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Abstract: In this paper, we introduce the notion of “rep-cube”: a net of a cube that can be divided into multiple poly-
gons, each of which can be folded into a cube. This notion is inspired by the notion of polyomino and rep-tile; both are
introduced by Solomon W. Golomb, and well investigated in the recreational mathematics society. We prove that there
are infinitely many distinct rep-cubes. We also extend this notion to doubly covered squares and regular tetrahedra.
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1. Introduction

A polyomino is a “simply connected” set of unit squares in-
troduced by Solomon W. Golomb in 1954. Since then, sets of
polyomino pieces have played an important role in puzzle society
(see, e.g., Refs. [7], [9]). In Figure 82 in Ref. [7], it is shown that
a set of 12 pentominoes exactly covers a cube that is the square
root of 10 units on the side. In this context, there are series of
results about the set of polyominoes that covers a cube in recre-
ational math society; see Refs. [4], [5], [6], [10], [12], [13], [14],
[15], [16], [17]. There is a comprehensive survey on a web page
maintained by Haubrich [11].

In 1962, Golomb also proposed an interesting notion called
“rep-tile”: a polygon is a rep-tile of order k if it can be divided
into k replicas congruent to one another and similar to the original
(see Ref. [8], Chap 19 and Ref. [18]).

These notions lead us to the following natural question: is there
any polyomino that can be folded to a cube and divided into k
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polyominoes such that each of them can be folded to a (smaller)
cube for some k? That is, a polyomino is a rep-cube of order k

if it is a net of a cube, and it can be divided into k polyominoes
such that each of them can be folded to a cube. If each of these k

polyominoes has the same size, we call the original polyomino a
regular rep-cube of order k. We note that we do not define crease
lines for these nets. That is, although each polyomino consists of
unit squares, we may fold along the line that is not orthogonal to
the unit squares when we fold to a cube. Simple examples can
be found in Fig. 1. The first figure indicates two T-shapes that
can fold into one cube of size

√
2 × √2 × √2. In this net, each

T-shape consists of six unit squares and it can fold to a unit cube.
On the other hand, gluing these two T-shapes together as shown
in the figure, we can fold to a cube of size

√
2 × √2 × √2. The

dotted lines are not a part of the polyomino which is the net of the
cube of size

√
2 × √2 × √2, but they are just illustrated to help

to understand the squares of size
√

2 × √2.
From this viewpoint, we can find some affirmative examples

in the previous results. In Refs. [14], [15], [16], we can observe
that seven out of eleven developments of a cube have the follow-
ing property: five copies of each can cover the surface of a cube
without overlapping and holes. In our words, there are seven reg-
ular rep-cubes of order 5. In Ref. [13], Torbijn also investigated
the same notion, which was called cubic hexomino cubes, and
showed some examples for each k = 4, 5, 7, 9, 10*1. In this pa-
per, we investigate this notion and show more general results. We
first give some regular rep-cubes of order k for some specific k.
Based on this idea, we give a constructive proof for a series of
regular rep-cubes of order 36gk′2 for any positive integer k′ and
an integer g in {2, 4, 5, 8, 9, 36, 50, 64}. That is, there are infinitely
many k that allow regular rep-cube of order k. We also give some

*1 In a preliminary version of this paper presented at JCDCGGG, we have
not yet found this article which dealt with the same notion.
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Fig. 1 Rep-cubes of order k = 2, 4, 5.

Fig. 2 Rep-cubes of order k = 8, 9.

non-regular rep-cubes and its variants.
Moreover, we also extend this notion to other dimensions and

solids, where each polygon is no longer a polyomino. First, we
show the universal result for a doubly covered square. That is, for
any positive real numbers A, a1, a2, . . . , ak such that

∑
i ai = A,

there is a net of a doubly-covered square with area A that can
be cut into k polygons with areas a1, a2, . . . , ak such that each of
them can be folded into a doubly-covered square. Next, we also
show this result can be extended to a regular tetrahedron.

