
IPSJ SIG Technical Report

Taking the Step from Software to Product Development

when teaching PBL at a Business School

Marat ZHANIKEEV1,a)

Abstract: Many people in the software development community today do not realize that techniques like SCRUM

were originally proposed as tools for general product/project development and problem solving in a traditional (non-

speci�c) business environment. This misunderstanding is mostly due to the fact that SCRUM, Agile, Waterfall and

other techniques are used mostly for software development today. Another indicator of this bias is that generic PBL-

related certi�cation, namely EXIN and PMP, remain under-proliferated in Japan. This paper shares experience from

trying to bridge this gap while teaching PBL at a business school from the prospective of software development. With-

out ever actually touching software, the well-known SCRUM techniques are generalized to development of any product

or service. The paper focuses on several speci�c techniques and concepts like Backlog, Burndown chart, strategies

related to per-task budget allocation, and others.

Keywords: Problem-Based Learning, SCRUM, Generic Product Development, Innovation, Active Learning

1. Introduction

The SCRUM method, both as the keyword (actually, just En-

glish word) and the concept, was originally proposed in [1]. Not-

edly, the method was not about software development but dis-

cussed innovation in general. The paper was mostly about a new

approach to developing innovative products like printers, cars,

etc. Since both authors were from Japan, the examples also

mostly came from Japanese companies (most of which are still

around at present time).

SCRUM was not the only such tool at the time. Similar ideas

were expressed and discussed in academia at the time. For exam-

ple, the systems thinking method in [2] is not as much rival as a

neighboring method in the same general area.

SCRUM and similar methods obtained the strong academic

backbone several years later through the analysis of team effi-

ciency in [3]. The paper models teams as loosely coupled sys-

tems, which receive and process signals from the outside. Al-

though the paper does not formulate the point, this approach is

derived from signal processing, where teams can be modeled as

nodes in a distributed signaling network whose purpose is to gen-

erate a steady stream of new ideas. Some similarity can also be

1 School of Management, Tokyo University of Science

Fujimi 1-11-2, Chiyoda-ku, Tokyo, JAPAN 102-0071
a) maratishe@gmail.com

out/before 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 out/after

[70][68][64][63][56] [75] [84] [89] [96]

50
57

61
73

76
80

81
94

95

Fig. 1 Visualization of a randomly selected scrum in software development,

in form of a timeline of source code edits.

drawn with Social Network Analysis (SNA) were teams are par-

ticipants in a larger social network. Academic depth of the topic

aside, the focus in [3] was on how teams receive and internally

process outside signals.

Closer to the end of the last century, the SCRUM method was

�rmly adopted in software development community [4]. Note that

the method is referred to as SCRUM, which has further solidi�ed

its name. The software version of the method reached its maturity

with the Agile Manifesto in [5] which traced its history back to the

original paper on the SCRUM method [1], but otherwise focused

only on software development. Note that SCRUM is not the only

popular technology of its type. Methods like Agile and Waterfall

are about at the same level of popularity and share many of the

same features.

SCRUM is very easy to apply to software development. Pri-

marity because majority of software products have well-de�ned

goals. Nowever, this also means that such products cannot really

be de�ned as innovation. For example, Fig.1 shows a visualiza-

tion of a daily scrum for a single (arbitrarily selected) team mem-

ber. The visualization is a timeline of source code uploads (with

diff size marked in bullets). Obviously, this scrum features a rela-

tively high activity rate which is not representative of the general

innovation process.

The generic applicability of SCRUM was already considered

when the method was establishing itself in software commu-

nity [6]. Again, this research also heavily builds on the origi-

nal SCRUM paper [1] and focuses on Japanese companies at the

time. However, this paper is a good indicator of the fact that

SCRUM was considered for general innovation.

There are more speci�c attempts to generalize the SCRUM

method in recent years. For example, SCRUM for hardware is

considered in [7], with the conclusion that the method can be suc-

1ⓒ 2017 Information Processing Society of Japan

Vol.2017-IS-141 No.5
2017/8/25

IPSJ SIG Technical Report

Fig. 2 A standard form for management of scrum tasks. Also known as Backlog.

cessful in such environments.

This paper takes one further step away from software develop-

ment � this author has ample experience with the software ver-

sion as per Fig.1 � to generic-nature products developed using

the SCRUM method within an academic setting of a business

school. Speci�cally, this paper discusses the experience of a class

on Problem-Based Learning (PBL) implemented speci�cally us-

ing the SCRUMmethod. This paper discusses applicability of the

standard SCRUM toolkit, namely such tools as Backlog, Budget-

ing Game, Burndown Chart andDe�nition of Done (DoD). Based

on practical experience, this paper concludes with a practical

advice for generic SCRUMs in form of the decision algorithm

which can help with selecting an innovative product as the devel-

opment target.

