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On Contractible Edges in Convex Decompositions
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Abstract: Let Π be a convex decomposition of a set P of n ≥ 3 points in general position in the plane. If Π consists
of more than one polygon, then either Π contains a deletable edge or Π contains a contractible edge.
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1. Introduction

Let P be a set of n ≥ 3 points in general position in the plane.
A convex decomposition of P is a set Π of convex polygons with
vertices in P and pairwise disjoint interiors such that their union
is the convex hull CH(P) of P and that no point in P lies in the
interior of any polygon in Π. A geometric graph with vertex set
P is a graph G, drawn in the plane in such a way that every edge
is a straight line segment with ends in P.

Let Π be a convex decomposition of P. We denote by G(Π) the
skeleton graph of Π, that is the plane geometric graph with vertex
set P in which the edges are the sides of all polygons in Π. An
edge e of Π is an interior edge if e is not an edge of the boundary
of CH(P).

An interior edge e of Π is deletable if the geometric graph
G(Π) − e, obtained from G(Π) by deleting the edge e, is the
skeleton graph of a convex decomposition of P. Neumann-Lara
et al. [6] proved that if a convex decomposition Π of a set P

of n points consists of more that (3n − 2k)/2 polygons, where
k is the number of vertices of CH(P), then Π has at least one
deletable edge.

An interior edge e = uv of Π is contractible from u to v if the
geometric graph G(Π)/ �uv = (G(Π) − {x1u, x2u, . . . , xmu, uv}) +
{x1v, x2v, . . . , xmv} is a skeleton graph of a convex decomposition
of P \ {u}, where x1, x2, . . . , xm are the remaining vertices of G(Π)
which are adjacent to u.

A simple convex deformation of Π is a convex decomposition
Π′ obtained from Π by moving a single point x along a straight
line segment, together with all the edges incident with x, in such a
way that at each stage we have a convex decomposition of the cor-
responding set of points. Deformations of plane graphs have been
studied by several authors, both theoretically and algorithmically,
see for instance Refs. [3], [4], [7] and [1], [2], [5], respectively.

Let P1 and P2 be sets of n ≥ 3 points in general position in the
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plane. A convex decomposition Π1 of P1 and a convex decom-
position Π2 of P2 are isomorphic if there is an isomorphism of
G(Π1) onto G(Π2), as abstract plane graphs, such that the bound-
aries of CH(P1) and CH(P2) correspond to each other with the
same orientation.

Thomassen [7] proved that if Π1 and Π2 are isomorphic con-
vex decompositions, then Π2 can be obtained from Π1 by a finite
sequence of simple convex deformations. As a tool, Thomassen
proved that if Π is a convex decomposition with at least two poly-
gons, then there is an isomorphic convex decomposition Π′ that
can be obtained from Π by a finite number of simple convex de-
formations that preserve the boundary and such that Π′ contains
either a deletable edge or a contractible edge. In this note we
prove that every convex decomposition Π with at least two poly-
gons contains an edge which is deletable or contractible. Further-
more, if P contains at least one interior point, then Π contains a
contractible edge.

2. Preliminary Results

Let Π be a convex decomposition of P containing no deletable
edges. For every interior edge e of G(Π), the graph G(Π) − e has
an internal face Qe which is not convex and at least one end of e

is a reflex vertex of Qe.
We define an abstract directed graph

−−−−→
G(Π) with vertex set P in

which −→uv ∈ A
(−−−−→
G(Π)

)
if and only if u is a reflex vertex of Quv.

Notice that for each interior edge uv of G(Π), the directed graph−−−−→
G(Π) contains at least one of the arcs −→uv and −→vu (see Fig. 1).
Remark 1.
( 1 ) The outdegree of every vertex u of

−−−−→
G(Π) is at most 3.

( 2 ) The outdegree of every vertex u in the boundary of CH(P)
is 0.

( 3 ) An interior vertex u of Π has outdegree 3 in
−−−−→
G(Π) if and only

if u has degree 3 in G(Π).

( 4 ) If −→uv,−→uw ∈ A
(−−−−→
G(Π)

)
, then uv and uw lie in a common face

of G(Π).
For two points α and β in the plane, we denote by r(αβ) the

ray, with origin α, that contains the segment αβ.
Lemma 2. An edge uv of Π is not contractible from u to v if and

only if there are edges yx and xu, lying in a common face of G(Π)
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Fig. 1 A Convex partition Π and the corresponding directed graph
−−−−→
G(Π).

Fig. 2 Contracting an edge uv continuously.

Fig. 3 Edges yx and xut become collinear.

that contains vertex u, such that the ray r(yx) meets the edge uv

at point ut, with u � ut � v, and that the triangular region defined

by x, ut and u contains no point of P in its interior.

