
IPSJ SIG Technical Report

Accelerating Spiking Neural Networks on FPGAs using
OpenCL

(UNREFEREED WORKSHOP MANUSCRIPT)

Artur Podobas1,a) SatoshiMatsuoka1,b)

Abstract: Spiking Neural Networks (SNNs) are artificial neural networks inspired by the biological brain. They are
used to study everything from various aspects of neuroscience to artificial intelligence and machine learning.
SNNs are typically computed using general-purpose processors and the use of custom hardware is still fairly un-
common. Creating custom hardware is often time-consuming and error-prone. However, with the recent maturity in
High-Level Synthesis (HLS) tools, algorithms can now be described using more abstract C/C++/Java programming
models and automatically be transformed down to custom hardware.
In the present work we present our findings and experience in using HLS to accelerate SNNs. We describe our pro-
totype framework and our FPGA design and empirically evaluate its performance against modern general-purpose
processors. Our evaluation shows that our design can reach up-to 82% (73% average) of the performance delivered by
Intel Xeon E5-2650v3– a CPU that is two years younger and built using better technology than our FPGA platform.

1. Introduction
Spiking Neural Networks (SNNs) are the third generation [1]

neural networks. They are inspired by the biological nervous sys-
tem and thus the main feature of SNNs is that they communi-
cate through spikes– action potentials that are exchanged between
neurons at varying frequency. Hence, information between neu-
rons or groups of neurons is conveyed through the intensity of
spikes and their amplitude (weights).

SNNs are today used to study various aspects of the brain and
brain-inspired computing. Researchers are using SNNs to study
learning (synaptic plasticity) [2], [3], modeling various parts of
the human brain (e.g. the eye [5]) and aspects of machine-
learning [6], [7], [8].

SNNs are commonly simulated using general-purpose proces-
sors (CPUs). Several frameworks such as NEST [9], Neuron [10]
and Brian [11] support intra-node (e.g. OpenMP) and/or inter-
node (e.g. MPI) parallelism to boost simulation performance.
Some of these frameworks also support alternative custom com-
pute platforms such as the SpiNNaker [12]. There are also some
frameworks that focus on Graphics Processing Units (GPUs) (e.g.
NeMo [13]) as well as more exotic low-power ASICs such as the
IBM TrueNorth [14].

FPGAs have recently emerged as a viable, general-purpose,
computation platform, able to compete with GPUs and general-
purpose CPUs on some applications [15] with respect to power-
and execution performance. However, FPGAs have classically
1 Global Scientific Information and Computing Center, Tokyo Institute of

Technology, Meguro-ku, Tokyo 152-8552, Japan
a) podobas.a.aa@m.titech.ac.hp
b) matsu@is.titech.ac.jp

been programmed using complex Hardware-Description Lan-
guages (HDLs) such as VHDL, Verilog or SystemC. Unfortu-
nately, these low-level languages are complex to use, require
hardware expertise and are often not portable. An alternative to
HDLs is High-Level Synthesis (HLS).

HLS tools aim to bridge the gap between software and hard-
ware engeering, providing a well-known interface (e.g. C/C++,
OpenCL) to the software programmer and automatically trans-
forming his application into custom hardware.

In the present paper we present a prototype framework for ac-
celerating SNNs using FPGAs. Our framework leverages Intel’s
OpenCL FPGA compiler to synthesize our design down to hard-
ware. Building upon Python, we provide users with a simple-
to-use yet powerful framework for simulating spiking neural net-
works.

In short, our contributions are:
(1) A prototype framework capable of creating, managing and

simulating spiking neural networks,
(2) An FPGA architecture for SNNs with focus on the Izhike-

vich neuron model,
(3) Empirical performance evaluation of our design, including a

comparison to a state of the art SNN framework for CPUs

2. Background
Spiking Neural Networks (SNNs) are artificial neural networks

created to be as biologically plausible as possible.
A SNN will typically consist of a large number of neurons that

are interconnected to each other through the axons.
An axon is (most commonly) a single wire that transmits infor-

mation (spikes) from a single neuron to other neurons; essentially

c© 2017 Information Processing Society of Japan 1

Vol.2017-ARC-227 No.23
2017/7/27

IPSJ SIG Technical Report

a broadcast to the set of neurons that the triggered neuron is con-
nected to. Each axon has a delay, which is the amount of time it
takes for a spike to move from one end of the axon to the other. At
the end of each axon is a variable number of axon terminals; each
axon terminal makes a synaptic connection with the dendrites of
other neurons.