Several disclaimers are in order. First, this paper assumes

that the reader has basic knowledge of the SCRUM method and

speci�cally its main roles (ScrumMaster = SM, Product Owner =

PO, and Stakeholder) and tools. This paper is written in English

in order to maximize proliferation, but all forms, algorithms, etc.,

were handled in Japanese in class.

2. Backlog and Task Management

Backlog is at the core of a SCRUM project. The form used in

class is shown in Fig.2. As obvious from the �gure, Backlog is a

fancy word for a list of tasks.

De�nition of a task. Task is de�ned as a maximally speci�c

atomic job that contributes towards ful�lling the project's �nal

goal. Atomic here simply means that the task cannot be split fur-

ther. Tasks, however, are not limited in time and can be shared

among multiple team members.

Here are some example tasks which are valid in an educational

setting. Conducting a web survey, researching a given speci�c

topic, development of a software or hardware component (proba-

bly not at a business school), planning an/or taking an interview,

writing documentation in any form (manuals, surveys, reports,

presentations, etc.), analysis of collected or otherwise acquired

data. Work which is not considered as task includes anything

which starts with deciding... or considering... or discussing....

Teams should avoid ambiguity and vagueness in tasks as much

as possible. As a general rule of thumb, only time consuming

work can be made into a task, where the time itself has a �xed

and well-de�ned budget (more on this further on).

Back to the form in Fig.2, Task column takes speci�c de-

tails (not just the title) of what is to be done under the task.

Budgeting Game is for leaving the record of the game which

helps identify the correct (time) budget for the task � more de-

tails on the game are offered in the next section. PO input is

the column where POs can indicate delayed or even removed

tasks, ideally specifying the reasons for such a decision. Note

that POs are supposed to have the long-term vision for the prod-

uct and this form of task management is part of their normal duty.

Assigned To is used to specify the team member(s) in charge of

the task. Budget column is derived from the Budgeting Game

with more details on the process offered in the next section. Fi-

nally, the Actual column is the actual time it took to implement

a task � this column is �lled post-factum, but is very impor-

tant as it plays role when visualizing and managing team per-

formance. Speci�cally, the two last columns are used to generate

Burndown Charts which are simple indicators of team perfor-

mance.

Note that Budget is always about time! At a business school,

where money is often part of class discussion, it proved very dif-

�cult to persuade teams to abandon the concept of money com-

pletely and just focus on the time dimension of the budget. Note

that both in English and Japanese, the term budget is applicable

both to money as well as any generic resource, which deepens the

confusion.

There is a logic behind focusing only on the time when dis-

cussing budget. First, there is the Elevator Pitch stage which

teams undergo prior to entering the developing phase. In Eleva-

tor Pitch, teams take their ideas to potential sponsors. The actual

SCRUM method is applied after the Elevator Pitch has been suc-

cessful and the �nancial budget has been ensured. Past that point,

the team should forget about money and focuses purely on the

time resource during the development.

A disclaimer is due at this point. The above statement about

budget is not necessarily true for all existing SCRUM projects. In

advanced scrums, budget is often de�ned as a resource comprised

of both money and time.

3. Signature SCRUM Techniques

Granted, the Budgeting Game is not part of all scrums in prac-

tice, it is a very useful tool for general team-based activities, in-

cluding product development.

The following academic justi�cation can be offered for the

Budgeting Game. When playing the game, the team functions

as a small decision market with the purpose of selecting the

right budget for a given task. This function resonates with the

signaling-by-interaction idea in [3]. Another related idea is the

Wisdom of Crowd concept, which has already been connected to

decision markets in academic literature. The core idea of a deci-

sion market is that diversity in experience and knowledge in each

2ⓒ 2017 Information Processing Society of Japan

Vol.2017-IS-141 No.5
2017/8/25

IPSJ SIG Technical Report

Fig. 3 Learning the budgeting game by setting its parameters and discussing the core strategies within

the team.

team member results in an emergent phenomenon when the total

sum is greater than the all the individual member contributions

put together. Conversely, having your SM or PO decide the bud-

get is a very bad idea. Having the member in charge of the task

decide his/her own budget is equally bad.