Proof. It is easy to see that the existence of such edges yx and
xu implies that the edge uv cannot be contracted from u to v. We
proceed to prove the remaining part of the lemma. Let uv be an
interior edge of Π with u not lying in the boundary of CH(Π)
and let x1, x2, . . . , xm be the remaining vertices of G(Π) which are
adjacent to u. We contract the edge uv in a continuous way as
follows: Slide the point u along the ray r(uv), together with the
edges x1u, x2u, . . . , xmu (see Fig. 2).

If uv is not contractible from u to v, then either the trans-

formed graph T (G(Π)) becomes non planar or one of its faces
becomes non convex. This implies that we must reach a point
ut = u + t(v − u), with 0 < t < 1, such that there are two edges
yxi and xiut lying in a common face, which become collinear in
T (G(Π)) (see Fig. 3).

Notice that two or more different pairs of edges yxi, xiut and
y′x j, x jut may become collinear simultaneusly; in such a case we
may choose any of those pairs and proceed with the proof.

The triangular region defined by xi, ut and u is the region swept
by the edge xius, 0 ≤ s ≤ t and therefore it contains no point of P

in its interior. The lemma follows since the edges yxi and xiu lie
in a common face of G(Π) and the ray r(yxi) meets the edge uv at
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Fig. 4 f (uv) = f (uw) = −→xu.

the point ut. �
Let N denote the set of arcs −→uv of

−−−−→
G(Π) such that the edge uv

is not contractible from u to v in Π. For each −→uv ∈ N let y = yuv,
x = xuv and ut be as in Lemma 2. Since the edges yuvxuv and xuvu

lie in a common face of G(Π) and the triangular region, defined
by xuv, ut and u, contains no point of P in its interior, the geomet-
ric graph G(Π)− xuvu contains a face Qxuvu in which xuv is a reflex

vertex and therefore −−−→xuvu ∈ A
(−−−−→
G(Π)

)
. This defines a function

f : N −→ A
(−−−−→
G(Π)

)

given by f (−→uv) = −−−→xuvu.
Notice that the arcs f (−→uv) and −→uv form a directed path in−−−−→

G(Π) with length 2 and middle vertex u. This implies that if
f (−−−→u1v1) = f (−−−→u2v2), then u1 = u2. Moreover, if uv1, uv2 and uv3
are distinct arcs such that f (−−→uv1) = f (−−→uv2) = f (−−→uv3) = −→xu, then
u is adjacent in G(Π) to v1, v2, v3 and to x, which is not possible
by Remark 1, since u has outdegree 3 in

−−−−→
G(Π). It follows that

there are no three arcs in N with the same image under the func-
tion f and therefore |Im( f )| = |N| − |U |, where U is the set of
points u of P for which there is a pair of arcs −→uv,−→uw ∈ N such that
f (−→uv) = f (−→uw).
Lemma 3. Let Π be a convex decomposition of P with no

deletable edges. If U � ∅, then there is a function

g : U → A
(−−−−→
G(Π)

)

such that for each u ∈ U, g(u) is not in the image of the function f .

Proof. Let u ∈ U and let v, w and x = xuv = xuw be points in
P such that f (−→uv) = f (−→uw) = −→xu. If u has degree larger than 3
in G(Π), let z � {v, w, x} be such that uz is an edge of G(Π). By
Remark 1, the outdegree of u in

−−−−→
G(Π) is at most 2, therefore −→uz is

not an arc of
−−−−→
G(Π). It follows that −→zu must be an arc of

−−−−→
G(Π). In

this case g(u) = −→zu � Im( f ) since z � x and −→xu is the unique arc
in Im( f ) that ends at u.

If u has degree 3 in G(Π), then u has outdegree 3 in
−−−−→
G(Π), by

Remark 1 and therefore −→ux is an arc
−−−−→
G(Π). We claim that in this

case g(u) = −→ux � Im( f ). Let lux denote the line containing the

edge ux, and let yuv and yuw be points in P and such that the rays
r(yuvx) and r(yuwx) intersect the edges uv and uw, respectively.

Without loss of generality we assume that lux is a vertical line
such that v and yuw lie to the left of lux and w and yuv lie to the
right of lux (see Fig. 4). Clearly the angles �yuvxu and �yuwxu

are smaller than π, it is easy to see that �yuwxyuv is also smaller
than π.

Therefore if xz is an edge of Π with z � {u, yuv, yuw}, then −→xz

is not an arc of
−−−−→
G(Π). This implies that if −→ux ∈ Im( f ), then

−→ux = f (−−−→xyuv) or −→ux = f (−−−→xyuw) since f (−→a ) and −→a form a directed
path of length 2 for each arc −→a ∈ N.