Each synapse has a weight (or conductance). The dendrites of
a neuron accumulates all the potentials from connected synapses.
When the potential across the cell membrane reaches a certain
threshold (Vth) a spike is emitted into that neuron’s output axon.

0
−80

−40

0

40

80

V
o
lt

a
g

e
 (

m
V

)

Theta Oscillations (I=3.8pA, 4-7 Hz)

0
−80

−40

0

40

80

V
o
lt

a
g

e
 (

m
V

)

Alpha Oscillations (I=5pA, 8-12 Hz)

0
−80

−40

0

40

80

V
o
lt

a
g

e
 (

m
V

)

Beta Oscillations (I=10.5pA, 12-24 Hz)

0 200 400 600 800 1000

Time (ms)

−80

−20

40

V
o
lt

a
g

e
 (

m
V

)

Gamma Oscillations (I=31.5pA, 24-70 Hz)

Fig. 1 Regular spiking of a Izhikevich-type neuron exercised by four dif-
ferent current levels, showing four naturally occuring oscillations in
biological brains [16].

Figure 1 illustrates the activity of a single neuron when exer-
cised with currents of various strengths. We see that a low-current
yields a low spiking frequency while stronger current increase the
spiking frequencies. Note how the membrane voltage always re-
sets back to a preset voltage level after the membrane voltage
reached the spiking threshold of (in this case) 30 mV.

2.1 Neuron Model
Choosing a neuron model is difficult: there are numerous

neuron models with various advantage and disadvantages. For
example, an Integrate-and-Fire (I&F) model is computationally
very simple (5 FLOP per neuron and millisecond) but can only
produce a single firing pattern and is biologically implausible.
Such simple neurons (and their leaky variants) are often used
to study various aspects related to plasticity and learning of
SNNs [2], [17].

On the other hand, the Hodgkin-Huxley squid neuron
model [18] has biological meaning and is capable of producing a
rich set of firing patterns, but is extremely computationally costly
(1k+ FLOP per neuron and millisecond). Complex models such
as Hodgkin-Huxley or Morris-Lecar [19] are used when greater
biological detail and meaning is required.

One of the more popular models – and the model we focus on
in the present study – is the Izhikevich model [20]. The Izhike-
vich model variables and parameters carry no biological meaning.
However, it is computationally simple and yet capable of produc-
ing a rich set of neuron spiking patterns [21], rivaling that of the
far more complex Hudkin-Huxley model.

The Izhikevich model is described using the following two
ordinary differential equations:

∂V
∂t

= 0.04V2 + 5V − U − Imembrane (1)

∂U
∂t

= a(bV − U) (2)

The spiking behaviour of the neuron is set through the follow-
ing condition:

i f (V ≥ 30mV)then

V = c

U = U + d
(3)

where V is the neuron membrane voltage, U is the membrane
recovery variable, Imembrane is the accumulated current given by
all synaptic acitivty and a,b,c,d are tunable membrane parame-
ters.

3. An OpenCL-based Neomorphic Architec-
ture for FPGAs

We developed a framework capable of exploiting FPGAs to ac-
celerate spiking neural networks. An overview of our framework
is seen in Figure 2a. The front-end consists of a Python library
that allows the user to interact with our framework.

Our frameworks aims to be as minimalistic as possible, mean-
ing that only core functionality for creating neurons, managing
axons and synapes, generating stimuli and controlling the sim-
ulation is provided. We expect our library to be leveraged by
other, more abstract, frameworks such as PyNN [22]. Currently
our framework supports three neuron models: Izhikevich, Morris-
Leccar and Hodgkin-Huxley. Only the Izhikevich model is cur-
rently accelerated through FPGA execution and is thus the topic
of this paper.

When the user has finished creating her network and initiates
the actual simulation, our framework goes through a number of
steps. Initially, we check for the presence of an FPGA device
capable of support OpenCL execution. This is done by OpenCL
API function calls provided by Intel’s OpenCL runtime system.
Upon finding a viable device and when initialization is finished,
we continue to fully rebuild the neural network.

