Regular Paper

On the Rectilinear Local Crossing Number of $\boldsymbol{K}_{\boldsymbol{m}, \boldsymbol{n}}$

Bernardo M. Ábrego ${ }^{1, a)}$ Kory Dondzila ${ }^{1, b)}$ Silvia Fernández-Merchant ${ }^{1, c}$)
Evgeniya Lagoda ${ }^{1, \uparrow 1, \mathrm{~d})}$ Seyed SajJadi ${ }^{1, \mathrm{e})}$ Yakov Sapozhnikov ${ }^{1, \mathrm{f})}$

Received: November 7, 2016, Accepted: May 16, 2017

Abstract

We bound the rectilinear local crossing number of the complete bipartite graph $K_{m, n}$ for every m and n, and completely determine its value when $\min (m, n) \leq 4$.

Keywords: local crossing number, crossing number, bipartite graph

1. Introduction

In this work, we consider rectilinear drawings of the complete bipartite graph $K_{m, n}$, that is, drawings whose vertices are m red and n blue points in the plane, and whose edges are straight line segments joining all pairs of points with different colors. We also assume that any two of these edges share at most one point.
In general, the local crossing number of a graph G was defined by Ringel as follows (see Guy et al. [6], Kainen [7], and Schaefer [12]). The local crossing number of a drawing D of a graph G, denoted $\operatorname{lcr}(D)$, is the largest number of crossings on any edge of D. The local crossing number of G, denoted $\operatorname{lcr}(G)$, is the minimum of $\operatorname{lcr}(D)$ over all drawings D of G. This is also known as the cross-index (Thomassen [15]). The analogous definition for rectilinear drawings is the rectilinear local crossing number of G, denoted $\overline{\operatorname{lcr}}(G)$, which is the minimum of $\operatorname{lcr}(D)$ over all rectilinear drawings D of G. Recently, Ábrego and FernándezMerchant [1] completely determined $\overline{\operatorname{lcr}}\left(K_{n}\right)$ using a separation lemma (See Lemma 2 in Ref. [1]).
The crossing number of a graph G, denoted by $\operatorname{cr}(G)$, is the smallest number of crossings among all drawings of G. When this minimum is restricted to rectilinear drawings, we obtain the rectilinear crossing number of G, denoted by $\overline{\operatorname{cr}}(G)$. Crossing number problems originated in the 1940s with Turán (see Ref. [3] for more on the history of the brick factory problem) and have been widely studied since then [2], [5], [12]. Crossing numbers of complete graphs are of particular importance because bounds on these numbers give bounds on the crossing number of any graph by using random embeddings [4], [10], [13], [14]. Leighton [10] uses this to bound the VLSI layout area of a graph, while Shahrokhi, Sýkora, Székely, and Vrťo [14] use it to find ap-

[^0]proximation algorithms of crossing numbers for dense graphs.
The value of $\overline{\operatorname{cr}(G)}$ can be used to bound $\overline{\operatorname{lcr}}(G)$ (as done in Ref. [6] for drawings of K_{n} on the torus). Namely, adding the number of crossings of every edge over all edges of a graph G counts precisely twice the number of crossings of G. It follows that
$$
\overline{\operatorname{ccr}}\left(K_{m, n}\right) \geq \frac{2 \overline{\operatorname{cr}}\left(K_{m, n}\right)}{m n}
$$

The Zarankiewicz Conjecture (Paul Turán, 1944), states that $\overline{\operatorname{cr}}\left(K_{m, n}\right)=\operatorname{cr}\left(K_{m, n}\right)=Z(m, n):=\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor$, but this has only been proved when $\min (m, n) \leq 6[8]$, and for $m=7$ or 8 and $n \leq 10[16]$. The current best published lower bound on $\operatorname{cr}\left(K_{m, n}\right)$ is $0.86 Z(m, n)$ by de Klerk et al. [9] and recently, Norine and Zwols [11] announced the lower bound $0.905 Z(m, n)$, but this has not been published. This would yield

$$
\operatorname{lcr}\left(K_{m, n}\right) \geq \frac{0.905}{8} m n+o(m n)=0.113125 m n+o(m n)
$$

If the Zarankiewicz Conjecture were true, we would have

$$
\overline{\operatorname{lcr}}\left(K_{m, n}\right) \geq \frac{1}{8} m n+o(m n)
$$

Turan's drawing of $K_{m, n}$ with $Z(m, n)$ crossings (see Fig. 1) has local crossing number $\left(\left\lceil\frac{m}{2}\right\rceil-1\right)\left(\left\lceil\frac{n}{2}\right\rceil-1\right)$ showing that

$$
\overline{\operatorname{lcr}}\left(K_{m, n}\right) \leq \frac{1}{4} m n+o(m n) .
$$

Clearly, $\overline{\operatorname{lcr}}\left(K_{2, n}\right)=0$ as Turan's construction for $m=2$ (Fig. 1) has no crossings. In Section 2, we determine $\overline{\operatorname{lcr}}\left(K_{m, n}\right)$ for $m=3$ and 4. More precisely, for any integer $n \geq 2$,

$$
\overline{\operatorname{lcr}}\left(K_{3, n}\right)=\left\lceil\frac{n-2}{4}\right\rceil \quad \text { and } \quad \overline{\operatorname{lcr}}\left(K_{4, n}\right)=\left\lceil\frac{n-2}{2}\right\rceil .
$$

In Section 3, we present constructions that improve the upper bound to

$$
\overline{\operatorname{lcr}}\left(K_{m, n}\right) \leq \frac{3}{14}(m-1)(n-1)
$$

for any $m \geq 5$ and $n \geq 5$. Further improvements on this bound are presented for small values of m and any n.

