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KazukiMatsubara1,a) Chie Nara2,b)

Received: November 6, 2016, Accepted: May 16, 2017

Abstract: It was proved that any orthogonal polyhedron is continuously flattened by using a property of a rhombus.
We investigated the method precisely, and found that there are infinitely many ways to flatten such polyhedra. We
prove that the infimum of the area of moving creases is zero for α-trapezoidal polyhedra, which is a generalization of
semi-orthogonal polyhedra. Also we prove that, for any integer n, there exists a continuous flattening motion whose
area of moving creases is arbitrarily small for any n-gonal pyramid with a circumscribed base and a top vertex being
just above the incenter of the base. As a by-product we provide a continuous flattening motion whose area of moving
creases is arbitrarily small for more general types of polyhedra.
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1. Introduction

We use the terminology polyhedron for a polyhedral surface in
three-dimensional Euclidean space which is permitted to touch it-
self but not self-intersect, and a polyhedron always can be folded
by creases like a piece of paper. Note that, in this paper, polyhe-
dra with higher genus are allowed, so long as no three faces of
any polyhedron meet at an edge. A flat folding of a polyhedron is
a folding by creases into a multilayered flat folded state without
self-intersection. It is known that any polyhedron with genus zero
has a multilayered flat folded state [2], [6]. However, it remains
an open problem to find a continuous motion of the surface down
to a multilayered flat folded state for any polyhedron.

The original problem of continuous flattening of polyhedra is
in Ref. [5] and the existence of a continuous motion has been
proven in Refs. [1], [8] for any convex polyhedron. In Ref. [8]
the authors gave a method by use of the cut locus and Alexandrov
gluing theorem. On the other hand, in Ref. [1] the authors pro-
vided a surprisingly simple method by use of the straight skele-
ton gluing. In addition, in literature there are several ways of
continuous flattening for special classes of convex polyhedra (see
Ref. [7] for example).

An important limitation to continuous flattening is the Bellows
Theorem [3]: the volume of any polyhedron with rigid faces is in-
variant even if it can flex, where the terminology “polyhedron” is
used for a polyhedral surface which is not permitted to touch itself
but we can still apply this result to our cases. Flattening a polyhe-
dron necessarily changes the volume (from nonzero to zero), so
some faces cannot be rigid, e.g., by changing their shapes contin-
uously by infinitely moving creases. In this paper we propose the
open question to find a method with small area of moving creases
for a given polyhedron, and it is interesting because the area of
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moving creases should be made by special materials for some
products. In this paper, we focus on the area of moving creases
for continuous flattening of polyhedra, and show the existence of
a continuous flattening motion whose area of moving creases is
arbitrarily small for some types of polyhedra. Note that what is
meant by arbitrarily small area of moving creases is that the ratio
of the area supporting moving creases to polyhedron surface area
can be made smaller than any positive constant. As far as the au-
thors know, the idea of considering the area of moving creases is
introduced here for the first time, and it is our original problem
to find a method with small area of moving creases for a given
polyhedron.

A polyhedron is called orthogonal if the dihedral angle of each
edge is 90◦ or 270◦ (cf. Ref. [6]). By an appropriate choice of x,
y, z axes for Euclidean space, we can equivalently define a poly-
hedron to be orthogonal if every face is orthogonal to the x, y, or
z axis.

More generally, a polyhedron is called semi-orthogonal if ev-
ery face is orthogonal to the z axis or the xy-plane (cf. Ref. [6]).
It was proved in Ref. [4] that every semi-orthogonal polyhedron
can be continuously flattened so that all orthogonal faces to the z

axis are rigid, that is, there are no creases on them.
Furthermore, a more general type of polyhedra is defined here.

A polyhedron is called α-trapezoidal if every face is orthogonal to
the z axis or a trapezoid forming the dihedral angle α (or 180◦−α)
with the xy-plane, where 0◦ < α ≤ 90◦. Note that any 90◦-
trapezoidal polyhedron is just a semi-orthogonal polyhedron, and
truncated regular pyramids are α-trapezoidal.

Our main results are the continuous flattening of any α-
trapezoidal polyhedron (not necessarily convex or of genus zero)
and its applications as follows.
Theorem 1. For any α-trapezoidal polyhedron, there exists a

continuous flattening motion whose area of moving creases is ar-

bitrarily small.

Theorem 2. Let n ≥ 3. For any n-gonal pyramid with a circum-

scribed base and a top vertex being just above the incenter of the
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base, there exists a continuous flattening motion whose area of

moving creases is arbitrarily small.