Originally, the graph is built to be as versatile and functional
as possible. This means that there are a large number of ex-
tra variables allocated (debugging info etc.) that are unneeded
when executing on the FPGA. This is why we fully rebuild the

c© 2017 Information Processing Society of Japan 2

Vol.2017-ARC-227 No.23
2017/7/27

IPSJ SIG Technical Report

Python Code
Describing

Neural
Network

Synapse
and

Network
Rebuilding

FPGA Device
Detection

and
Initialization

Host-to-Device
Data
and

Arguments
Transfer

Read-Only
BRAM Data

R/W
BRAM Data

R/W
DDR3 Data

To FPGA

DDR3
A

DDR3
B

Neuron
And
Axon
Model
Pipeline

Neuron
Scheduler

Read Write

Write

Synapse
Pipeline

Membrane
Cache
(RAM)

State
(RAM)

Param.
(ROM)

Kernel 1

Kernel 2

b) FPGA Architecture

(a) Framework

SYNC
0

SYNC
1

SPIKE
ID

Channels

Fig. 2 a) Our prototype framework, and b) the developed FPGA architecture

graph the first time the simulation starts on the FPGA. More
specifically, we sort the network-related data into three groups:
DDR3-data, BRAM-ReadOnly, BRAM-ReadAndWrite. These
are sorted according to the architecture of the FPGA (described
in subsection 3.1) and must be transferred independently. For ex-
ample, the membrane potential of each neuron is located inside
the class/structure of the owning neuron on the host processor; on
the FPGA, the membrane potentials are continuous in memory to
promote spatial locality and wide burst accesses.

When the graph has been rebuilt and transfered, the framework
sets the parameters for the two OpenCL kernels and starts execu-
tion.

3.1 Hardware Architecture
Figure 2b shows the OpenCL based architecture that we de-

veloped. It consists of two kernels – both operating in parallel –
interconnected through the avalon interface to two DDR3 banks.
The kernels have been developed to use the single workitem pro-
gramming model; that is, both kernels focus on exploiting large
amounts of instruction-level parallelism rather than relying on
multithreaded execution.

Each of the two kernels are responsible for different parts of
the neural computation and they both communicate and synchro-

nize through dedicated on-chip channels (also known as pipes or
FIFOs).

Kernel 1 is responsible for the main computation of the Izhike-
vich neuron model. It consists of a neuron scheduler, which
fetches information regarding each neurons state (U,V and axon
state) and its associated parameters (the variables a,b,c,d and Vth);
these values are fed into a pipeline that perfoms the core compu-
tation. The scheduler can schedule one neuron every clock cycle,
that is, the pipeline has an initiation interval (II) of one. The
neuron models’ two differential equations are computed through
forward Euler method with a time-step of 0.1 ms. The results
of the each computation is saved back into the BlockRAM that
holds the newly computed neuron’s state.

Kernel 1 is also responsible for simulating the spikes and their
transversal down the neuron’s axon. Each axon is modeled as a
as a 64-bit unsigned value. A newly spiked neuron will set a bit
in this variable according to the axon delay. For example, for a
axon delay of 1 ms, the neuron will set the 10th bit of the axon
value upon spiking. The axon variable will be be logically shifted
right one step per timestep. When the least significant bit of the
axon variable becomes set, it means that the spike reached the end
of the axon. This implementation also support multiple spikes in
flight inside one axon.

c© 2017 Information Processing Society of Japan 3

Vol.2017-ARC-227 No.23
2017/7/27

IPSJ SIG Technical Report

Table 1 Platforms used in our evalation (Tech. = Litography technology,
HTs = hyper-threads)

Param. E5-2670 E5-2650v3 E5-2650v4 Phi-7210F FPGA
Date 2012 2014 2016 2016 2012
Tech. 32 nm 22 nm 14 nm 14 nm 28 nm
Cores 8 10 12 64 -
HTs 16 20 24 256 -
L2 256 kB 256 kB 256 kB 32 MB -
L3 20 MB 25 MB 30 MB - -
Freq.
(GHz) 2.6 2.4 2.2 1.3 0.258

When a spike reaches the end of the axon, Kernel 1 will send
a message over to the Kernel 2, notifying it of an arriving spike.
The message includes a pointer to the topology data in off-chip
memory as well as a time-stamp and the id-number of the spik-
ing neuron. After each fully simulated time-step, Kernel 1 will
synchronize with Kernel 2 through dedicate channels.