Suppose −→ux = f (−−−→xyuv). By the definition of f , there is an edge
yxyuvu such that the ray r(yxyuvu) intersects the edge xyuv. Since v
and w are the only vertices different from x which are adjacent to
u in G(Π), one of them must be the vertex yxyuv . Since both edges
uw and xyuv lie in the right halfplane defined by lux then r(wu) can-
not intersect the edge xyuv and therefore yxyuv � w. Finally, since
r(yuvx) intersects the edge uv, r(vu) cannot intersect the edge xyuv.
Therefore −→ux � f (−−−→xyuv); analogously −→ux � f (−−−→xyuw). �

3. Main Results

In this section we prove our main results.
Theorem 4. Let P be a set of points in general position in the

plane. If Π is a convex decomposition of P consisting of more

than one polygon, then either Π contains a deletable edge or Π

contains a contractible edge.

Proof. Assume the result is false and Π contains no deletable
edges and no contractible edges. Define the directed graph

−−−−→
G(Π)

as in the previous section, notice that A
(−−−−→
G(Π)

)
� ∅ since Π con-

tains at least two polygons. Since Π contains no contractible

edges, N = A
(−−−−→
G(Π)

)
.

Let B = B
(−−−−→
G(Π)

)
be the set of arcs of

−−−−→
G(Π) of the form −→uw,

with w in the boundary of CH(P), and let −→uw ∈ B. By Remark 1,
w has outdegree 0 in

−−−−→
G(Π) which implies −→uw � Im( f ).

If U = ∅, then

Im( f ) ⊂ A
(−−−−→
G(Π)

)
\B,
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Fig. 5 Left: Ray r(yx) meets edge uv at the point ut . Right: Ray r(y′x) meets edge uv at an interior
point ut′ .

therefore

|N| = | Im( f )| ≤
∣∣∣∣∣A
(−−−−→
G(Π)

)
\B
∣∣∣∣∣ ≤
∣∣∣∣∣A
(−−−−→
G(Π)

)∣∣∣∣∣ − 3,

which is not possible since Π contains no deletable edges and
|B| ≥ 3.

And if U � ∅, by Lemma 3 no arc in Im(g) lies in Im( f ), there-
fore

Im( f ) ⊂ A
(−−−−→
G(Π)

)
\(Im(g) ∪ B).

In this case

| Im( f )| ≤
∣∣∣∣∣A
(−−−−→
G(Π)

)∣∣∣∣∣ − | Im(g)| − |B|,

since g(u) � B. This is a contradiction since A
(−−−−→
G(Π)

)
= N,

| Im(g)| = |U |, |B| ≥ 3 and | Im( f )| = |N| − |U |. �
Corollary 5. LetΠ be a convex decomposition of a set of points P

in general position in the plane. If P contains at least one interior

point, then Π contains at least one contractible edge.

Proof. Let Π′ be a convex decomposition of P obtained from Π
by removing deletable edges, one at a time, until no such edges re-
main, and let

−−−−→
G(Π′) be the corresponding directed abstract graph.

Since P contains an interior point,Π′ contains at least one interior
edge.

By Theorem 4, there is an arc −→uv ∈ A
(−−−−→
G(Π′)

)
such that uv is

contractible from u to v in Π′. If uv is not contractible in Π, then
by Lemma 1 there are edges yx and xu lying in a common face
of G(Π) such that the ray r(yx) meets the edge uv at an interior
point ut and that the triangular region yutu contains no point of P

in its interior. This implies that the geometric graph G(Π) − xu

contains a face Qx in which x is a reflex vertex and therefore xu

is not deletable in Π and −→xu is an arc of
−−−−→
G(Π).

Let R be the face of G(Π) which contains both edges yx and xu.
Since Π′ is obtained from Π by deleting edges but no points, then
there is a face R′ of G(Π′) which contains the edge xu and the
region bounded by R, let y′ ∈ P be such that y′x is an edge of R′.
Notice that y′ � y otherwise uv could not be a contractible edge of
Π′ because the ray r(yx) meets the edge uv at the point ut (Fig. 5,
left). Nevertheless, since the face R′ contains the edge xu and the

region bounded by R, the ray r(y′x) also meets the edge uv at an
interior point ut′ (Fig. 5, right) which again is a contradiction. �
Corollary 6. Let Π be a convex decomposition of a set of points

P in general position in the plane and Q be the set of points in the

boundary of CH(P). There is a sequence P = P0, P1, . . . , Pm = Q

of subsets of P, and a sequence Π0,Π1, . . . ,Πm of convex de-

compositions of P0, P1, . . . , Pm, respectively, such that Π0 = Π,

Πm consists of the boundary of CH(P) and for i = 0, 1, . . . , k,

Πi+1 is obtained from Πi by contracting an edge and for i =

k+1, k+2, . . . ,m−1,Πi+1 is obtained fromΠi by deleting an edge.

Proof. By Corollary 5, if Pi contains interior points, then Πi has
a contractible edge. If Pi contains no interior points, then each
interior edge of Πi is a deletable edge. �
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