2. Exact Results

We determine $\overline{\operatorname{lcr}}\left(K_{m, n}\right)$ for $m=3$ and 4 . The following observation will be useful for the presentation of our proofs. Let P be a set of points. We say that $\Delta x y z$ is P-empty if the interior of $\Delta x y z$ does not contain points in P.
Observation 1. For any segment $x y$ and any set of points P, there is a point $z \in P$ such that $\Delta x y z$ is P-empty.
In fact, z could be a point in P closest to the line $x y$. We now proceed to prove the two results of this section.
Theorem 2. For any integer $n \geq 3$,

$$
\overline{\operatorname{lcr}}\left(K_{3, n}\right)=\left\lceil\frac{n-2}{4}\right\rceil .
$$

Proof. We first prove that $\overline{\operatorname{lcr}}\left(K_{3, n}\right) \geq\left\lceil\frac{n-2}{4}\right\rceil$. Consider any drawing D of $K_{3, n}$. As usual, the two vertex-classes R and B are colored red and blue. So R has 3 red points, which we label a, b, and $c ; B$ has n blue points; and every red point is joined to every blue point by a straight line-segment. We prove that D must have an edge that is crossed at least $\left\lceil\frac{n-2}{4}\right\rceil$ times. We consider several cases according to how the blue points are distributed among the

Fig. 1 Zarankiewicz drawing of $K_{m, n}$ with $Z(m, n)$ crossings.
regions determined by the red points. In each case, we identify 2 or 4 edges that must be crossed a combined total of at least $\frac{n-2}{2}$ or $n-2$ times, respectively.

Case 1. The points a, b, and c are collinear. Let l be the line through a, b, and c and suppose that b is between a and c on l. Consider a blue point on each side of l, say x and y, such that $\Delta a c x$ and $\Delta a c y$ are B-empty (See Fig. 2 (a)). Then any edge of the form $z b$, where z is a blue point, crosses one of the edges $a x$, $x c, a y$, or $y c$. So one of these four edges must be crossed at least $\left\lceil\frac{n-2}{4}\right\rceil$ times. If all blue points are on the same side of l, then the $\left\lceil\frac{n-2}{4}\right\rceil$ can be improved to $\left\lceil\frac{n-1}{2}\right\rceil$.

Case 2. The points a, b, and c are noncollinear. In this case, a, b, and c are the vertices of a triangle. The lines $a b, b c$, and $c a$ divide the plane into 7 regions as shown in Fig. 2 (b). We partition the set of blue points into two parts: The set B_{1} of blue points in $R_{a} \cup R_{b} \cup R_{c}$, and the set B_{2} of all other blue points. Let $n_{1}=\left|B_{1}\right|$ and $n_{2}=\left|B_{2}\right|$ so that $n=n_{1}+n_{2}$.

We first look at the points in B_{1}. If B_{1} is nonempty, consider any point $x \in B_{1}$, say in R_{a}, closest to $\Delta a b c$ in the sense that no other points in B_{1} are in the interior of the quadrilateral xbac (See Fig. 2 (c)). Then for any blue point $z \in B_{1}$, the edge $z a$ crosses either $x b$ or $x c$. Thus one of the edges $x b$ or $x c$ is crossed at least $\left\lceil\frac{n_{1}-1}{2}\right\rceil$ times.

Now look at the points in B_{2}. If B_{2} is nonempty, we have three subcases.

Case 2.1 At least two of the regions $R_{a b}, R_{b c}$, and $R_{a c}$, say $R_{a b}$ and $R_{a c}$, have blue points. Let $x \in R_{a b}$ be a blue point such that there are no other blue points in the intersection of $R_{a b}$ and the sector $a c x$ (See Fig. 3 (a)). Similarly, let $y \in R_{a c}$ be a blue point such that there are no other blue points in the intersection of $R_{a c}$ and the sector $y b a$. Then any point $z \in B_{2} \backslash\{x, y\}$ creates at least one crossing with $x c$ or $y b$. Namely, if $z \in R_{a b}$ then $z c$ crosses $y b$; if $z \in R_{a c}$ then $z b$ crosses $x c$; and if $z \in R_{b c}$ then $z a$ crosses both

Fig. 2 (a) The red points a, b, and c are collinear. (b) The regions determined by the red points when they are in general position. (c) The blue points in B_{1} are solid. The blue points in B_{2} are hollow. The shaded region is empty.

Fig. 3 All shaded regions are B-empty.

Fig. 4 An optimal construction for $\overline{\operatorname{lcr}}\left(K_{3, n}\right)$.
$x c$ and $y b$. Also, $x c$ and $y b$ cross each other, adding one more crossing to each $x c$ and $y b$. Thus one of the edges $x c$ or $y b$ is crossed at least $\left\lceil\frac{n_{2}-2}{2}\right\rceil+1=\left\lceil\frac{n_{2}}{2}\right\rceil$ times.

Case 2.2 Exactly one of the regions $R_{a b}, R_{b c}$, and $R_{a c}$, say $R_{a b}$, has blue points but $R_{a b c}$ does not. Let $x \in R_{a b}$ be a blue point such that $\triangle a x b$ is B_{2}-empty (See Fig. 3 (b)). Then for any point $z \in B_{2} \backslash\{x\}$, the edge $z c$ crosses $x a$ or $x b$. Thus one of the edges $x a$ or $x b$ is crossed at least $\left\lceil\frac{n_{2}-1}{2}\right\rceil$ times.

Case 2.3 At most one of the regions $R_{a b}, R_{b c}$, and $R_{a c}$ has blue points and $R_{a b c}$ has blue points. Without loss of generality suppose that $R_{b c}$, and $R_{a c}$ have no blue points. Let $x \in R_{a b c}$ be a blue point such that there are no other blue points in the sector $c b x$ (See Fig. 3 (c)). Then for any point $z \in B_{2} \backslash\{x\}$ the edge $z c$ or $z b$ crosses $x a$ or $x b$, which means that one of the edges $x a$ or $x b$ is crossed at least $\left\lceil\frac{n_{2}-1}{2}\right\rceil$ times.