Kernel 2 is responsible for delivering and accumulating synap-
tic potentials across the network topology; in other words, ev-
erytime a spike reaches the end of its axon, the spikes potential
(weight) should be added to the membrane of all neurons that
have a synaptic connection with the axon terminal.

Kernel 2 contains a synaptic pipeline, which fetches parts of
the network topology belonging to the axon– that is, it fetches all
synapses that are associated with this axon including their weight
and their target neuron. For each connecting synapse, we accu-
mulate its membrane potential locally inside a membrane cache
before writing it back to memory. Note that the calculated mem-
brane voltage is not for the current timestep, but rather for the
next one (double-buffering).

The main design strategy we employed here is that everything
except synaptic data, current membrane and topology informa-
tion is held locally, either in BRAM or BROM. Furthermore, be-
cause Kernel 2 updates information of the next time-step (and not
the current), it allows us to run both kernels in parallel to each
other, maximizing the amount of work that can be done.

4. Experimental Setup
We evaluated our design on the Stratix V DE5-Net board,

which features one 5SGXEA7N2F45C2 FPGA device as well as
two independent banks of DDR3 memory capable of delivering
a total of 1024 bits of data per cycle (@200 MHz). We used In-
tel’s High-Level Synthesis compiler for OpenCL version 16.1.2
to compile our design, while using Python version 3.6 and GNU
Compiler version 4.8.5 for the front-end.

We compared our design against that of NEST 2.12.0 [9], com-
piled with GNU Compiler version 4.8.5. NEST is a well-known
and well-maintained simulator for spiking neural networks on
general-purpose processors. We executed NEST on three genera-
tions Intel Xeon machines, ranging from E5-2670 to E5-2650v4,
as well as one Xeon PHI 7210f. Table 1 lists the details for
these machines. We tested both using a single thread per physical
core and with hyper-threading enabled. All machines had Cen-
tOS Linux release 7.3.1611 with kernel version 3.10.0-514.16.1
running on them.

To benchmark our design, we created a custom network that
tries to isolate various performance aspects of both our design

Table 2 Parameters to the evaluated network

Parameter
Neurons 1000 - 15000
Synapses 106 - 2.25108

Connections all-to-all
Synaptic Weight ˜0 mV
Axon delay 1.0 ms
Ie 3.8pA - 129.85pA
V init to random
U init to random
a, b, c, d 0.02, 0.2, -65.0, 8.0
Sim. resolution 0.1 ms
Sim. length 1000 ms

and NEST. The network we create is fully connected, meaning
that each neuron has a synaptic connection to each other neu-
ron in in the network. Furthermore, we set the weights for each
synapse to be ˜0 mV and control network activity using a per-
neuron constant current that forces the neuron to self-oscillate.
The frequency of this self-oscillation is controlled by the magni-
tute of the constant current. We vary the intensity of this self-
oscillation in order to isolate how well each framework copes
with spike activity. Furthermore, we also vary the size of the net-
work while keeping spike activity between 4 and 70 Hz, which
represents the “natural” frequencies in the brain [16]: 3.5-7 Hz
(Theta), 8-12 Hz (Alpha), 13-24 (Beta) and 24-70 Hz (Gamma).
Figure 3 visualizes one of the example networks and its activity
through a spike plot.

Fig. 3 Spikeplot for one of the example networks, showing 1000 simulated
neurons (y-axis) and the the time when they spike (x-axis). Eac neu-
ron spikes on average six times per second (6 Hz).

The network parameters are shown in Table 2. For all bench-
marks we simulate 1000 milliseconds of neural “real life” activ-
ity. For both NEST and our framwork we sample the spiking
activity in all neurons of the simulation. We also initialized the
Izhikevich specific parameters V and U to random; we did this
to avoid having the all neurons spike at the same time. We only
time the kernel execution itself and do not include the time for
rebuilding the network nor any transfer overheads.

5. Results
The performance of NEST with the various general-purpose

processors and our FPGA implementation is seen in Figure 4.
The figure plots the total execution time for each of the proces-
sor configuration without (left-side) and with (right-side) hyper-
threading enabled. Each of the four graphs represents various
spiking activity, ranging from low-intensity theta frequencies to
fairly high-intensity gamma frequencies.

c© 2017 Information Processing Society of Japan 4

Vol.2017-ARC-227 No.23
2017/7/27

IPSJ SIG Technical Report

One thread per physical core Hyper-threaded

Fig. 4 Performance evaluation of the various networks sizes (x-axis) and the measured execution (y-axis)
times with different processors without (left) and with (right) hyper-threading, as well as our FPGA
implementation. Note the large impact that network activity has on the execution time.