Furthermore, we provide a continuous flattening motion whose
area of moving creases is arbitrarily small for more general types
of polyhedra in Section 6.

2. Zig-Zag Belts

For two points u, v in the three-dimensional space R3, we de-
note by uv the line segment joining points u and v, and also de-
note by |uv| the Euclidean distance between those two points. Let
P be a plane parallel to the xy-plane. Then an α zig-zag belt Bα,
0◦ < α ≤ 90◦, in three-dimensional Euclidean space is a set of
trapezoids (called faces) with same height, called the width of Bα,
satisfying the following conditions:
(i) the interiors of faces do not intersect each other,
(ii) every top edge is on the plane P,
(iii) every bottom edge is on the xy-plane,
(iv) every two trapezoids do not share a top or bottom edge,
(v) all top edges form a cycle on P and all bottom edges also

form a cycle on the xy-plane, and
(vi) every face of Bα forms a dihedral angle α (or 180◦ − α) with

the xy-plane.
Then top edges and bottom edges of an α zig-zag belt are called
zig-zag sides. Note that any Bα with α = 90◦ coincides with a
zig-zag belt in Ref. [4].

Especially, α zig-zag belts appear on truncated regular pyra-
mids or parallelepipeds; see Fig. 1 (a), (b), (c). We can also think
of an α zig-zag belt as an unfolded state of a polygon formed by
n trapezoids uivivi+1ui+1, 0 ≤ i ≤ n − 1; see Fig. 1 (d), (e), (f) for
examples.

For any α zig-zag belt formed by n trapezoids uivivi+1ui+1,
0 ≤ i ≤ n − 1, two adjacent trapezoids are not always congru-
ent, but we have the following formulas by the above condition
(vi):

∠uivivi−1 = ∠uivivi+1

or

∠uivivi−1 = 180◦ − ∠uivivi+1

for each 1 ≤ i ≤ n− 1. Hence any two adjacent faces can be clas-
sified into three types by the angles adjacent to the edge uivi. In an
α zig-zag belt formed by n trapezoids uivivi+1ui+1, 0 ≤ i ≤ n − 1,
the types of two adjacent faces with ∠uivivi−1 = ∠uivivi+1 ≤ 90◦,

Fig. 1 Three examples of α zig-zag belts (a) on a truncated tetrahedron; (b)
on a parallelepiped; (c) on a reverse truncated tetrahedron, and un-
folded states of α zig-zag belts (d) on a truncated tetrahedron; (e) on
a parallelepiped; (f) on a reverse truncated tetrahedron.

∠uivivi−1 = 180◦ − ∠uivivi+1 and ∠uivivi−1 = ∠uivivi+1 > 90◦ are
called Inside-Inside, Outside-Inside and Outside-Outside, respec-
tively. For example, the types of Fig. 1 (a), (b) and (c) are Inside-
Inside, Outside-Inside and Outside-Outside, respectively. Also
the side containing the dihedral angle α is called the α-side for
each face. Note that the α-side of each face is defined relative to
the α angle formed by the bottom face and not the top face.

Furthermore, since ∠ui−1uiui+1 = ∠vi−1vivi+1 for each 1 ≤
i ≤ n − 1, we can put ∠ui−1uiui+1 = ∠vi−1vivi+1 = θi with
0◦ < θi ≤ 180◦ in R3. Now, in two adjacent faces formed by
two trapezoids ui−1vi−1viui and uivivi+1ui+1, the relation between
θi and α (0◦ < α < 90◦) is provided as follows.
Proposition 1. For cases of Inside-Inside, Outside-Inside with

0◦ < ∠uivivi−1 < 90◦ and Outside-Outside, we have

tan ∠uivivi−1 cosα =
|uivi| sin ∠uivivi−1 cosα
|uivi| cos ∠uivivi−1

= tan
θi
2
, (1)

tan ∠uivivi−1 cosα = tan
180◦ − θi

2
(2)

and

tan(180◦ − ∠uivivi−1) cosα = tan
θi
2
, (3)

respectively.