2. Results on Rep-Cubes

We first show some specific solutions.
Theorem 1 There exists a regular rep-cube of order k for

k = 2, 4, 5, 8, 9, 36, 50, 64.
Proof. For each of k = 2, 4, 5, 8, 9, we give a regular rep-cube
in Fig. 1 and Fig. 2. It is not difficult to see that they satisfy the
condition of rep-cubes.

For k = 36, we use six copies of the pattern given in Fig. 3.
Using this pattern, we can combine them into any one of eleven
nets of a cube.

For k = 64, we use one copy of the left pattern in Fig. 4 for the
bottom of a big cube, four copies of the center pattern in Fig. 4,
and one copy of the right pattern in Fig. 4 for the top of the big
cube. The consistency can be easily observed.

For k = 50, we make a program for finding packings of nets of
unit cubes on twisted grids on bigger cubes by exhaustive search.
We found a packing on a (7, 1) twist, i.e., a dissection of the sur-
face of a

√
50 × √50 × √50 cube into 50 nets of unit cubes as

Fig. 3 Pattern for rep-cubes of order k = 36.

Fig. 4 Patterns for rep-cubes of order k = 64.

shown in Fig. 5. It is worth mentioning that this pattern contains
all eleven edge unfoldings of a cube, while the rep-cube of order
k = 9 in Fig. 2 consists of only one kind of them. �

Based on the solution for k = 36 in Theorem 1, we obtain the
following theorem:
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Fig. 5 Pattern for rep-cubes of order k = 50.

Fig. 6 Patterns for non-regular rep-cubes of order k = 2, 10.

Theorem 2 There exists a regular rep-cube of order 36gk′2

for any positive integer k′ and an integer g in {2, 4, 5, 8, 9, 36, 50,
64}. That is, there exists an infinite number of regular rep-cubes.
Proof. We first choose one pattern in the proof of Theorem 1 ac-
cording to the value of g. Next we split each unit square in the
pattern into k′2 small squares. Then we replace each small square
by the pattern for k = 36 in Fig. 3. It is not difficult to see that the
notches match with each other since they are arranged properly
in the pattern. Therefore, we obtain the theorem. �

One may think that non-regular rep-cubes are more difficult

than regular ones. So far, we have found some:
Theorem 3 There exists a non-regular rep-cube of order k for

k = 2, 10.
Proof. For k = 2, the rep-cube is given in Fig. 6 (left): this it-
self folds to a cube of size

√
5 × √5 × √5, and it can be cut into

two pieces such that one folds into a cube of size 2 × 2 × 2, and
the other folds into a unit cube. We note that these areas satisfy
6 × (

√
5)2 = 6 × 12 + 6 × 22 = 30.

For k = 10, the rep-cube is given in Fig. 6 (right): this pat-
tern contains 150 unit squares. It is easy to see that nice nets
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of unit cube use 54 unit squares in total. The remaining 96
squares form a net of cube of size 4 × 4 × 4. Moreover, this
pattern also folds to a cube of size 5 × 5 × 5. These areas satisfy
150 = 6 × 52 = 6 × (32) + 6 × (42) = 6(32 + 42). �

3. Generalization

One natural extension of the notion of the rep-cube is a dif-
ferent dimension. We first focus on the 2 dimensional case;
doubly-covered squares. A doubly-covered square consists of
two unit squares such that every two corresponding edges of the
two squares are glued to each other. A unit doubly covered square
has volume 0 and area 2.

Before considering doubly-covered squares, we first show a
useful lemma:

Lemma 4 Let P be a cylinder of circumference a and height
b. Then, for any 0 < θ ≤ 90◦, we have a common development of
P and the other cylinder Q that has circumference x/2 and height
y with x = b

sin θ and y = a sin θ.
Proof. We give a construction of Q in Fig. 7. First, we cut the
dotted line in Fig. 7 (1). Then we have a parallelogram of edge
lengths a and x = b

sin θ . Rolling it up along the edge of length x,
we have a cylinder of desired size in Fig. 7 (3). �

We note that by changing θ from 90◦ to any small angle greater
than 0◦, we can have any long x greater than or equal to b/2.

For doubly-covered squares, we have the following theorem:
Theorem 5 For any positive real numbers A, a1, a2, . . . , ak

such that
∑

i ai = A, there is a net of a doubly-covered square with
area A that can be cut into k polygons with areas a1, a2, . . . , ak,
each of which can be folded into a doubly-covered square.
Proof. We first split the doubly-covered square of area A into
k pieces along horizontal lines so that each piece has area
a1, a2, . . . , ak (see Fig. 8). After the split, we have two pieces of
envelope shapes of area a1 and ak, and k − 2 pieces of cylindrical
paper strip of area a2, . . . , ak−1. We cut two more lines to make
two envelope shapes into cylindrical paper strips as well.

Now, we consider the ith strip of area ak. Its circumference is
2(
√

A/2) =
√

2A, and hence its height is ak/
√

2A. It is easy to
see that ak/

√
2A <

√
ak/2 since ak < A. Therefore, we can ap-

ply Lemma 4 to obtain a common development of this ith cylin-
der and another cylinder of circumference 2

√
ak/2 and of height√

ak/2, which can be glued to a doubly covered square easily.
�

The trick in Theorem 5 also works for regular tetrahedra:
Theorem 6 For any positive real numbers A, a1, . . . , ak such

that
∑

i ai = A, there is a net of a regular tetrahedron with area
A that can be cut into k polygons with areas a1, . . . , ak, each of
which can be folded into a regular tetrahedron.
Proof. It is known that a tetrahedron of area 4 can be folded by
any parallelogram of base of length 2 and height

√
3/2 (see Fig. 9;

the detailed characterization of a regular tetrahedron is given by
Akiyama and Nara [3]).

When we cut two skew edges of a regular tetrahedron of area A,

we obtain a cylinder of circumference
√

4A√
3

and of height
√ √

3A
4

(Fig. 10).
Thus, using the same method in the proof of Theorem 5, we

Fig. 7 (1) A cylinder of circumference a and height b, (2) a common devel-
opment of two cylinders, (3) the other cylinder of circumference x/2
and height y.

Fig. 8 One doubly-covered square to three doubly-covered squares.

Fig. 9 Any parallelogram of base of length 2 and height
√

3/2 can fold to
a regular tetrahedron; first, glue the edge ac and bd, and squash the
resulting cylinder along the dotted lines.

Fig. 10 One regular tetrahedron to three cylinders; each of them can fold to
a regular tetrahedron.

obtain the theorem. �

4. Conclusion

In this paper, we introduce a new notion of “rep-cube,” and
show several examples. So far, we have no systematic ways to in-
vestigate them. However, from the trivial constraint for the areas,
we can consider many variants as shown in the last example for
k = 10: Is there a rep-cube of order 6 from a 3 × 3 × 3 cube into
one 2×2×2 cube and five 1×1×1 cubes, and so on? Especially,
one interesting open question is whether there is a rep-cube of or-
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der 2 from one 5×5×5 cube into one 4×4×4 cube and 3×3×3
cube. We note that this size comes from the Pythagoras triangle
32 + 42 = 52. We have already known that there are infinitely
many Pythagoras triangles. For each of them, can we construct a
rep-cube of order 2?

Is there any integer k such that we have no regular rep-cube of
order k? It seems to be unlikely that there is a regular rep-cube
of order 3. How can we prove that? In this paper, we also intro-
duce “regular” rep-cubes. One natural additional condition may
be making every small development congruent; for example, each
example for k = 2, 4, 9 satisfies this condition. What happens if
we employ this additional condition?
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