Overall we note that the general-purpose processor perfor-
mance intuitively correlates with the lithography technology– the
smaller the technology the more recent the processor is and the
better it performs. There is one notable exception: the older
Sandy Bridge-based E5-2670 outperforms the newer Haswell-
based E5-2650 V3 on larger networks, despite having fewer phys-
ical cores and being manufactured in 10 nm larger technology.

Enabling hyper-threading seems to always result in an increase
in performance, albeit it shifts the performance ranking: the Xeon
Phi 7210F is the best performing when hyper-threading is dis-
abled. With hyper-threading activated, the performance of the
Xeon PHI is slightly lower than that of the Broadwell-based E5-
2650v4 for networks with low spiking activity (theta, alpha, beta),
while still being the the best performing on networks with high
spiking activity (gamma).

When hyper-threading is enabled, our FPGA design is on av-
erage 28% slower than E5-2650v3, 44% slower than Phi 7210F,
70% slower than E5-2670 and almost twice as slow as the E5-
2650v5 (96.8 %). The gap between our FPGA design and Phi
7210F is less on smaller networks (16% on networks below 8000
neurons) and greater on larger networks (75% slowdown on net-
works greater than 8000 neurons). The opposite holds true for the
other processors, where our FPGA device performs better with in-
crease network size. For example, our FPGA suffers only a 18%
reduction in performance compared E5-2650v3 when consider-
ing networks larger than 8000 neurons in size.

When hyper-threading is disabled, our FPGA design performs
on average better than both E5-2650v4 and E5-2670, while being

faster than E5-2650v4 only when the network-size is larger than
on-average 8000 neurons. The Phi 7210F is consistently faster
than our device.

0 4000 8000 12000 16000
Neurons

−40%

−30%

−20%

−10%

0%

10%

20%

30%

Pe
rf

o
rm

a
n
ce

 I
n
cr

e
a
se

 (
v
s

FP
G

A
)

Phi 7210F
E5-2650v4
E5-2650v3
E5-2670

Performance Difference (Gamma Oscillations)

Fig. 5 Performance of the different design normalized to our FPGA design,
showing a trend where the general-purpose processor’s performance
degrades less gracefully than our FPGA design with the network size.

We also found that the difference between the our FPGA design
and the general-purpose processors decreases with increased net-
work size. We see this behavior with and without hyper-threaded
enabled, albeit it is more pronounced with hyper-threads disabled.
Figure 5 shows this trend on one of the configurations. Here we
see the how performance change for each of the CPUs compared
to our FPGA design when the network size increases. We see that

c© 2017 Information Processing Society of Japan 5

Vol.2017-ARC-227 No.23
2017/7/27

IPSJ SIG Technical Report

Table 3 Resource utilization and occupancy of our FPGA architecture

Parameter
ALUTs 141,007 (30%)
Flip-Flops 247,523 (26%)
RAM Blocks 946 (37%)
DSPs 144 (56%)
fmax 258.26 MHz

on smaller network sizes, the CPUs generally outperforms the
FPGA. However, as the network size increases, the performance
of our FPGA degrades more gracefully than the performance of
the CPUs.

We suspect this decrease in general-purpose processor perfor-
mance is due to cache effects, albeit this remains to be shown
in a future study. Future work will also focus on larger network
sizes in order to see for how long this trend in decreased CPU
performance continues.

We conclude by presenting our synthesis results for our FPGA
design, shown in Table 3. We are using a bit more than half of
the available DSP resources, while using a third of all other re-
sources. The design runs at a frequency of 258 MHz.