Fig.3 shows the form that walks the team through the process

of solidifying the rules of its own Budgeting Game. Why not

adopt a �xed set of rules? As the explanation below shows, there

is a rich variety of components to pick from, which allows each

team pick and choose, and �nally arrive at its own unique con�g-

uration, suitable and comfortable for its current members.

Budgeting Game Basics. The game starts once a new task

is decided and is about to be added to the Backlog. Every-

one on the team votes on the budget for the task (decision mar-

ket moment). It is common to use Fibonacci numbers, namely{
1, 2, 3, 5, 8, 13, 21, ...

}
to avoid unnecessary spread in budget es-

timates. Even with the �xed set of numbers, some scattering is

natural as team members perceive the same task differently. This

is resolved by discussion until the budget is �xed.

The form in Fig.3 tells the team to pick the unit of time (minute

or hour is best for educational scrums), forces the team to �x a

physical medium (post-its, smartphones, etc.) for the game, and

draws the focus to the time when the task has to be assigned to a

team member for implementation, etc. Note that there is no cor-

rect choice here, the team is expected to con�gure its own unique

game environment, using the form as a guide.

The right side of Fig.3 focuses on the strategic (in academic

way) component of the game. There are many possible strate-

gies to pick from. For example, the team can set as a rule that

members that come up with lowest/highest numbers for budget

estimates, are asked for details. Or the team can decide to assign

the task to a member prior to the game and exclude the member

from budgeting discussions (fairness).

There are also several methods for converting the numbers that

come up during the game into the actual budget estimate. Some

teams can pick lowest or highest numbers. Some can do the op-

posite � remove numbers at both extremes and pick the average of

the remaining numbers. Experience in class shows that this level

of freedom results in a wide range of con�gurations generated by

individual teams.

The upper part of Fig.3 depicts the overall timeline of activities

during each Sprint � development is split into sprints each with

its own set of tools (Backlog, Burndown, etc.). First, the team

has the Planning Meeting for which SM serves as facilitator. The

meeting is expected to generate tasks, and play the Budgeting

Game for each. All such activities are immediately re�ected in

current Backlog. Once the scope of tasks for the current sprint

has been decided, there is another, either team-wide or SM-PO

or PO-only Review Meeting, at which the PO, who it expected to

have the overall vision for the product, removes or delays some

tasks if needed. Past that, the work on current Backlog starts and

completion times for each task are marked under Actual in the

Backlog.

SCRUM offers several tools for analysis and management of

team performance. Arguably the most popular tool is the Burn-

down Chart in Fig.4. As per its name, the chart visualizes the rate

at which the work burns out. The chart can be derived from many

metrics in practice. In this paper (and in class), the vertical axis

was used to plot the sum of all existing Actual (completion) times

minus the moving sum which gradually advanced towards the end

of the current Sprint. The horizontal axis is used to plot the sum

of all Budget values.

The common shape found in Burndown Charts is a curve that

hovers slightly above the diagonal line. In the SCRUM commu-

3ⓒ 2017 Information Processing Society of Japan

Vol.2017-IS-141 No.5
2017/8/25

IPSJ SIG Technical Report

Fig. 4 The form for writing Burndown charts.

nity it is common to discuss the performance by classifying the

curve into several distinct types and offering advices as to how to

rectify performance problems when detected.

4. DoD: De�nition of Done

Repeating the earlier statement, software scrums are relatively

easy to conduct [5]. In generic scrums, even if the ultimate goal

is clearly de�ned, the �nal shape of the product may not be clear.

For example, if a team's goal is � quote � to rectify the problem

of long queues in front of women restrooms � endquote � stat-

ing the goal itself does not help much with its implementation.

In generic scrums, products can be basically anything including

physical things, services, manufacturing processes, etc. Which is

why the De�nition of Done (DoD) tool is extremely important for

generic scrums.

De�nition of Done is de�ned as the thorough description of

the conditions, having achieved which it should be clear for an

outside observer (including product user) that the product has

reached its implementation target. The part about the outside ob-

server is a must-have for DoD. Good parallels for DoD can be

drawn with user manuals for commodity devices, service agree-

ments for services, etc.

Stipulating parts of product's functionality as out-of-scope

and/or future work within the DoD is a useful productivity tool.

Such power is normally given to POs. It is important to do it as

early as possible into the development in order to avoid crushes

and disappointments closer to the release date. There is no shame

in specifying part of your product as future work. In fact, software

community has long adopted the concept of Perpetual Beta,

which simply means that a product is never complete but is de-

veloped and used in parallel.

Having a well-de�ned DoD adds clarity to the project and im-

proves team performance. The clearer the immediate next step in

the development process, the better.