Proof. For cases of Inside-Inside and Outside-Inside with 0◦ <
∠uivivi−1 < 90◦, let h1 be a point on vi−1vi so that ∠uih1vi =

90◦. Also let h2 be a point on the xy-plane so that ∠uih2vi =

∠uih2h1 = 90◦ and ∠uih1h2 = α in R3. Then it follows that
|h1h2| = |uivi| sin ∠uivivi−1 cosα, |h1vi| = |uivi| cos ∠uivivi−1 and
∠h1vih2 is a bisector of ∠vi−1vivi+1. Hence Egs. (1) and (2) can
be obtained. Similarly, since ∠vi−1viui = 180◦ − ∠ui−1uivi and two
faces of Outside-Outside are reverse two faces of Inside-Inside,
(3) can also be shown for a case of Outside-Outside. �

Sice 0◦ < α < 90◦, Proposition 1 shows the following result.
Proposition 2. For cases of Inside-Inside, Outside-Inside with

0◦ < ∠uivivi−1 < 90◦ and Outside-Outside, we have

0◦ < θi < 2∠uivivi−1, (4)

180◦ − 2∠uivivi−1 = −∠uivivi−1 + ∠uivivi+1 < θi < 180◦ (5)

and

0◦ < θi < 360◦ − 2∠uivivi−1, (6)

respectively.

3. Folding Kites

In Ref. [4] the authors investigated the rhombus property, and
then it was shown that any 90◦ zig-zag belt can be continuously
flattened by use of the rhombus property. And also it was shown
that there exists a continuous flattening motion of any semi-
orthogonal polyhedron (cf. Ref. [4]).

As a generalization of the rhombus foldings, in Ref. [9] the au-
thor gives the kite foldings.
Definition 1. Let K = abcd be a kite with |ab| = |ad| and

|bc| = |dc| (see Fig. 2 (a)). Let r be a point on ac. For a point

q on br, fold K by mountain creases on aq, bq, cq and dr, and

valley creases on qr, ar and cr. Then we obtain a figure as shown

in Fig. 2 (b) which is flexible. We call such figure a folded kite
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Fig. 2 (a) A kite K = abcd and (b) a folded kite Kr(l,m) with a′, b′, c′, d′.

with wing-shape.

For a kite K and a point r, if we choose the distances |a′c′| = l

and |b′d′| = m, a point q and the folded kite with wing-shape are

uniquely determined and denoted by Kr(l,m), where a′, b′, c′ and

d′ are corresponding vertices of Kr(l,m) to a, b, c and d.

In Ref. [9] the author presents the flattening methods for some
polyhedra by use of the following lemma.
Lemma 1. [9] Let K = abcd be any kite and r be a point

on ac. For any two folded kites with wing-shape Kr(l,m) and

Kr(l′,m′), there exists a continuous folding process from Kr(l,m)
to Kr(l′,m′).

Lemma 1 is very useful and will play an important role in the
proof of an Outside-Outside case in Lemma 2.

4. Proof of Theorem 1

In this section, we show one of our main results by use of the
following lemma.
Lemma 2. An α zig-zag belt Bα with two trapezoids can be con-

tinuously flattened with the area of moving creases being propor-

tional to square of the width so that the two zig-zag sides remain

rigid and translate only in the z direction, and moreover, each

face is squashed to the direction of the α-side for the face.

Proof. Assume that two tetragons aegc and acwu are two ad-
jacent trapezoids forming a dihedral angle α with the xy-plane
in R3, two edges ea and au are parallel to the xy-plane and two
edges gc and cw are on the xy-plane. Then it is sufficient to prove
for the three cases: Inside-Inside, Outside-Inside and Outside-
Outside. Also let ∠eau = θ, 0◦ < θ < 180◦, in R3. Here the two
adjacent trapezoids with θ are called a (α, θ) zig-zag belt.

Now we consider the flattening so that the zig-zag sides remain
rigid and translate only in the z direction.

At first the creases parallel to the xy-plane are considered.
Since the two zig-zag sides can translate only in the z direction
and each face forms a dihedral angle α with the xy-plane, it is
shown that there must exist creases b f and bv parallel to the xy-
plane so that

|ab| : |bc| = |e f | : | fg| = |uv| : |vw| = (1 − cosα) : (1 + cosα),

(7)

where b, f and v are on ac, eg and uw, respectively.
Now, we give the flattening motion for each case.

Case of Outside-Inside
Let a (α, θ) zig-zag belt with two faces be formed by two trape-

zoids aegc and acwu with ∠acg < ∠acw as in Fig. 3 (a) and (b).
Then, by Eg. (7), we can deside the creases parallel to zig-zag
sides as in Fig. 3 (b) so that |ab| : |bc| = |e f | : | fg| = |uv| : |vw| =
1 − cosα : 1 + cosα. Also we can decide the point h on b f and
the area �ach of moving creases so that

Fig. 3 (a) An Outside-Inside (α, θ) zig-zag belt in R3, (b) an unfolding of
the zig-zag belt, (c) a moving motion, (d) a multilayered flat folded
state, where the region of moving creases is shown in gray triangles.