6. Related work
Several FPGA designs strive to keep all data on-chip. These

approaches typically have reasonable performance (due to data
being on-chip), but are limited in capacity in terms of numbers
of neurons or the topology (synaptic connections) of the network.
Some other limitations among these architecture includes shared
bus for communication [7], randomized parameters [23] to re-
duce BRAM pressure, few neurons simulated (≤4000) [24], no
time-sharing of processing elements [4]. Of particular interest in
this group is the work by Smaragdos et al. [25], which (as we do)
used a HLS tool (Xilinx Vivado HLS) to assist hardware genera-
tion. Their design did however only support network sizes up-to
96. An interesting all-reduce, ring-based design for membrane
potential was designed back in 2009 [26] in order to distribute
synaptic computation in parallel. The architecture designed by
Pani et al. work [27] dedicates an exclusive wire per neuron axon
inside the FPGA– such an architecture can only hande up to 1440
neurons (Xilinx Virtex-6). The architecture in [28] is based on a
large number of FSMs, each controlling an ALU and the ALUs
communicating with each other through a shared bus; the aim of
the work is to increase accuracy rather than performance and only
a few number of neurons were evaluated.

Those FPGAs that exploit external memory typically can han-
dle a larger capacity of neurons. The general strategy (as is the
case in the present paper), is to keep topology data (synapses and
their connectivity) in external memory while keeping neuron pa-
rameters and state on-chip. Such designs have been implemented
in Bluehive [29] and in the design created by Cheung et al. [30].
The latter is of particular interest because they used a HLS tools
(Maxeller) to synthesize their design. Unfortunately they only
estimated the peak performance of their design. Minitaur [8] is
a FPGA architecture that consists of several processing elements
that simulates the neurons in parallel; a scheduler schedules neu-
ron onto the PEs, which contain synaptic data, neuron parameters
and neuron state in BRAM. The Minitaur does however operate

at a very low frequency (75 MHz).
Other FPGA works focus more on the feasibility or practi-

cally of using FPGAs on (usually) small scale demonstrations.
These include: Image recognition through MNIST [7], [8], the
XOR-problem [24], pattern classification [4] and Leech heart-
beats [31], [32].

7. Conclusion and Future work
We have introduced, designed and evaluated a FPGA-based ar-

chitecture capable of simulating SNNs. Our architecture lever-
ages Intel’s OpenCL HLS tools to assist in creating the hard-
ware. We empirically compared the performance to that of NEST.
We showed that the performance of our FPGA is comparable
to the Xeon family of processors when hyper-threading is dis-
abled, while capable of being as low as 18% slower with hyper-
threading activated, depending on neural network size. Fur-
thermore, we found our design’s performance to degrade more
gracefully with increasing network size compared to the general-
purpose processors.

We are currently working on extending our design to support
many more neural model, including the Hodgkin-Huxley [18],
Morris-Lecar [19] and the generic Integrate&Fire model. We ex-
pect that each of the different models will place unique constraints
on our architecture. We are also looking into supporting synaptic
plasticity (time-dependent or otherwise), which the current work
does not include. Finally, in the future we will look at more recent
devices such as Intel’s Arria 10 and Xilinx Ultrascale Kintex+ to
further accelerate SNNs.

Acknowledgments This research has been funded by the
Japan Society for the Promotion of Science (JSPS) under grant
ID P-16764.

References
[1] Maass, Wolfgang: Networks of spiking neurons: the third generation

of neural network models, Neural Networks, vol. 10, nr. 9, pp: 1659–
1671

[2] Song, Sen and Miller, Kenneth D and Abbott, Larry F: Competitive
Hebbian learning through spike-timing-dependent synaptic plasticity,
Nature neuroscience vol. 3, nr. 9, pp. 919–926 (2000).

[3] Iakymchuk, Taras and Rosado-Muñoz, Alfredo and Guerrero-
Martı́nez, Juan F and Bataller-Mompeán, Manuel and Francés-Vı́llora,
Jose V: Simplified spiking neural network architecture and STDP
learning algorithm applied to image classification, Springer EURASIP
Journal on Image and Video Processing, vol. 2015, nr. 1, pp: 1–11

[4] Iakymchuk, Taras and Rosado, Alfredo and Frances, Jose V and
Batallre, Manuel: Fast spiking neural network architecture for low-
cost FPGA devices, IEEE 7th International Workshop on Reconfig-
urable Communication-centric Systems-on-Chip, pp: 1–6 (2012)

[5] Antonietti, Alberto and Casellato, Claudia and Garrido, Jesús A and
Luque, Niceto R and Naveros, Francisco and Ros, Eduardo and DAn-
gelo, Egidio and Pedrocchi, Alessandra: Spiking neural network with
distributed plasticity reproduces cerebellar learning in eye blink con-
ditioning paradigms, IEEE Transactions on Biomedical Engineering,
vol. 63, nr. 1, pp: 210–219 (2016)