5. Conclution: What makes a valid Product?

First, this paper formally states that generic SCRUM-based

PBL in academic classes can be (and was for this author) a suc-

Fig. 5 Decision algorithm the team can walk to identify whether it has se-

lected a valid (in PBL de�nition) product for development.

cessful experience. However, there is much room for improve-

ment. Speci�cally, the rest of this paper offers and important ad-

vice on the product-selection phase of generic scrums. In this

author's experience, product selection is the weakest part in most

teams.

In class, selecting the team's target for development starts with

the Elevator Pitch (EP) tool, as the �rst step towards solidify-

ing the product. EPs are 1-minute speeches in which the team

presents its product to a potential Shareholder. Teams are ex-

pected to rapid-�re summarize all the main features of the prod-

uct, compare it to rivals, etc. If the team comes up with a poor

EP � it is useful to have a board of industry professionals to judge

EPs � then it might be better for the team to look for another

product altogether as the current product is very likely to fail.

Now, the above is a very very vague formulation. Added to the

general vagueness of a generic scrum, we end up with majority of

the teams confused about what to do and, speci�cally, about how

to tell a good product from a bad one. This is when the decision

algorithm in Fig.5 can help by guiding the team through the se-

lection process. Fig.5 can be viewed as a better version of the EP.

It covers several common (in this author's experience) mistakes

made in product selection (in educational environments) and of-

fers advice on how to avoid and/or rectify them.

Let us walk through Fig.5. First, the team is asked whether it

has identi�ed the P in Problem-Based Learning (PBL). Note that

it is very difficult not to �nd a problem in today's rich environ-

ment of tools, services and even industries. Mimi wo sumaseba

translated roughly as (if you listen closely) is a �t expression for

such cases.

However, having identi�ed a seemingly interesting problem

does not necessarily mean that it is suitable for a SCRUM-based

development. The second step in Fig.5 is to verify the problem.

One can search on Internet, study academic literature, or sim-

ply ask around in order to verify that the selected problem is not

the case of wishful thinking on the part of the team. If the an-

swer is NO, then there is still a chance that the product is some-

4ⓒ 2017 Information Processing Society of Japan

Vol.2017-IS-141 No.5
2017/8/25

IPSJ SIG Technical Report

what unique but can still be the subject of a successful SCRUM

project. In this case, as the algorithm shows, the team has to de-

cide whether it is up to this task. If not, it is advised that the team

picks another problem.

The next important step is to identify existing or potential

rivals for your product. Rivals are not necessarily de�ned as

products that compete in the same area and pursue roughly the

same goals. As the �gure shows, rivals can be cross-disciplinary

� this is when some shared features or components are found

in products from drastically different areas. In short, cross-

disciplinary products are welcome as major drivers of innovation.

If the team has come this far in the algorithm, it is asked to take

a closer look. In business this is known as the feasibility analysis

but can be de�ned as tasks (Backlog and the full sprint) which

compare rivals, review existing products, conduct surveys, etc. It

is not rare that too close a rival or a major problem with the prod-

uct are identi�ed at this stage, leading to the necessity to abandon

the product altogether. Granted some time has been wasted, it is

better to start from scratch than to develop a product which will

not receive any attention in the market.

Having reached the end of the algorithm, the team is cleared

for the development process proper. This happens in accordance

with the core SCRUM method, using the tools and techniques

explained earlier in this paper.

References

[1] Takeuchi Hirotaka, Ikujiro Nonaka, �The New New Product Develop-
ment Game�, Harvard Business Review, February 1986.

[2] P.Senge, �The �fth discipline : the art and practice of the learning
organization�, Doubleday/Currency, New York, 1990.

[3] P.Wegner, �Why Interaction Is More Powerful Than Algorithms�,
Communications of the ACM, vol.40(5), pp.80�91, May 1997.

[4] M.Beedle, M. Devos, �SCRUM: A Pattern Language for Hyperpro-
ductive Software Development�, Pattern Languages of Program De-
sign, Addison-Wesley, pp.637�651, 1999.

[5] M.Fowler, J.Highsmith, �The Agile Manifesto�, Software Develop-
ment, vol.9(8), pp.28�32, 2001.

[6] Jeff Sutherland, �Retrospective on SCRUM and Its Implementation in
Five Companies�, PatientKeeper, Inc., July 2001.

[7] �Application of Scrum Methods to Hardware Development�, Black-
blaze, July 2015.

5ⓒ 2017 Information Processing Society of Japan

Vol.2017-IS-141 No.5
2017/8/25