All cases imply that there is an edge crossed at least $\max \left(\left\lceil\frac{n_{1}-1}{2}\right\rceil,\left\lceil\frac{n_{2}-1}{2}\right\rceil\right) \geq\left\lceil\frac{\lceil n / 2\rceil-1}{2}\right\rceil=\left\lceil\frac{n-2}{4}\right\rceil$, and therefore $\overline{\operatorname{ccr}}(D) \geq$ $\left\lceil\frac{n-2}{4}\right\rceil$ for any drawing D of $K_{3, n}$. Hence, $\overline{\operatorname{crr}}\left(K_{3, n}\right) \geq\left\lceil\frac{n-2}{4}\right\rceil$.

We now prove that $\overline{\operatorname{lcr}}\left(K_{3, n}\right) \leq\left\lceil\frac{n-2}{4}\right\rceil$ by presenting a drawing of $K_{3, n}$ with local crossing number $\left\lceil\frac{n-2}{4}\right\rceil$, see Fig. 4. Let $k=\left\lceil\frac{n-2}{4}\right\rceil$. The red points are the vertices of an equilateral triangle and are labeled a, b, and c. The lines L_{1} and L_{2} are right below and parallel to $a b$ and the perpendicular bisector to $b c$, respectively. The lines L_{3} and L_{4} are the reflections of L_{1} and L_{2} about the perpendicular bisector to $a c$. There are two special blue points: d above b and e below b, both above the lines L_{1} and L_{3}. The rest of the blue points are (almost) evenly distributed among L_{1}, L_{2}, L_{3}, and L_{4}; then some lines (at least one) have k blue points on them and the rest $k-1$. The blue points on L_{1} and L_{3} should be below the intersection of L_{1} and L_{3} such that the edges from these points to c pass below all blue points on L_{3}; and the edges from the blue points on L_{3} to a pass below all blue points on L_{1}. The points on L_{2} and L_{4} should be outside of $\Delta a b c$, below $a c$, and so that the edges from these points to b do not cross $\triangle a b c$. Note that none of the edges crosses the sides of $\triangle a b c$. So exterior edges do not cross interior edges. For L_{1} and L_{2}, the edges to c make no crossings with the edges to a and b. A similar situation applies to L_{3} and L_{4} by symmetry.

First look at the interior edges. Let p be the $i^{\text {th }}$ blue point on L_{1} from top to bottom. Then there are at most $k-i$ blue points on L_{1} below p and $i-1$ above. The edges from b to the points below p cross the edge $p a$, giving $k-i \leq k-1<k$ crossings with $p a$. The edges from a to e and to the points above p cross the edge $p b$,
giving $i \leq k$ crossings with $p b$. The edges from a to the points on L_{3} cross the edge $p c$, giving at most k crossings with $p c$. Note that no other edges cross $p a, p b$, or $p c$. A similar argument applies for the $i^{\text {th }}$ point on L_{3}. The edge $e a$ is crossed only by the edges from b to points on L_{1}, giving at most k crossings with $e a$. Symmetrically, ec is crossed at most k times. Finally, the edge $e b$ is not crossed, completing the proof that any interior edge is crossed at most k times.

Now look at the exterior edges. Take the $i^{\text {th }}$ point q on L_{2} from top to bottom. Then there are $i-1$ points on L_{2} above q and at most $k-i$ below. The edges from b to the points above q cross the edge $q a$, giving $i-1 \leq k$ crossings with $q a$. The edges from a to the points below q and the edge $d a$ cross the edge $q b$, giving at most $k-i+1 \leq k$ crossings with $q b$. The edges from a to the points on L_{4} cross the edge $q c$, giving at most k crossings with $q c$. Note that no other edges cross $q a, q b$, or $q c$. A similar argument applies for the $i^{t h}$ point on L_{4}. The edge $d a$ is crossed only by the edges from b to points on L_{2}, giving at most k crossings with $e a$. Symmetrically, $d c$ is crossed at most k times. Finally, the edge $d b$ is not crossed, completing the proof that any exterior edge is crossed at most k times.

Note that if there are k points on L_{1}, L_{2}, L_{3}, or L_{4}, then the edge $e a, d a, e c$, or $d c$, respectively, is crossed exactly k times.
Theorem 3. For any integer $n \geq 4$,

$$
\overline{\operatorname{lcr}}\left(K_{4, n}\right)=\left\lceil\frac{n-2}{2}\right\rceil .
$$

Proof. The Turán's construction of $K_{4, n}$ for $m=4$ and any n has local crossing number $\left\lceil\frac{n-2}{2}\right\rceil$ (see Fig. 1), proving that $\overline{\operatorname{lcr}}\left(K_{4, n}\right) \leq$ $\left\lceil\frac{n-2}{2}\right\rceil$.