[6] Gamez, David and Fountas, Zafeirios and Fidjeland, Andreas K: A
neurally controlled computer game avatar with humanlike behavior,
IEEE Transactions on Computational Intelligence and AI in Games,
vol. 5, nr. 1, pp: 1–14

[7] Rice, Kenneth L and Bhuiyan, Mohammad A and Taha, Tarek M and
Vutsinas, Christopher N and Smith, Melissa C: FPGA implementation
of Izhikevich spiking neural networks for character recognition, Inter-
national Conference on Reconfigurable Computing and FPGAs, pp.
451–456 (2009)

[8] Neil, Daniel and Liu, Shih-Chii: Minitaur, an event-driven FPGA-
based spiking network accelerator, IEEE Transactions on Very Large
Scale Integration Systems, vol. 22, nr. 12, pp: 2621–2628 (2014)

c© 2017 Information Processing Society of Japan 6

Vol.2017-ARC-227 No.23
2017/7/27

IPSJ SIG Technical Report

[9] Marc-Oliver Gewaltig and Markus Diesmann: NEST (NEural Simu-
lation Tool), Scholarpedia, vol. 2, nr. 4, pp: 4 (2007)

[10] Hines, Michael L and Carnevale, Nicholas T: The NEURON simula-
tion environment, NEURON, vol. 9, nr. 6 (2006)

[11] Goodman, Dan and Brette, Romain: Brian: a simulator for spiking
neural networks in Python, (2008)

[12] Khan, Muhammad Mukaram and Lester, David R and Plana, Luis A
and Rast, A and Jin, Xin and Painkras, Eustace and Furber, Stephen B:
SpiNNaker: mapping neural networks onto a massively-parallel chip
multiprocessor, IEEE International Joint Conference on Neural Net-
works, pp: 2849–2856 (2008)

[13] Fidjeland, Andreas K and Roesch, Etienne B and Shanahan, Murray
P and Luk, Wayne: NeMo: a platform for neural modelling of spiking
neurons using GPUs, IEEE International Conference on Application-
specific Systems, Architectures and Processors, pp: 137–144 (2009)

[14] Merolla, Paul A and Arthur, John V and Alvarez-Icaza, Rodrigo and
Cassidy, Andrew S and Sawada, Jun and Akopyan, Filipp and Jackson,
Bryan L and Imam, Nabil and Guo, Chen and Nakamura, Yutaka et al.:
A million spiking-neuron integrated circuit with a scalable communi-
cation network and interface, Science, vol. 345, nr. 6197, pp: 668–673
(2014)

[15] Zohouri, Hamid Reza and Maruyamay, Naoya and Smith, Aaron
and Matsuda, Motohiko and Matsuoka, Satoshi: Evaluating and op-
timizing opencl kernels for high performance computing with FP-
GAs, IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pp: 409–420 (2016)

[16] Başar, Erol and Başar-Eroglu, Canan and Karakaş, Sirel and
Schürmann, Martin: Gamma, alpha, delta, and theta oscillations gov-
ern cognitive processes, International journal of psychophysiology,
vol. 39, nr. 2, pp: 241–248 (2001)

[17] Diehl, Peter U and Cook, Matthew: Unsupervised learning of digit
recognition using spike-timing-dependent plasticity, Frontiers in com-
putational neuroscience vol. 9 (2015)

[18] Hodgkin, Alan L and Huxley, Andrew F: A quantitative description of
membrane current and its application to conduction and excitation in
nerve, The Journal of physiology vol. 117, nr. 4, pp: 500 (1952)

[19] Morris, Catherine and Lecar, Harold: Voltage oscillations in the barna-
cle giant muscle fiber, Biophysical journal, vol. 35, nr. 1, pp: 193–213
(1981)

[20] Izhikevich, Eugene M: Simple model of spiking neurons, IEEE Trans-
actions on neural networks vol. 14, nr. 6, pp. 1569–1572 (2003).

[21] Izhikevich, Eugene M: Which model to use for cortical spiking neu-
rons?, IEEE Transactions on neural networks vol. 15, nr. 5, pp. 1063–
1070 (2004).

[22] Davison, Andrew P and Brüderle, