, in fact, been

† Tottori University

several reports of studies on grid computing
for molecular simulations. These studies can
be roughly divided into two categories. Ef-
forts in the first category aim at building a user
interface for legacy application programs such
as CHARMM 1) and AMBER 2). A user inter-
face can be implemented as a portal on a Web
server 3) or as a workflow management system
executed on a client computer 4). Such inter-
faces for MD simulations must enable users to
monitor the progress of the remote computa-
tion, and we also have already reported a grid-
enabled application 5) that lets a user monitor
the time evolution of a trajectory being pro-
duced by a MD application running on remote
machines.

The second category of the studies focuses
on the computational grid itself, that is, on
parallel molecular simulations using distributed
resources or remote resources. Studies ex-
ploring the use of parameter sweep applica-
tions are typical of this category 6)∼8). There
are also reports of molecular simulations an-
alyzing the kinetics of protein folding by us-
ing ensemble/distributed dynamics or replica-
exchange dynamics, in both of which a number
of nearly independent MD trajectories are simu-
lated by nodes exchanging only a small amount
of data 9),10). To our knowledge, however, there
are few reports of general classical MD simula-
tions on grids even though there is much de-

182



Vol. 47 No. SIG 12(ACS 15) Multiple GridRPC Services for Protein Simulations 183

mand for such simulations. The most time-
consuming part of such simulations is the evalu-
ation of nonbonded interactions (e.g., Coulom-
bic forces). In general, it is not easy for this
evaluation to be efficiently parallelized in a
slow-speed network.

There are currently at least two possible ways
of using grids to evaluate nonbonded interac-
tions: by using the message-passing interface
(MPI) on grids 11) and by using the grid re-
mote procedure calls (GridRPCs) 12),13). The
latter method was used in a grid-enabled MD
application reported previously 5) because it en-
abled force evaluations to easily be made by
a high-performance special-purpose cluster ma-
chine 14). That application provided remote
clients with the computing power of special
computation boards that calculate Coulombic
interactions at high speed. The boards were
plugged into every node of a PC-cluster to form
a dedicated cluster. Dedicated boards generally
offer high performance at a cost much less than
that of extremely expensive supercomputers,
but a cluster system that can simulate larger
molecular systems is also extremely expensive
because it needs a large number of nodes (and
hence large number of the boards) in order to
keep the simulation time sufficiently short. Be-
cause a dedicated cluster system is only valu-
able for a particular task, a large-scale dedi-
cated cluster need to be shared by many clients.
Grid-enabled use of the dedicated cluster thus
seems attractive, provided that the application
programming interfaces (APIs) to the cluster
are designed appropriately.

A GridRPC function using a dedicated clus-
ter to calculate nonbonded interactions was im-
plemented on a minimal platform for a grid pro-
totype by using Ninf-G 13), and the possibility
of using the GridRPC approach for the MD sim-
ulations was examined 5). Although the results
were promising, some potential problems were
identified.

One of the most problematic issues was that
of the utilization of the special-purpose clus-
ter machine. The machine was idle for much
of a GridRPC session while waiting for comple-
tion of the transmission of huge amount of data
about the coordinates and forces. An effective
grid system should benefit clients without wast-
ing its computational resources.

In the present study we demonstrate that the
utilization of a dedicated machine can be im-
proved, without reducing the benefits of clients,

by serving multiple clients simultaneously. We
first discuss this approach formally using a sim-
ple cost model of a GridRPC session for a
MD simulation and then report the develop-
ment of a practical grid that can process mul-
tiple GridRPC sessions simultaneously. A grid
implementing this multiple-GridRPC approach
needs a resource manager that keeps track of
the available nodes of the dedicated machine
and dynamically configures a small cluster with
the requested number of dedicated nodes. The
grid must also be able to handle the communi-
cation through multiple GridRPC connections
efficiently. In this paper we demonstrate that
such a grid can be built using slight modifica-
tions of currently available middleware such as
the Globus Toolkit 15), Ninf-G, Torque 16), and
LAM 17). We also report the results of numer-
ical experiments confirming the effectiveness of
this approach in actual MD simulations.

2. Dedicated Cluster for MD Simula-
tions

The basic idea behind our approach is to use
a special cluster system as the main computing
resource in grid for MD simulation. The de-
velopment of this four-node cluster has already
been reported in detail 5), so in this section, we
briefly describe issues relevant to the current
work.

The dedicated cluster is composed of a ho-
mogeneous set of compute nodes, each of which
is an ordinary PC but has computing boards
designed especially for the evaluation of non-
bonded pair interactions (i.e., Coulombic and
van der Waals forces). The boards used in this
work were MD Engine II (MDE-II) (Fuji Xerox,
Co., Ltd) boards.

Force evaluation in the cluster is performed
in the following way. A spatial decomposition
technique is used to partition the evaluation
task into sub tasks mapped to the dedicated
compute nodes, on each of which they are split
into two parts: evaluations of far and nearby
interactions. Each node then evaluates far-field
interactions by using the fast multipole method
(FMM) 18), while nearest-neighbor interactions
are calculated using the MDE-II boards, in
which calculations are performed by four cus-
tom processors.