We now prove that $\overline{\operatorname{crc}}\left(K_{4, n}\right) \geq\left\lceil\frac{n-2}{2}\right\rceil$. Consider any drawing D of $K_{4, n}$. As usual, the two vertex-classes R and B are colored red and blue. So R has 4 red points, B has n blue points, and every red point is joined to every blue point by a straight line-segment. By simplicity, we assume that R is in general position (Otherwise, a small enough perturbation of the points in R to achieve general position would not affect the local crossing number of D). We prove that D must have an edge that is crossed at least $\left\lceil\frac{n-2}{2}\right\rceil$ times. Let C be the vertex set of the convex hull of $R \cup B$. We consider several cases according to the number of blue and red points on C. We say that a simple curve is C-connecting if both its endpoints are in C. So a segment with endpoints in C or a simple path of D with endpoint in C are called C-connecting segment or path, respectively. If ℓ is a C-connecting curve, then removing ℓ from the convex hull of $R \cup B$ results in two disjoint connected sets S_{1} and S_{2} called the sides of ℓ. We say that two points are separated by ℓ, if they are in different sides of ℓ. So we say that ℓ separates red points if both S_{1} and S_{2} contain at least one red point.
Lemma 4. If there is a C-connecting curve contained in two edges of D and that separates red points, then $\overline{\operatorname{lcr}}(R \cup B) \geq\left\lceil\frac{n-2}{2}\right\rceil$. Proof. Suppose that the curve separates the red points x and y and is contained in the edges s and t. Let B_{x} and B_{y} be the sets of blue points on the same side of the curve as x and y, respectively. Then $x z$ and $y w$ cross the path for any $z \in B_{y}$ and $w \in B_{x}$. That is, there are at least $\left|B_{x} \cup B_{y}\right| \geq n-2$ edges crossing the curve. Each

Fig. 6 Exactly one red point in C.
of these segments crosses s or t (or even both), so s or t is crossed at least $\left\lceil\frac{n-2}{2}\right\rceil$ times. Thus $\overline{\operatorname{lcr}}(R \cup B) \geq\left\lceil\frac{n-2}{2}\right\rceil$.
Corollary 5. If there is a C-connecting 2-path of D that separates red points, then $\overline{\operatorname{lcr}}(R \cup B) \geq\left\lceil\frac{n-2}{2}\right\rceil$.
Corollary 6. If there is a C-connecting segment with blue endpoints that separates red points, then $\overline{\operatorname{lcr}}(R \cup B) \geq\left\lceil\frac{n-2}{2}\right\rceil$.
Proof. If $x y$ is a C-connecting segment with blue endpoints ($x \in B$ and $y \in B$) that separates red points (see Fig. 5 (a)), then there are at least 2 red points u_{1} and u_{2} on one of its sides and at least one red point v on the other. By Observation 1, we can assume that $\Delta x y u_{1}$ does not contain u_{2}. Then the path $x u_{1} y$ separates u_{2} and v. The result holds by Corollary 5 .

We now return to the proof of Theorem 3.
Case 1. Assume that there are no red points on C. In this case, we can assume that R is contained in a triangle with blue vertices x, y, and z in C, otherwise there is a C-connecting segment with blue end points that separates red points and the result holds by Corollary 6 (See Fig. 5 (a)). Assume that $y z$ is horizontal, y to the left of z, and x is above $y z$. Let u and v be two red points and assume that the line $u v$ crosses the segments $x y$ and $x z, u$ to the left of v as in Fig. 5 (b)-(d). If quadrilateral uxyz contains a red point w, then the C-connecting path $x u z$ separates the red points v and w and the result holds by Corollary 5 (See Fig. 5 (b)). The same holds for the quadrilateral vyzx. So we assume that all red points are in the quadrilateral xutu, where t is the point of intersection of $y v$ and $z u$. If there is a red point w below the line $y u$, then the C-connecting path $x w y$ separates u and v and the result holds by Corollary 5 (see Fig. 5 (c)). The same holds for the line $z v$. So we assume that the remaining 2 red points are above the lines $y u$ and $z v$. By Observation 1 , one of these two points, call it w_{1}, satisfies that $\Delta w_{1} y z$ does not contain the other, call it w_{2} (see Fig. 5 (d)).

Then the path $y w_{1} z$ separates w_{2} from u and v and the result holds by Corollary 5 .

Case 2. Assume that there are one or two red points on C. Then there are at least two red points not on C.
Lemma 7. If ℓ is a line through two red points not in C and there are blue points in C on both sides of ℓ, then $\overline{\operatorname{ccr}}(R \cup B) \geq\left\lceil\frac{n-2}{2}\right\rceil$.
Proof. Let x be any red point on C. Assume that ℓ is horizontal and passes through the red points y and z not in C with y to the left of z. Suppose that u and v are blue points in C with u below ℓ and v above. If x is to the right of $\overrightarrow{u v}$, then y and x are separated by the path $u z v$. If x is to the left of $\overrightarrow{u v}$, then x and z are separated by the path uyv. In either case the result follows by Corollary 5 .

Case 2.1 Assume that x is the only red point in C. Let u and v be two blue points in C such that u, x, and v are consecutive (in clockwise order) along C. Label the three remaining red points y_{1}, y_{2}, and y_{3} according to the order in which the ray $\overrightarrow{x u}$ finds them when continuously rotated around x counterclockwise. By Lemma 7, we can assume that the line $y_{1} y_{3}$ does not cross the segment $u v$ (i.e., $y_{1} y_{3}$ crosses the segments $x u$ and $x v$, see Fig. 6 (a)). If y_{2} is below $v y_{1}$ or $u y_{3}$, then y_{2} and x are separated by the path $u y_{1} v$ or $u y_{3} v$, respectively. If y_{2} is above the line $u y_{1}$ or $v y_{3}$, then the path $u y_{2} v$ separates x from y_{1} or y_{3}, respectively. In either case, the result holds by Corollary 5 . Assume then that y_{2} is above $v y_{1}$ and $u y_{3}$ and below the lines $u y_{1}$ and $v y_{3}$.