Fig. 4 (a) An Inside-Inside (α, θ) zig-zag belt in R3, (b) an unfolding of the
zig-zag belt, (c) a moving motion, (d) a multilayered flat folded state,
where the region of moving creases is shown in gray triangles.

Fig. 5 (a) An Outside-Outside (α, θ) zig-zag belt in R3, (b) an unfolding
of the zig-zag belt, (c) a moving motion without two triangles �ahc
and �ah′c, (d) a multilayered flat folded state, where the region of
moving creases is shown in gray triangles.

∠ach =
θ + ∠acg − ∠acw

2
. (8)

Then there exists a moving motion with moving creases at and
ct, where t is a moving point on the bh; see Fig. 3 (c). Hence it
follows that any Outside-Inside zig-zag belt can be continuously
flattened.
Case of Inside-Inside

In Fig. 3 (a), let u′, v′ and w′ be symmetrical points with u, v and
w about a, b and c, respectively, as in Fig. 4 (a) and (b). Then two
trapezoids aegc and acw′u′ form the (α, 180◦ − θ) zig-zag belt of
the Inside-Inside type with the area �ach of moving creases satis-
fying Eg. (8). By folding the trapezoid acw′u′ similar to the trape-
zoid acwu in the case of Outside-Inside, it follows that any Inside-
Inside zig-zag belt can be continuously flattened; see Fig. 4 (c)
and (d).
Case of Outside-Outside

We can decide the creases b f and bv satisfying Eg. (7). On the
other hand, the region of moving creases can be decided as in
Fig. 5 (b) so that

∠ach =
2∠acg + θ

4
, ∠ach′ =

2∠acw + θ
4.

(9)

Then we can flatten the two pentagons aegch and auwch′ so that
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Fig. 6 (a) A box with one slice, (b) a box with three slice, where the region
of moving creases are shown in gray triangles.

two zig-zag sides eau and gcw remain rigid and each face is
squashed to a direction of the α-side for the face; see Fig. 5 (c)
and (d). Also it follows that |hh′| in (b) is greater than |hh′| in (a),
(c) and equal to |hh′| in (d). Hence, by Lemma 1 with K = ahch′

and a point r being a foot of a perpendicular from h to ac, two
adjacent triangles �ach and �ach′ can be continuously flattened
from (a) to (d). Thus it follows that any Outside-Outside zig-
zag belt can be continuously flattened so that the area of moving
creases is �ach + �ach′ at most.

By Egs. (4), (5) and (6), we can decide the point h on the line
b f for any case. If the point h is not on the face or global inter-
actions occur in the flattening motion, then the zig-zag belt can
be sliced thin enough by the planes parallel to the xy-plane so
that the point h of each part is on the face and global interactions
do not occur. Since the shape of the triangles ach and ach′ de-
pends on ∠acg, α and θ, the area of moving creases, �ach and
�ach + �ach′, is proportional to square of the width. Thus the
proof is complete. �

Lemma 2 is very useful for continuous flattening of some types
of polyhedra.

Next the proof of Theorem 1 is presented.
Proof of Theorem 1. For any α-trapezoidal polyhedron, all of
side faces form some α zig-zag belts. Also we can slice each
of the α zig-zag belts into α zig-zag belts with sufficiently small
width by planes orthogonal to the z axis. Since, in each α zig-
zag belt, the creases parallel to the xy-plane appear in the same
height on each face by Eg. (7), the α zig-zag belt can be continu-
ously flattened by Lemma 2.

When each two adjacent faces of original α zig-zag belts with
the area �ach or �ach + �ach′ of moving creases is sliced into
n parts, the sum of the area of moving creases is �ach × 1

n2 × n

or (�ach + �ach′) × 1
n2 × n. Hence it is shown that there exists

a continuous flattening motion whose area of moving creases is
arbitrarily small. �

For example, an orthogonal polyhedron can be continuously
flattened by creases and moving creases as shown in Fig. 6.

5. Proof of Theorem 2

For any n-gonal pyramid, its top part is not an α zig-zag belt,
even if we slice the pyramids into many parts. However, it is
known that there exists a continuous flattening motion of n-gonal
pyramids as follows.
Lemma 3.[1] For any convex n-gonal pyramid with n ≥ 3, there

exists a continuous flattening so that the n-gonal base have no

crease.

Note that Lemma 3 gives the continuous flattening motion
whose moving creases cover all side faces and the area is not
small. On the other hand, Theorem 2 shown by use of Lemmas 2

and 3 gives the continuous flattening motion whose area of mov-
ing creases is arbitrarily small as follows.
Proof of Theorem 2. Any n-gonal pyramid with a circumscribed
base and a top vertex being just above the incenter of the base is
convex. Also each side face of the pyramid forms a dihedral an-
gle α with the base. Let the pyramid be equally sliced by planes
orthogonal to the z axis. Then the top part can be flattened by
Lemma 3. On the other hand, since other parts compose α zig-zag
belts, each part can be flattened by Lemma 2. When the top part
is sufficiently small, the area of moving creases on the top part
is also sufficiently small. Since we can slice the n-gonal pyramid
into sufficiently small parts, the proof is complete. �

6. Concluding Remarks

We finally note that Lemma 2 can be applied to more general
polyhedra. At first we provide the following result.
Theorem 3. For any regular antiprism, there exists a continu-

ous flattening motion whose area of moving creases is arbitrarily

small.

Proof. Any regular antiprism contains the closed side faces con-
sisting of similar triangles, and also the triangles form a dihedral
angle α, 0◦ < α < 90◦, with the bottom face. We call the belt
formed trapezoids or triangles an α zig-zag quasi-belt. Further-
more, in the α zig-zag quasi-belt on a regular antiprism, any two
adjacent faces are type of Outside-Inside, where the type is same
meaning as in Section 2.

Let the α zig-zag quasi-belt be sliced equally two parts, and
uiui+1 and wiwi+1, 0 ≤ i ≤ n − 1, be edges of the top n-gonal
face and the bottom n-gonal face, respectively. Then triangles
and trapezoids appear alternately on each part. Also let vi, v′i be
the intersections as shown in Fig. 7.

Then, for the bottom face, the α-side of each �v′iwi+1vi+1,
0 ≤ i ≤ n−1, is the inside of the antiprism. On the other hand, for
the top face, the α-side of each �viuiv

′
i , 0 ≤ i ≤ n − 1, is also the

inside of the antiprism. Hence the two parts can be continuously
flattened by same manner of a case of Outside-Inside in Lemma 2
so that triangles �v′iwi+1vi+1 and �viuiv

′
i have no moving crease.

Furthermore, we can slice the α zig-zag quasi-belt into parts
with sufficiently small width, and continuously flatten each α zig-
zag quasi-belt by choosing sides for the Outside-Inside type con-
sistently so that triangles �v′iwi+1vi+1 and �viuiv

′
i have no moving

crease. Thus the proof is complete. �
For example, a triangular antiprism can be continuously flat-

tened by creases and moving creases as shown in Fig. 8. Note that
no triangle face of any α zig-zag quasi-belt have moving crease.

Now, Platonic solids are considered.
Lemma 4. A regular dodecahedron can be partitioned into two

regular truncated pentagonal pyramids, each with no base and

an α zig-zag belt. A regular icosahedron can be partitioned into

two regular pentagonal pyramids, each with no base and an α

zig-zag belt.

Proof. Let the bottom face of a regular dodecahedron be on the
xy-plane and both a top vertex and a bottom vertex of a regular
icosahedron be on the z axis. Also let S be a set of all planes par-
allel to the xy-plane and containing some vertices for each poly-
hedron. Then it follows that each polyhedron can be partitioned

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 7 A development of α zig-zag belt of an antiprism.

Fig. 8 A development of a triangular antiprism, where the region of moving
creases are shown in gray triangles.

by planes in S into the required parts. �
Finally, we present the continuous flattening motion of Platonic

solids as follows.
Theorem 4. For any Platonic solid, there exists a continuous flat-

tening motion whose area of moving creases is arbitrarily small.

Proof. A cube, a regular tetrahedron and a regular octahedron
can be continuously flattened by Theorems 1, 2 and 3, respec-
tively. On the other hand, by Lemma 4, a regular dodecahedron
and a regular icosahedron can be partitioned into some truncated
regular pyramids with no base, some regular pyramids with no
base and some α zig-zag belts on regular antiprisms. The regular
truncated pyramids, the regular pyramids and the α zig-zag belts
can be continuously flattened by the same methods in the proofs
of Theorems 1, 2 and 3, respectively, so that top edges and bottom
edges remain rigid in each part. Hence, it follows that a regular
dodecahedron and a regular icosahedron can be continuously flat-
tened. Furthermore, in each part, there exists a continuous flat-
tening motion whose area of moving creases is arbitrarily small.
Since the number of parts is finite, the sum of the area of moving
creases is arbitrarily small. �

The method given in this paper will be applied to non α-
trapezoidal polyhedra, for example Archimedean polyhedra. This
will be discussed in a forthcoming paper.
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