Although the four-node dedicated cluster ex-
ecuted the protein simulations examined in this
work 5.6–18.4 times faster than an ordinary PC,
its parallel efficiency is limited by its hierarchi-



184 IPSJ Transactions on Advanced Computing Systems Sep. 2006

cal architecture. This kind of architecture is
not unique to our cluster system and can also
be seen in accelerator-type machines. Because
high performance is attained at some cost of
efficiency, it seems better to share the cluster
with multiple jobs rather than carry out serial
jobs using all the nodes of the cluster.

3. Performance of Multiple GridRPC
Computations

The multiple-GridRPC approach has two ad-
vantages with regard to resource utilization.
First, because parallel efficiency is generally a
decreasing function of the number of nodes, di-
viding a large dedicated cluster into small sub
clusters enables each of the small clusters to ex-
ecute its own simulation efficiently. Next, divid-
ing a large dedicated cluster keeps the overhead
caused by a GridRPC communication at a small
fraction of a total execution time. Low commu-
nication overhead is also characteristic of a grid
molecular simulator using general-purpose clus-
ters 19).

These two advantages can be confirmed using
a simple cost model. The cost of a single MD
simulation of an N -atom system over a simula-
tion period T can be modeled as

A(N, T )
p · E(p)

+ L(N, T ), (1)

where A is the amount of computations to be
performed in the simulation. It is proportional
to T and is of O(N) or greater, depending
on the algorithm used for evaluating the non-
bonded interactions. The function E represents
the parallel efficiency of the dedicated cluster
and is the function of the number of nodes, p.
The function L represents the amounts of delay
caused by communication over the GridRPC
connection and is proportional to both N and
T .

Consider two MD simulations S1 and S2. The
simulation costs of S1 are (A, L) = (A1, L1),
those of S2 are (A, L) = (A2, L2). We as-
sume that A1 and A2 are similar. The total
cost of performing the two GridRPC sessions
for S1 and S2 serially using a 2p-node cluster is
the sum of the costs of the corresponding two
single-GridRPC sessions. On the other hand,
when the two GridRPC sessions are performed
simultaneously each using a p-node cluster, the
cost is the greater of the cost of S1 or that of
S2. It can be shown that

A1 + A2

2pE(2p)
> max

{
A1

pE(p)
,

A2

pE(p)

}
(2)

if
E(p)
E(2p)

> 1 +
|A1 − A2|
A1 + A2

. (3)

This relation will hold because E is a monoton-
ically decreasing function of p (and A1 and A2

are similar to each other). The obvious relation
L1 + L2 > max {L1, L2} (4)

also shows the advantage of the multiple-
GridRPC approach, but this relation assumes
an ideal environment where multiple GridRPC
connections never interfere with each other. Be-
cause the validity of this assumption should
be confirmed in actual situations, we carried
out experiments on multiple GridRPC sessions.
The results are presented in Section 6.

4. Brief Descriptions of Ninf-G and
the Globus Toolkit

This section briefly explains how a Ninf-G job
for a MPI program is executed on a grid using
the Globus Toolkit, Ninf-G, Torque, and LAM.

Ninf-G provides methods for executing a li-
brary function on a grid using an interface like
that provided by remote procedure calls. The
function may be defined in C or given as an ex-
ternal object file. An example of an IDL file for
the latter case is shown at the end of Section 5.4
(Fig. 7). In either case the IDL file must be pro-
cessed by the ng gen command to obtain the
source code of a Ninf-G stub program, which
is the server program of a GridRPC session.
If “MPI” backend is specified in the IDL file,
the command ng gen attaches MPI initializa-
tion and termination sequences to that func-
tion. The stub generated is a Single-Program-
Multiple-Data (SPMD) MPI program.

Ninf-G is built on top of the Globus Toolkit,
which comprises of software tools and libraries
for monitoring and discovery services, for re-
source allocation and management, and for the
security infrastructure of a grid. Of these, the
Globus resource allocation manager (GRAM)
is most relevant to the subsequent discussion ☆.
A Ninf-G client uses GRAM functions to send
a request for executing the stub program on
the server machine. When the client issues a
grpc initialize() with the Ninf-G configu-

☆ In this work, we used the Globus toolkit version
2.4.3, corresponding to the pre-Web service compo-
nents in version 4.x.



Vol. 47 No. SIG 12(ACS 15) Multiple GridRPC Services for Protein Simulations 185

(a)

<SERVER>
hostname mdegk.med.tottori-u.ac.jp
mpi_runNoOfCPUs 2
jobmanager jobmanager-pbs

</SERVER>

(b)

#! /bin/sh
#PBS -l nodes=2
lamboot -ssi boot tm
mpirun C _stub_pi_trial "--client=

pen68.med.tottori-u.ac.jp:32796" ...
lamhalt
exit 0

Fig. 1 Files used or generated when executing a sam-
ple MPI program on a grid using the Globus
Toolkit, Ninf-G, Torque, and LAM. (a) An ex-
ample of a Ninf-G configuration file. The num-
ber following the directive mpi runNoOfCPUs is
the number of nodes to be used. (b) Skeleton
of the PBS batch job script built by the Globus
jobmanager. In this case the name of the stub
executable is stub pi trial. The example is
involved in the Ninf-G distribution package.

ration file shown in Fig. 1 (a), the request is
processed by a GRAM gatekeeper running on
the server mdegk.med.tottori-u.ac.jp. The
gatekeeper is usually launched by inetd, the su-
perserver for Internet services. When a GRAM
request arrives, the gatekeeper creates an job-
manager that uses a qsub command to sub-
mit the job to the Torque batch-queueing sys-
tem server (i.e., pbs server) [Fig. 2 (a)]. For
this purpose the jobmanager uses a Perl mod-
ule “pbs.pm” ☆ to create a job-script file that
contains the sequence of lamboot, mpirun, and
lamhalt commands [Fig. 1 (b)].

The script file first boots a LAM machine
by using the TM boot scheme. That is, the
lamd process on each node is launched by the
node manager (pbs mom) instead of by rsh/ssh
commands [Fig. 2 (b)]. The LAM machine is
booted on the nodes that are allocated by the
resource manager, with the number of nodes be-
ing specified in the directive mpi runNoOfCPUs
in the configuration file [Fig. 1 (a)]. The script
file then executes the mpirun command to in-
voke a SPMD process on each node [Fig. 2 (c)].
Finally, a connection between the client and
server (i.e., the rank-zero process) is estab-
lished [Fig. 2 (d)]. The address of the client is
☆ The file is located at $GLOBUS_LOCATION/lib/perl/
Globus/GRAM/JobManager/pbs.pm, where
$GLOBUS LOCATION indicates the top of the installa-
tion tree.

Fig. 2 Schematic representation of a grid that executes
MPI jobs using the Globus Toolkit, Ninf-G,
Torque, and LAM. (a) Grpc initialize and lo-
cal job submission. (b) Boot process of a LAM
machine. (c) Invocation of SPMD processes us-
ing the mpirun command. (d) Grpc call using
the connection established between the client
and a Ninf-G stub (rank-zero process).

passed as an argument to the mpirun command.
The SPMD processes stay alive during this
GridRPC session and handle all grpc calls.

5. Implementation

The organization of our grid for MD simula-
tions is shown schematically in Fig. 3. It is
basically the same as the grid for MPI jobs
that described in Section 4, but to accommo-
date GridRPC calls to the dedicated cluster,
we modified Ninf-G and the Globus Toolkit.

5.1 Client Side Program
In this work, we selected AMBER 7.0 as the

MD application program and modified it for
the purpose of this work. One of the most im-
portant modifications was to replace a call for
the evaluation of nonbonded interactions (i.e.,
get nb energy()) with a call for a custom-
made routine: anbicalc(). This C function
makes Ninf-G’s grpc call to a remote library
function named anbig().

The GridRPC-enabled AMBER can be ex-
ecuted by using the same configuration file
shown in Fig. 1 (a) and treating the number fol-
lowing the directive mpi runNoOfCPUs as the
number of dedicated nodes.

5.2 Resource Management
We attached the static property “mde” to

each dedicated node with MDE-II boards by
editing the configuration file of the Torque
system. This enables the resource manager
(pbs server) to keep track of available nodes



186 IPSJ Transactions on Advanced Computing Systems Sep. 2006

Fig. 3 Organization of the grid. This illustrates two
simultaneous GridRPC sessions. The down-
side stub process has established every connec-
tion, while the upside stub is trying to launch
“aslave” processes. On the server side, four
task groups participate in each GridRPC ses-
sion: (1) Globus’ gatekeeper and jobmanager,
(2) processes of the resource management sys-
tem (pbs server and pbs mom), (3) the Ninf-
G stub, and (4) SPMD processes (aslave) that
calculate non-bonded interactions by using the
MDE-II (MD Engine II) boards. The “mde-
server” process running on a node is responsi-
ble for the management and mutual exclusion
of the MDE-II boards on that node.

and dynamically configure a cluster with the
requested number of dedicated nodes ☆. As
will be described later, the property “mde” can
be requested by using a PBS resource request
statement.

5.3 Ninf-G Stub and Parallel Program
for Force Evaluations

In our grid the role of a stub is separated from
processes that perform the evaluations of non-
bonded interactions (Fig. 3). The task of the
force evaluation is instead carried out by the
program called “aslave” on the dedicated clus-
ter. The stub process now concentrates on me-
diating between the client and rank-zero aslave
process. This design enabled us to avoid hav-
ing a direct connection between the special re-
sources and clients. In addition, the site sched-
uler can place the stub in any node. For ex-
ample, a couple of stubs can be mapped onto a
machine that has access to a high-performance
network.

A sketch of the code of the GridRPC library

☆ Alternatively, the resource manager could monitor
status on a per-board basis rather than a per-node
basis. To make this possible, we added a moni-
toring function to the mdeserver process as shown
in Fig. 3). It makes a health check of the MDE-II
boards and reports the results to the node manager
pbs mom, which in turn reports the results to the
site resource manager pbs server.

int anbig(int cmd, int natoms,
double xyz[], double frc[])

{
if (!initialized) {
MPI_Init(&i, (char ***) MPI_ARGV_NULL);
MPI_Attr_get(MPI_COMM_WORLD,

MPI_UNIVERSE_SIZE, &numnodes, &flag);
nslaves = numnodes - 1;
Prepare LAM application schema file.
MPI_Info_create(&info);
MPI_Info_set(info, "file", schema);
MPI_Comm_spawn("/path/to/aslave",

MPI_ARGV_NULL, nslaves, info, 0,
MPI_COMM_SELF, &aslave, &ierr);

MPI_Send(&natoms, 1, MPI_INT, 0,
999, aslave);

initialized = TRUE;
}

if (cmd == EXIT)
MPI_Send(&EXIT, 1, MPI_DOUBLE, 0,

999, aslave);

MPI_Send(xyz, 3 * natoms, MPI_DOUBLE, 0,
999, aslave);

MPI_Recv(frc, 3 * natoms, MPI_DOUBLE, 0,
999, aslave, &ierr);

return 0;
}

Fig. 4 A sketch of the source code of the GridRPC
library function. The stub process repeatedly
calls this function locally on a node. In the sub-
sequent example of an IDL file (Fig. 7), the code
is assumed to be stored in the file libanbig.c.
The arrays xyz and frc respectively represent
the coordinates and forces. Note that more
calling arguments (e.g., atomic charges and
species) may be involved in the actual code.

function anbig() is shown in Fig. 4. The stub
process locally calls this function whenever the
client sends a request to that function. When
the function is called first time, an aslave pro-
cess is created on each dedicated node by us-
ing the MPI Comm spawn() function. Then and
each time the function is called thereafter, the
coordinates of the atoms, xyz, are sent to the
rank-zero aslave process, after which the calcu-
lated forces are received from that process and
are returned to the calling client through the
argument frc.

A sketch of the aslave code is shown in Fig. 5.
The program itself is SPMD. The aslave pro-
cess with rank zero acts as the coordinator of
the SPMD processes. Each aslave process re-
peatedly receives the coordinates of the atoms
(xyz) from the stub or rank-zero aslave and
then calculates the forces (frc) by using the
routine anbi calc(), which actually calculates
the far-field and nearby interactions by using



Vol. 47 No. SIG 12(ACS 15) Multiple GridRPC Services for Protein Simulations 187

int main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_id);
MPI_Comm_get_parent(&master);

if (mpi_id == 0)
MPI_Recv(&natoms, 1, MPI_INT, 0,

999, stub, &ierr);
MPI_Bcast(&natoms, 1, MPI_INT, 0,

MPI_COMM_WORLD);

for (;;) {
if (mpi_id == 0)
MPI_Recv(&cmd, 1, MPI_DOUBLE, 0,

999, stub, &ierr);
MPI_Bcast(&cmd, 1, MPI_DOUBLE, 0,

MPI_COMM_WORLD);
if (cmd == EXIT) break;

if (mpi_id == 0)
MPI_Recv(xyz, 3 * natoms, MPI_DOUBLE, 0,

999, stub, &ierr);
MPI_Bcast(xyz, 3 * natoms, MPI_DOUBLE, 0,

MPI_COMM_WORLD);

/* force evaluation using FMM & MDE-II */
anbi_calc(xyz, frc);

if (mpi_id == 0)
MPI_Send(frc, 3 * natoms, MPI_DOUBLE, 0,

999, stub);
}

MPI_Finalize();

return 0;
}

Fig. 5 A sketch of the source code of the “aslave” pro-
gram. The rank-zero process acts as a mediator
between the stub and SPMD processes. It also
acts as a coordinator for the SPMD processes.
The task of force evaluation is performed in
accordance with the Replicated-Data Spatial-
Decomposition scheme. Notice that the forces
are summed up in the routine anbi calc() by
using parallel reduction (MPI Reduce).

FMM and the MDE-II boards, respectively, in
accordance with the Replicated-Data Spatial-
Decomposition scheme. In this routine, all
aslave processes participate in parallel reduc-
tion operations for summing up forces. The
rank-zero process finally sends the forces back
to the stub process.

5.4 Modifications of Ninf-G and the
Globus Toolkit

We modified the GRAM job manager in
Globus Toolkit 2.4.3 to accommodate the
GridRPC calls to the dedicated cluster. Specif-
ically, we added the special job type mde to
the original ones such as single, mpi, and con-

#! /bin/sh
#PBS -l nodes=1+2:mde
lamboot -ssi boot tm
_stub_anbig "--client=

pen68.med.tottori-u.ac.jp:33427" ...
lamhalt
exit 0

Fig. 6 Skeleton of a PBS batch job script generated
when the backend MDE is specified.

dor ☆. We also added some codes to the file
pbs.pm so that the Perl module would generate
a job script like that shown in Fig. 6 instead of
the one shown in Fig. 1 (b). Note the following
two differences between the two kinds of scripts.
One of the differences is that regarding the PBS
resource requirement. When a “mde” type of
job is specified, the generated script contains a
line

#PBS -l nodes=1+2:mde
indicating a request for two dedicated nodes
with MDE-II boards plus one additional node.
A Ninf-G stub will be executed on this addi-
tional node. The number of dedicated nodes is
taken from the value (mpi runNoOfCPUs) speci-
fied in the Ninf-G configuration file on the client
side.