Define the regions $A, B_{1}, B_{2}, C_{1}, C_{2}$, and D as in Fig. 6 (b) and Fig. 6 (c). So A is the region between rays $x y_{1}$ and $x y_{2}$, below the path $u y_{2} v$, and below $v y_{1}$ or $u y_{3} ; D$ is the region between rays $x y_{1}$ and $x y_{2}$ and above region $A ; B_{1}$ and C_{1} are the regions below and above the line $u v$, respectively, and to the right of ray $x y_{1}$; and B_{2} and C_{2} are the regions below and above the line $u v$, respectively, and to the left of ray $x y_{3}$. If there is a blue point w in region A,

Fig. 7 Exactly two red points in C. Note that region E is empty in (a) and the region A is disconnected in (b).
then $x w$, crosses one of the edges $v y_{1}, u y_{2}, v y_{2}$ or $u y_{3}$. Then the union of $x w$ and such an edge contains a simple curve that separates y_{1} and y_{3} and the result holds by Lemma 4. Then we can assume that there are no blue points in region A.

If y_{2} is below the line $y_{1} y_{3}$ (Fig. $6(\mathrm{~b})$), then the edges from each blue point in B_{1} to y_{2} and y_{3} cross the edge $v y_{1}$, and the edges from each blue point in B_{2} to y_{1} and y_{2} cross the edge $u y_{3}$. If y_{2} is above the line $y_{1} y_{3}$ (Fig. 6 (c)), then the edges from each blue point in B_{1} to y_{3} and the edges from each blue point in b_{2} to y_{1} cross the edge $v y_{2}$. Thus, if there are at least $\frac{n-2}{2}$ blue points in $B_{1} \cup B_{2}$, then one of the edges $v y_{1}, u y_{3}$, or $v y_{2}$ is crossed at least $\left\lceil\frac{n-2}{2}\right\rceil$ times. Then we can assume that there are less than $\frac{n-2}{2}$ blue points in $B_{1} \cup B_{2}$, that is, there are at least $\frac{n-2}{2}$ blue points in $C_{1} \cup C_{2} \cup D$.

Rotate the ray $\overrightarrow{x u}$ counterclockwise around x until finding the first blue point w in $C_{1} \cup C_{2} \cup D$. If $w \in C_{1}$, then the edge $w y_{3}$ is crossed at least $\left\lceil\frac{n-2}{2}\right\rceil$ times. This is because the edge from any blue point in $C_{1} \cup C_{2} \cup D$ to either x or y_{1} crosses $w y_{3}$. A similar argument holds for region C_{2}. So we now assume that both C_{1} and C_{2} do not contain blue points, that is, there are at least $\left\lceil\frac{n-2}{2}\right\rceil$ blue points in D.

This time rotate the ray $\overrightarrow{y_{1} v}$ counterclockwise around y_{1} until finding the first blue point w in D. If w is below the line $y_{1} y_{3}$, then the edge $x w$ is crossed at least $\left\lceil\frac{n-2}{2}\right\rceil$ times. This is because the edge from any blue point in D to either y_{1} or y_{3} crosses $x w$. Assume that all the blue points in D are above the line $y_{1} y_{3}$.

Rotate the ray $\overrightarrow{y_{1} x}$ clockwise around y_{1} until finding the first blue point w in D. Then one of the edges $w y_{2}$ or $y_{2} v$ is crossed at least $\left\lceil\frac{n-2}{2}\right\rceil$ times. This is because the edge from any blue point in $D \cup B_{1} \cup B_{2}$ to either y_{1} or y_{3} crosses the path $w y_{2} y_{3}$.

Case 2.2. Assume that there are exactly two red points on C. If these two points, x and y are not consecutive along C, then they are separated by a C-connecting segment with blue endpoints and the result holds by Corollary 6 . Assume that u, x, and y are consecutive in counterclockwise order along C, so u is a blue point. Label the other two red points w and z. If the line $w z$ separates two blue points in C, then Lemma 7 implies the result. Then we can assume that either the line $w z$ crosses the segment $x y$ and one of the neighboring convex hull edges (we can assume it crosses $x u$, Fig. 7 (a)), or the line $w z$ crosses both edges in the convex hull neighboring $x y$ (Fig. 7 (b)). Consider the regions A, B, C_{1}, C_{2}, D, and E as shown in Fig. 7. If there is a blue point t in region A, then the path $x t y$ separates w and z and the result holds by Corollary 5 . Assume that there are no blue points in region A. If there are at

Fig. 8 At least 3 red points on C. Note that when y is on the convex hull C, one of the regions R_{1}, R_{2}, or R_{3} is disconnected.
least $\frac{n-2}{2}$ blue points in region B, then one of the edges $u w$ or $u z$ is crossed at least $\left\lceil\frac{n-2}{2}\right\rceil$ times. This is because for any blue point t in B, the edges $t x$ and $t y$ determine 2 crossings with $u w$ and $u z$. Assume then that there are less than $\frac{n-2}{2}$ blue points in B, that is, there are at least $\frac{n-2}{2}$ blue points in $C_{1} \cup C_{2} \cup D \cup E$.

Rotate the ray $\overrightarrow{x u}$ clockwise around x until finding the first blue point t in $C_{1} \cup C_{2} \cup D \cup E$. If $t \in C_{1}$, then the edge $t y$ is crossed at least $\left\lceil\frac{n-2}{2}\right\rceil$ times. This is because the edge from any blue point in $C_{1} \cup C_{2} \cup D \cup E$ to either x or z crosses $t y$. A similar argument holds for region C_{2}. So we now assume that both C_{1} and C_{2} do not contain blue points, that is, there are at least $\left\lceil\frac{n-2}{2}\right\rceil$ blue points in $D \cup E$.

When the line $w z$ crosses the segment $x y$ (Fig. 7 (a)), rotate the ray $\overrightarrow{y x}$ clockwise around y until finding the first blue point t in D. Then the path $t z u$ is crossed at least $n-2$ times (the edge from any blue point, other than u or t, to y or w crosses the path $t z u$), and so one of the edges $t z$ or $z u$ is crossed at least $\left\lceil\frac{n-2}{2}\right\rceil$ times.

Now consider the case when the line $w z$ and the segment $x y$ do not cross (Fig. 7 (b)). If the interior of $\Delta y x w$ contains blue points, then rotate the ray $\overrightarrow{y x}$ clockwise around y until finding the first blue point t in D. Then t is in the interior of $\Delta y x w$ and so the edge $t z$ is crossed at least $\left\lceil\frac{n-2}{2}\right\rceil$ times (the edge from any blue point in $D \cup E$, other than t, to y or w crosses the edge $t z$). Similarly, if the interior of $\Delta x y z$ contains blue points, then rotate the ray $\overrightarrow{x y}$ counterclockwise around x until finding the first blue point t^{\prime} in D. Then t^{\prime} is in the interior of $\Delta x y z$ and so the edge $t^{\prime} w$ is crossed at least $\left\lceil\frac{n-2}{2}\right\rceil$ times (the edge from any blue point in $D \cup E$, other than t, to x or z crosses the edge $t w$). Thus we can assume that there are no blue points in region D. This means that there are at least $\frac{n-2}{2}$ blue points in E. Let p be the intersection of the lines $x w$ and $y z$. This time rotate the ray $\overrightarrow{w p}$ clockwise around w until finding the first blue point t in E. Then the edge $x t$ is crossed at least $\left\lceil\frac{n-2}{2}\right\rceil$ times (the edge from any blue point in E, other than t, to y or w crosses the edge $t x$), concluding the proof.

Case 3. Assume that there are at least three red points on C. Let x_{1}, x_{2}, and x_{3} be three red points in clockwise order along C and let y be any blue point. The rays $\overrightarrow{y x_{1}}, \overrightarrow{y x_{2}}$, and $\overrightarrow{y x_{3}}$ partition the plane into three regions R_{1}, R_{2}, and R_{3} (see Fig. 8). The fourth red point z is in one of these regions. If z is in R_{i}, then the path $x_{j} y x_{k}$ separates x_{i} and z, where $\{i, j, k\}=\{1,2,3\}$ and the result holds by Corollary 5.

3. General Upper Bounds

Let $P=R \cup B$ be a set of red (R) and blue (B) points in the

Fig. 9 The c blue points shown here are replacing a blue point $b \in B, p$ is the $i^{\text {th }}$ point along s_{b}. There are $x_{e}+y_{e}+1$ red points on the same side of s_{b} as r.

Fig. 10 Initial construction for Theorem 10.

Fig. 11 Initial construction for $m=5$. The n blue points are almost equally distributed among the three blue segments.

Fig. 12 Initial construction for $m=6$. The n blue points are almost equally distributed among the ten blue segments.

Fig. 13 Initial construction for $m=7$. The n blue points are almost equally distributed among the four blue segments.

Fig. 14 Initial construction for $m=8$. The n blue points are almost equally distributed among the nine blue segments.

Fig. 15 Initial construction for $m=9$. The n blue points are almost equally distributed among the ten blue segments.

Fig. 16 Initial construction for $m=10$. The n blue points are almost equally distributed among the three blue segments.
plane. For each blue point $b \in B$, let s_{b} be a segment centered at b and small enough so that the triangle formed by s_{b} and any red point $r \in R$ does not contain any points of P in its interior or boundary, except for b and r. Let $S=\left\{s_{b}: b \in B\right\}$. We say that S is a set of valid blue segments for P (We can analogously define a set of valid red segments for P). For any positive integer c, denote by $P_{S, c}$ the set of points obtained from P by replacing each blue point $b \in B$ by c blue points evenly placed along s_{b}.
Lemma 8. Let D be a drawing of $K_{m, n}$ with vertex-classes R and
B colored red and blue. Let $P=R \cup B, S$ a set of valid blue segments for P, and c a positive integer. Let $D_{S, c}$ be the drawing of $K_{m, c n}$ with vertex set $P_{S, c}$. For each edge $e=r b$ (with $r \in R$ and $b \in B$), let x_{e} and y_{e} be the number of red points on each side of e and on the same side of s_{b} as r. Then

$$
\overline{\operatorname{lcr}}\left(D_{S, c}\right) \leq \max _{e \text { edge of } D}\left(c \cdot \operatorname{cr}(e)+(c-1) \max \left(x_{e}, y_{e}\right)\right),
$$

where $\operatorname{cr}(e)$ is the number of edges crossing e in D.

Table 1 Upper bounds for $\overline{\operatorname{lcr}}\left(K_{m, n}\right)$ for $5 \leq m \leq 10$.

m	5	6	7	8	9	10
$\overline{\operatorname{lcr}}\left(K_{m, n}\right) \leq$	$\frac{2}{3} n+O(1)$	$\frac{4}{5} n+O(1)$	$n+O(1)$	$\frac{4}{3} n+O(1)$	$\frac{7}{5} n+O(1)$	$\frac{5}{3} n+O(1)$

Table 2 Upper bounds on $\overline{\operatorname{lcr}}\left(K_{m, n}\right)$ for $3 \leq m \leq 10$.

Proof. Let $b \in B$ and $r \in R$. Then b is replaced by c blue points along the segment s_{b}. Let p be the $i^{\text {th }}$ point on s_{b}. We compute $\operatorname{cr}(p r)$. Let $e=b r$ and $e^{\prime}=p r$. Originally, e is crossed by $\operatorname{cr}(e)$ edges of D. Each of these $\operatorname{cr}(e)$ edges is replaced by c edges in $D_{S, c}$ creating $c \cdot \operatorname{cr}(e)$ crossings with e^{\prime}. The only other edges crossing e^{\prime} are those joining points on s_{b} with red points on the opposite side on e^{\prime} and on the same side of s_{b} as r. Say that e^{\prime} separates $x(e)$ such red points from $i-1$ blue points on s_{b}, and y_{e} such red points from the remaining $c-i$ blue points on s_{b} as shown in Fig. 9. Then $\operatorname{cr}\left(e^{\prime}\right)=c \cdot \operatorname{cr}(e)+(i-1) x_{e}+(c-i) y_{e} \leq$ $c \cdot \operatorname{cr}(e)+(i-1+c-i) \max \left(x_{e}, y_{e}\right)=c \cdot \operatorname{cr}(e)+(c-1) \max \left(x_{e}, y_{e}\right) . \quad \square$

As a corollary of Lemma 8, we obtain the following result.
Theorem 9. For any positive integers m, n, and c,

$$
\overline{\operatorname{lcr}}\left(K_{m, c n}\right) \leq c \overline{\operatorname{lcr}}\left(K_{m, n}\right)+(c-1)\left(\left[\frac{m}{2}\right\rceil-1\right)
$$

Proof. Let D be a drawing of $K_{m, n}$ with vertex-classes R and B colored red and blue, respectively, and such that $\overline{\operatorname{lcr}}(D)=$ $\overline{\operatorname{lcr}}\left(K_{m, n}\right)$. Let $P=R \cup B$. We choose a set S of blue valid segments for P such that for each $b \in B$ the line containing the segment s_{b} separates the red points in almost half (i.e., there are $\left\lfloor\frac{m}{2}\right\rfloor$ on one side of s_{b} and $\left\lceil\frac{m}{2}\right\rceil$ on the other). Then $\max \left(x_{e}, y_{e}\right) \leq\left\lceil\frac{m}{2}\right\rceil-1$ for any edge e of D. By Lemma $8, \overline{\operatorname{lcr}}\left(D_{S, c}\right) \leq c \overline{\operatorname{lcr}}(D)+(c-$ 1) $\left(\left\lceil\frac{m}{2}\right\rceil-1\right)=c \overline{\operatorname{lcr}}\left(K_{m, n}\right)+(c-1)\left(\left\lceil\frac{m}{2}\right\rceil-1\right)$.

Theorem 10. For any integers $m \geq 5$ and $n \geq 5$,

$$
\overline{\operatorname{lcr}}\left(K_{m, n}\right) \leq \frac{3}{14}(m-1)(n-1)
$$

Proof. We first deal with the case when $7 \mid m$ and $4 \mid n$. Consider the set $P=R \cup B$ of 11 points together with the valid set of blue segments $S(B)$ and the valid set of red segments $S(R)$ shown in Fig. 10. It can be checked that for every edge e in D (the drawing of $K_{7,4}$ with vertex-classes R and $\left.B\right), 1 \leq \max \left(x_{e}, y_{e}\right) \leq 4$ and $\operatorname{cr}(e) \leq 4-\max \left(x_{e}, y_{e}\right)$. Let $P^{\prime}=P_{S(B), n / 4}$ and $P^{\prime \prime}=P_{S(R), m / 7}^{\prime}$ (Note that $S(R)$ is also a valid set of red segments for P^{\prime}). By Lemma 8,

$$
\begin{aligned}
& \overline{\operatorname{lcr}}\left(P^{\prime}\right)=\max _{e \text { edge of } D}\left(\frac{n}{4} \cdot \operatorname{cr}(e)+\left(\frac{n}{4}-1\right) \max \left(x_{e}, y_{e}\right)\right) \\
& \quad \leq\left(\frac{n}{4} \cdot\left(4-\max \left(x_{e}, y_{e}\right)\right)+\left(\frac{n}{4}-1\right) \max \left(x_{e}, y_{e}\right)\right) \leq n-1 .
\end{aligned}
$$

For every red point r, the line containing s_{r} separates the blue points of P^{\prime} in half. Thus $\max \left(x_{e}, y_{e}\right) \leq 2 \cdot \frac{n}{4}-1=\frac{n}{2}-1$ for any edge e in D^{\prime}. Using Lemma 8 again,

$$
\begin{aligned}
\overline{\operatorname{lcr}}\left(K_{m, n}\right) \leq \overline{\operatorname{lcr}}\left(P^{\prime \prime}\right) \\
\quad=\max _{e \text { edge of } D^{\prime}}\left(\frac{m}{7} \cdot \operatorname{cr}(e)+\left(\frac{m}{7}-1\right) \max \left(x_{e}, y_{e}\right)\right) \\
\quad \leq \frac{m}{7}(n-1)+\left(\frac{m}{7}-1\right)\left(\frac{n}{2}-1\right) \\
\quad=\frac{3}{14} m n-\frac{2 m}{7}-\frac{n}{2}+1 \\
\quad \leq \frac{3}{14}(m-1)(n-1) .
\end{aligned}
$$

For the general case when $7 \mid m$ and $4 \mid n$ do not necessarily hold, let $m^{\prime}=7\left\lceil\frac{m}{7}\right\rceil \leq m+6$ and $n^{\prime}=4\left\lceil\frac{n}{4}\right\rceil \leq n+3$, which could add only a $O(m+n)$ term as

$$
\overline{\operatorname{lcr}}\left(K_{m, n}\right) \leq \overline{\operatorname{lcr}}\left(K_{m^{\prime}, n^{\prime}}\right) \leq \frac{3}{14} m^{\prime} n^{\prime}-\frac{2 m^{\prime}}{7}-\frac{n^{\prime}}{2}+1
$$

$$
\leq \frac{3}{14}(m-1)(n-1)
$$

The technique used in the proof of Theorem 10 can be used more carefully for specific values of m. Figures 11-16 show initial sets for each $5 \leq m \leq 10$ that improve the upper bound in Theorem 10. These improvements are summarized in Table 1. The upper bounds are obtained by using Lemma 8. The values of $\operatorname{cr}(e)$ and $\max \left(x_{e}, y_{e}\right)$ for each e are included in Table 2.

Acknowledgments The authors thank the reviewers for their comments and suggestions that have helped improved the paper. We also thank all helpful conversations with the members of the CSUN Crossing Numbers Research Group. Silvia FernándezMerchant is supported by the NSF grant DMS-1400653.

References

[1] Ábrego, B.M. and Fernández-Merchant, S.: The Rectilinear Local Crossing Number of K_{n}, arXiv:1508.07926v2.
[2] Brass, P., Moser, W. and Pach, J.: Research Problems in Discrete Geometry, chapter 8, Springer-Verlag, New York (2005).
[3] Beineke, L. and Wilson, R.: The early history of the brick factory problem, Math. Intelligencer, Vol.32, pp.41-48 (2010).
[4] Chung, F.R.K., Leighton, F.T. and Rosenberg, A.L.: Embedding graphs in books: A layout problem with applications to VLSI design, SIAM J. Alg. Disc. Math., Vol.8, pp.33-58 (1987).
[5] Guy, R.K.: A combinatorial problem, Bull. Malayan Math. Soc., Vol.7, pp.68-72 (1960).
[6] Guy, R.K., Jenkyns, T. and Schaer, J.: The Toroidal Crossing Number of the Complete Graph, J. Combinatorial Theory, Vol.4, pp.376-390 (1968).
[7] Kainen, P.C.: Thickness and Coarseness of Graphs, Abh. Math. Sem. Univ. Hamb., Vol.39, pp.88-95 (1973).
[8] Kleitman, D.J.: The crossing number of $K_{5, n}$, J. Combin. Theory, Vol.9, pp.315-323 (1970).
[9] de Klerk, E., Maharry, J., Pasechnik, D.V., Richter, R.B. and Salazar, G.: Improved Bounds for the Crossing Numbers of $K_{m, n}$ and K_{n}, SIAM J. Discrete Math., Vol.20, No.1, pp.189-202 (2006).
[10] Leighton, F.T.: Complexity Issues in VLSI: Optimal Layouts for the Shuffle-Exchange Graph and Other Networks, MIT Press (1983).
[11] Norine, S. and Zwols, Y.: Turan Brickyard Problem and Flag Algebras, Video from 13w5091: Geom. and Top. G. Theory Workshop, A WEB Page, BIRS, available from <http://www.birs.ca/events/2013/ 5-day-workshops/13w5091/videos/watch/ 201310011538-Norin.html/> (accessed 2013-10-01).
[12] Schaefer, M.: The Graph Crossing Number and its Variants: A Survey, E. J. Combinatorics DS21 (2014).
[13] Shahrokhi, F. and Shi, W.: Efficient deterministic algorithms for embedding graphs on books, Computing and Combinatorics, pp.162168, Hong Kong (1996), Lecture Notes in Comput. Sci., Vol.1090, Springer, Berlin (1996).
[14] Shahrokhi, F., Sýkora, O., Székely, L.A. and Vrťo, I.: Crossing numbers: Bounds and applications, Intuitive Geometry, pp.179-206, Budapest (1995), Bolyai Soc. Math. Stud., 6, János Bolyai Mathematical Society, Budapest (1997).
[15] Thomassen, C.: Rectilinear Drawings of Graphs, J. Graph Theory, Vol.12, No.3, pp.335-341 (1988).
[16] Woodall, D.R.: Cyclic-order graphs and Zarankiewicz's crossingnumber conjecture, J. Graph Theory, Vol.17, No.6, pp.657-671 (1993).

Bernardo M. Ábrego was born in 1973. He is a Professor of Mathematics at California State University, Northridge. After earning his undergraduate degree from the National Autonomous University of Mexico in 1995, he moved to the US, where he received his Ph.D. from Rutgers University in 2001. His main areas of research are Convex and Discrete Geometry, and Combinatorics. He was the Math Magazine Problems Editor from 2009 to 2015.

Kory Dondzila was born in 1990. He received his double B.F.A in Animation and Game Development from Savannah College of Art and Design in 2013. He is completing his M.S. in Computer Science at California State University Northridge. He works at Atomic Object as a Software Consultant and Developer.

Silvia Fernádez-Merchant is a Professor of Mathematics at California State University, Northridge. She was born in Mexico City in 1973, where he received her B.S. in Mathematics from the Universidad Nacional Autónoma de México (UNAM). She then moved to the United States where received her Ph.D. in Mathematics from Rutgers University in 2001. Her current research interest is in discrete geometry, combinatorics, and geometric and topological graph theory.

Evgeniya Lagoda received her B.S. degree in Mathematics from California State University, Northridge, USA, in 2016, and then moved to attend a graduate program at Berlin Mathematical School, Germany.

Seyed Sajjadi was born in 1994 in
Tehran. He moved to the U.S. at age 18 to attend California State University, Northridge. He is pursuing Computer en-
gineering with double minor in mathematgineering with double minor in mathematics and computer science. He is currently the president and chapter chair of ACM the president and chapter chair of ACM
and an active member of IEEE. His research interests are artificial intelligence and mathematical modeling.
 .

$$
5
$$

at Berlin Mathematical School, Germany.

Yakov Sapozhnikov was born in 1985. He received his M.S. in Mathematics from
California State University, Northridge in He received his M.S. in Mathematics from
California State University, Northridge in 2017. His research interests are algebra, combinatorics, and number theory.

[^0]: California State University, Northridge, CA 91330, USA
 Presently with Berlin Mathematical School, Berlin 10623, Germany
 bernardo.abrego@csun.edu
 kory.dondzila.981@my.csun.edu
 silvia.fernandez@csun.edu.Supported by the NSF grant DMS-1400653 lagoda@math.tu-berlin.de
 seyed.sajjadi.947@my.csun.edu
 yakov.sapozhnikov.473@my.csun.edu