The other difference is that when the back-
end MDE is specified the stub process is ex-
ecuted directly rather than being invoked by
the mpirun command. As a result, as shown
in Fig. 3, only a single stub process is cre-
ated on the first node of the LAM machine,
which may be the node without an MDE-II
board as indicated by the PBS resource require-
ment. The stub process creates an aslave pro-
cess on each remaining MDE-II node by us-
ing the MPI Comm spawn() function (Fig. 3 and
Fig. 4). Notice that it is easy to change the
mapping policy so that, for example, the stub
can be put on the first MDE-II node together
with the aslave process or can be put on another
node together with the stubs of other jobs.

To enable the startup of the stub process
in the above-mentioned manner, Ninf-G also
had to be modified. Every file that handles
the backend MPI, except the file nggenStub.c,
was modified so that a newly added backend
“MDE” would be treated in the same manner
as the backend MPI. In the file nggenStub.c
the backend MDE is treated as the backend

☆ These job types are defined in $GLOBUS_LOCATION/
share/globus_gram_job_manager/globus-gram-
job-manager.rvf.



188 IPSJ Transactions on Advanced Computing Systems Sep. 2006

Module anbig;
Define anbig(IN int cmd, IN int natoms,

IN double xyz[3*natoms],
OUT double frc[3*natoms])

Required "libanbig.o"
Backend "MDE"
Calls "C" anbig(cmd, natoms, xyz, frc);

Fig. 7 An IDL file for the backend MDE. In this ex-
ample, the C function anbig() is assumed to be
defined in another file libanbig.c (see Fig. 4).

NORMAL, rather than MPI, to prevent the
ng gen command from attaching MPI code. Be-
cause of this modification, a GridRPC function
can no longer be written in an IDL file. The
function must be given as an external object
file. A simplified version of the IDL file used in
this work is shown in Fig. 7. The source code of
the C function, anbig() in this case, is assumed
to be defined in the source file libanbig.c,
which is shown in Fig. 4.

6. Experiments

The main purpose of the tests was to con-
firm the advantage of multiple GridRPC MD
sessions that was implied by the cost model
presented in Section 3. Of comparable impor-
tance was an examination of the efficacy of the
grid when the client and server were connected
through a broadband network with a speed of
100Mbps or higher. In the previous assessment
of the performance of our grid-enabled MD ap-
plication 5), we used a 10-Mbps connection to
emulate a low-speed network between the client
and server sites. Larger interconnection band-
widths, however, are already likely to be used in
such applications. We therefore used 100-Mbps
Ethernet for the client/server connection in the
work reported here.

6.1 Benchmark System Configuration
The basic configuration was that shown in

Fig. 3. The dedicated cluster was composed of
four PCs (Pentium 4, 2 GHz, Scientific Linux
ver 3.05), each with three MDE-II boards. Two
front-end machines were used for executing the
stubs. They were PCs with the same specifica-
tions as those of the dedicated nodes but with-
out MDE-II boards. These six PCs were inter-
connected using both Fast Ethernet (100Mbps)
and Gigabit Ethernet (1,000 Mbps) technolo-
gies. The latter was used for the LAM/MPI
traffic. An additional PC with the same speci-
fication was used as the Globus server. It also
acted as a NAT (network-address-translation)
router between the six PCs and another two

client PCs (Pentium 4, 2 GHz). The router
and the other PCs were interconnected using
100-Mbps Ethernet technology. Scientific Linux
3.05 was installed on all of the PCs.

The system simulated were those compris-
ing a dihydrofolate reductase (DHFR) molecule
surrounded by a sphere of water molecules
(N = 20,501) or a human serum albumin
(HSA) molecule surrounded by a sphere of wa-
ter molecules (N = 82,804). The MD appli-
cation program was the sander module in the
AMBER 7.0 package and was modified for the
purpose of this work. For the evaluation of elec-
trostatic interaction, two types of FMM compu-
tation were examined: one designated FMM-I
and using direct calculations for nearest neigh-
bor cells, the other designated FMM-II’ and in-
cluding the second-nearest neighbors in the di-
rect calculations. The prime symbol indicates
that, if possible, the cells were aggregated to
form a larger cell at the parent level. In both
FMM computations, the level of cell hierarchy
was 3 and the degree of expansion was 8. Un-
der these conditions, the force calculated using
FMM-II’ was estimated to be about one signif-
icant figure more accurate than that calculated
using FMM-I. The direct calculations were per-
formed using the MDE-II boards, as were van
der Waals interactions with a cutoff radius of
12.5 Å for the DHFR system and 15.0 Å for the
HSA systems.

6.2 Results
Timing results are summarized in Table 1,

where the values in the column labeled “Eval”
are the average times spent on the dedi-
cated cluster for the evaluation of nonbonded
(Coulombic and van der Waals) interactions at
a single MD step. The values in the “GRPC”
and “Total” columns are respectively the av-
erage time for a single GridRPC call and the
average time to advance a MD step. These val-
ues are in seconds and are averaged over 1,000
steps. Each of the values in the column “PE”
column is the parallel efficiency of the dedi-
cated cluster. We defined the delay due to the
GridRPC communication as the difference be-
tween GRPC and Eval, and we listed in the
“Delay” column this difference as a fraction of
corresponding Total value.

When the four simulations were performed lo-
cally on the client PC for comparison, the Total
times were 4.65 s when using FMM-I for DHFR,
10.70 s when using FMM-II’ for DHFR, 29.90 s
when using FMM-I for HSA, and 96.76 s when



Vol. 47 No. SIG 12(ACS 15) Multiple GridRPC Services for Protein Simulations 189

Table 1 Timing results for the simulations carried out as single GridRPC sessions.

Time/step (s)

Protein FMM Nodes Eval GRPC Total PE Delay
DHFR I 1 2.43 2.61 2.64 — 0.07
DHFR I 2 1.32 1.51 1.54 0.92 0.12
DHFR I 4 0.80 0.98 1.02 0.76 0.19
HSA I 1 7.51 7.95 8.09 — 0.06
HSA I 2 4.04 4.48 4.62 0.93 0.10
HSA I 4 2.43 2.87 3.00 0.77 0.15
DHFR II’ 1 3.05 3.24 3.27 — 0.06
DHFR II’ 2 1.65 1.83 1.87 0.92 0.10
DHFR II’ 4 0.97 1.16 1.19 0.79 0.16
HSA II’ 1 18.26 18.70 18.83 — 0.02
HSA II’ 2 9.44 9.89 10.02 0.97 0.04
HSA II’ 4 5.13 5.58 5.70 0.89 0.08

using FMM-II’ for HSA.
In general, the more nodes that were used,

the greater improvement in speed that was ob-
tained on the client side. In the case of the
HSA simulation (four nodes, FMM-II’), the
GridRPC approach reduced the time required
to 1/17 of the time required for local execution
on the client PC. This shows the effectiveness
of the approach.

As expected, however, parallel efficiency de-
creased as the number of nodes increased. The
fraction of GridRPC communication also in-
creased as the number of nodes increased, al-
though only by 2–19%, an amount that seems
acceptable. The increase can be accounted for
by the increase in Total time. The difference
between GRPC and Eval is almost constant
for each molecular system, 0.18–0.19 s for the
DHFR simulations and 0.44–0.45 s for the HSA
simulations. The values are consistent with
the volumes of data transferred, since at ev-
ery time step the amounts of data transferred
along with a single GridRPC call was 7.5 Mbit
in the DHFR simulations and 30.3 Mbit in the
HSA simulations.

To confirm the advantage of concurrent
multiple-GridRPC services that is implied by
the cost model, we carried out a 3,000-step
DHFR simulation and a 1,000-step HSA sim-
ulation simultaneously. Notice that both sim-
ulations would take about 4,600 s. Two dedi-
cated nodes were used for each simulation, and
FMM-I was used in both simulations. Con-
cerning 2-node computation, the selected pair
of simulations was the one of the simulations
listed in Table 1 that would maximally inter-
fere with each other. The results for the pair
simulations are listed in Table 2. The results
indicate that the execution time and fraction of
delay both coincided with those in the 2-node

Table 2 Timing results for the two simulations
performed simultaneously.

Time/step (s)

Protein Steps Eval GRPC Total Delay
DHFR 3,000 1.32 1.51 1.54 0.12

HSA 1,000 4.04 4.49 4.62 0.10

computation of the single GridRPC session. In
other words, the GridRPC communications of
the two simulations did not interfere with each
other.

7. Concluding Remarks

This paper reported the design and imple-
mentation of a grid system for MD simula-
tions in the framework of GridRPC as pro-
vided by Ninf-G 2.4.0 but with some modifi-
cations. The basic concept of our approach was
to deliver the computing power of the cluster
system for MD simulation through GridRPC
calls. Each of the cluster nodes uses special
computing boards that calculate nonbonded in-
teractions between the atoms constituting the
molecular system. The inefficiency due to a sin-
gle GridRPC session using all the nodes of the
cluster was avoided by designing the grid so
that it works efficiently in multiple GridRPC
sessions. This was done by putting the ded-
icated nodes under the management of the
Torque system. In addition, a Ninf-G backend
procedure was designed so as to handle com-
munication to a client efficiently in the case
of multiple GridRPC sessions. As the cost
model implies, the multiple-GridRPC approach
improves parallel efficiency and the process-
ing/communication ratio in GridRPC calls.

We performed benchmark tests on two pro-
tein systems to confirm these improvements.
The results seemed promising, although we rec-
ognize that the scope of our tests was limited in



190 IPSJ Transactions on Advanced Computing Systems Sep. 2006

some respects. In a practical situation, the ef-
fects of the multiple-GridRPC approach might
be influenced by many factors, such as the num-
ber of GridRPC requests, the number of dedi-
cated nodes, and the sizes of molecular systems.
The performance of a job scheduler would be
also important because the efficiency depends
on how evenly jobs are distributed across clus-
ters (see Eq. 3). Nevertheless, the results show
the effectiveness of the multiple-GridRPC ap-
proach for reducing the time required for MD
simulations.

The method of this work was developed un-
der the presumption that a large number of
dedicated nodes would be available when ac-
tually building the grid. Then the large-scale
dedicated cluster would be dynamically divided
into small subclusters to circumvent the issue
of parallel efficiency. As mentioned previously,
we also assumed that the server and clients
are connected through a high-speed network.
When such is not available, the GridRPC ap-
proach could be modified by incorporating an
idea that can be found in the work of Boku,
et al. 20). In their design for a gravity calcu-
lation system (i.e., HMCS-G), the dedicated
cluster was treated as an single-atomic resource
and was shared between multiple clients in a
time-sharing manner. Multiple sessions were
handled by a single stub process. The pro-
cess also played the role of a data buffer, which
dramatically improved efficiency when a large
number of GridRPC connections were formed
on a low-speed network. This idea can be in-
corporated into the grid presented in this pa-
per to improve the efficiency in such cases.
Specifically, a subcluster of the dedicated clus-
ter may be further shared in a time-sharing
manner. Even in such a case, we could basi-
cally use the grid presented in this work. Some
modification, however, would be needed. We
would first have to modify the aslave process
so that each process acquires and releases the
MDE-II boards at each MD time step. To
avoid deadlock, the “mdeserver” process would
have to be extended to perform mutual exclu-
sion cluster-wide rather node-wide. In addi-
tion, modification of the dedicated board would
be required. The current MDE-II boards can
store only a limited number of simulation set-
tings (i.e., force field parameters and pair-
interaction data), and significant time is re-
quired for rewriting them. Hence, for the time-
sharing approach to be effective in MD simula-

tions, a method for rapidly switching between
many molecular systems should be provided.

In this work, the Ninf-G stub process was sep-
arated from SPMD processes on the dedicated
nodes for the force evaluation. As a result, it
is possible to place stub processes, for exam-
ple, on other dedicated machines for network-
ing. As mentioned previously, the idea of sep-
arating the stub from the SPMD processes can
be also seen in the HMCS-G system, where the
stub was expected to play the roles of traffic
scheduler. In this work, in contrast, the task of
traffic scheduling is left to a site-wide manager
rather than making a single stub responsible
for that task. The design of our grid-enabled
MD application may provide an opportunity to
efficiently schedule traffic in multiple GridRPC
sessions, but such issues are left for future work.

As described previously, there are several ap-
plication for MD simulations of proteins. Free
energy calculations, for example, have been car-
ried out by many researchers. The MD simu-
lation of this type can be performed effectively
by using the grid reported in this paper, pro-
vided there are stable connections between the
clients and the server. Because such an applica-
tion requires the connections to be maintained
throughout millions of GridRPC calls, issues re-
garding fault tolerance should be addressed be-
fore the grid is actually used.

Some MD applications, on the other hand,
require many more time steps. To fully sam-
ple the dynamics of a protein, for example, a
MD simulation should be performed at least
over tens of nanoseconds, corresponding to 108

GridRPC calls. Such simulations require far
more computing resources than were available
in the four-node dedicated cluster used in this
work. Fortunately, a new generation of comput-
ing boards is being brought to market ☆. Such
boards will shorten the execution time dramat-
ically. In such situations, the importance of
the multiple-GridRPC approach will further in-
crease.

Acknowledgments This study was sup-
ported in part by Grant-in-Aid Scientific Re-
search on Priority Area “Informatics” (Area
#006). We are grateful to Mr. Toshiroh
Shimada (Fuji Xerox Co., Ltd.) and Mr.
Hajime Fukuzawa (NEC Corporation) for their
☆ To our knowledge, there are currently two new ma-

chines: MDG3-system (SGI Japan, Ltd.) built with
MDGRAPE-3 boards (RIKEN) and MD Server
(NEC Corp.).



Vol. 47 No. SIG 12(ACS 15) Multiple GridRPC Services for Protein Simulations 191

assistance in carrying out preliminary bench-
mark tests, the results of which are not reported
in this paper.

References

1) Brooks, B.R., Bruccoleri, R.E., Olafson, B.D.,
States, D.J., Swaminathan, S. and Karplus,
M.: CHARMM: A Program for Macromolec-
ular Energy, Minimization, and Dynamics Cal-
culations, J. Computat. Chem., Vol.4, pp.187–
217 (1983).

2) Case, D.A., Cheatham, T.E., Darden, T.,
Gohlke, H., Luo, R., Merz, K.M., Onufriev, A.,
Simmerling, C., Wang, B. and Woods, R.: The
Amber Biomolecular Simulation Programs, J.
Computat.Chem., Vol.26, pp.1668–1688 (2005).

3) Wilter, A., Osthoff, C., Oliveira, C., Gomes,
D.E.B., Hill, E., Dardenne, L.E., Barros,
P.M., Loureiro, P.A.A.G.L., Novaes, R. and
Pascutti, P.G.: The BioPAUÁ Project: A Por-
tal for Molecular Dynamics Using Grid En-
vironment, Brazilian Symposium on Bioinfor-
matics, pp.214–217 (2005).

4) Jeong, K., Kim, D., Kim, M.H., Hwang, S.,
Jung, S., Lim, Y. and Lee, S.: A Workflow
Management and Grid Computing Approach
to Molecular Simulation-Based Bio/Nano Ex-
periments, Lecture Notes in Computer Science,
Vol.2660, pp.1117–1126 (2003).

5) Amisaki, T. and Fujiwara, S.: Development
of a Dedicated PC-Cluster for Molecular Dy-
namics Simulations and Its Application in
Computational Grids (in Japanese), IPSJ
Transactions on Computing Systems, Vol.45,
No.SIG 6(ACS 6), pp.244–253 (2004).

6) Natrajan, A., Humphrey, M.A. and Grimshaw,
A.S.: The Legion Support for Advanced
Parameter-Space Studies on a Grid, Fu-
ture Generation Computer Systems, Vol.18,
pp.1033–1052 (2002).

7) Sudholta, W., Baldridgea, K.K., Enticottc,
D.A.C., Garicc, S. and Nguyenb, C.K.D.: Ap-
plication of Grid Computing to Parameter
Sweeps and Optimizations in Molecular Mod-
eling, Future Generation Computer Systems,
Vol.21, No.1, pp.27–35 (2005).

8) Taufer, M., Crowley, M., Price, D.J., Chien,
A.A. and Brooks III, C.L.: Study of a Highly
Accurate and Fast Protein-Ligand Docking
Method Based on Molecular Dynamics, Con-
currency and Computation: Practice and Ex-
perience, Vol.17, No.14, pp.1627–1641 (2005).

9) Pande, V.S., Baker, I., Chapman, J., Elmer,
S.P., Khaliq, S., Larson, S.M., Rhee, Y.M.,
Shirts, M.R., Snow, C.D., Sorin, E.J. and
Zagrovic, B.: Atomistic Protein Folding Simu-
lations on the Submillisecond Time Scale Using

Worldwide Distributed Computing, Biopoly-
mers, Vol.68, No.1, pp.91–109 (2003).

10) Wang, W., Chen, G., Chen, H. and Yang,
S.: A Grid Computing Framework for Large
Scale Molecular Dynamics Simulations, Lecture
Notes in Computer Science, Vol.3032, pp.645–
648 (2004).

11) Karonis, N., Toonen, B. and Foster, I.:
MPICH-G2: A Grid-Enabled Implementation
of the Message Passing Interface, Journal of
Parallel and Distributed Computing, Vol.68,
No.5, pp.551–563 (2003).

12) Seymour, K., Nakada, H., Matsuoka, S.,
Dongarra, J., Lee, C. and Casanova, H.:
Overview of GridRPC: A Remote Procedure
Call API for Grid Computing, GRID ’02: Proc.
Third International Workshop on Grid Com-
puting, London, UK, Springer-Verlag, pp.274–
278 (2002).

13) Tanaka, Y., Nakada, H., Sekiguchi, S.,
Suzumura, T. and Matsuoka, S.: Ninf-G: A
Reference Implementation of RPC-based Pro-
gramming Middleware for Grid Computing,
Journal of Grid Computing, Vol.1, No.1, pp.41–
51 (2003).

14) Amisaki, T., Toyoda, S., Miyagawa, H. and
Kitamura, K.: Development of hardware accel-
erator for molecular dynamics simulations: A
computation board that calculates nonbonded
interactions, J. Computat.Chem., Vol.24, No.5,
pp.582–592 (2003).

15) Foster, I. and Kesselman, K.: Globus: A meta-
computing infrastructure toolkit, International
Journal of Supercomputer Applications, Vol.11,
pp.115–128 (1997).

16) Cluster Resources, Inc.: TORQUE Resource
Manager. http://www.clusterresources.com/
pages/products/torque-resource-manager.php

17) Burns, G., Daoud, R. and Vaigl, J.: LAM: An
Open Cluster Environment for MPI, Proc. Su-
percomputing Symposium, pp.379–386 (1994).

18) Greengard, L.: The Rapid Evaluation of Po-
tential Fields in Particle Systems, MIT Press,
Cambridge (1988).

19) Gervasi, O., Dittamo, C. and Laganà, A.:
A Grid Molecular Simulator for E-Science,
Lecture Notes in Computer Science, Vol.3470,
pp.16–22 (2005).

20) Boku, T., Sato, M., Onuma, K., Makino,
J., Takahashi, H.S.D. and Umemura, M.:
HMCS-G: Grid-enabled Hybrid Computing
System for Computational Astrophysics (in
Japanese), IPSJ Transactions on Computing
Systems, Vol.44, No.SIG 11(ACS 3), pp.1–13
(2003).

(Received January 27, 2006)
(Accepted May 23, 2006)



192 IPSJ Transactions on Advanced Computing Systems Sep. 2006

Takashi Amisaki was born
in 1959 and received Master’s
and Ph.D. degrees from Osaka
University in 1983 and 1992. Af-
ter graduate school he worked
at the Dept. of Hospital Phar-
macy in Tottori University be-

fore moving to Shimane University in 1991. In
2000, he obtained his current position as a pro-
fessor at Tottori University. His current re-
search interests include molecular simulations
of biological macromolecules, high-performance
computing, and biomedical data analysis. He
is a member of many professional societies, in-
cluding the IPSJ, IEICE, ACM, Pharmaceuti-
cal Society of Japan, and Biophysical Society of
Japan.

Shin-ichi Fujiwara was born
in 1976 and received Master’s
and Ph.D. degrees from Kyoto
University in 2000 and 2003.
Since 2003 he has been a re-
search associate at Tottori Uni-
versity, where his research inter-

ests include molecular dynamics simulations of
pharmacokinetic-related proteins. He is a mem-
ber of the Pharmaceutical Society of Japan,
Japanese Society for the Study of Xenobiotics,
and Biophysical Society of Japan.


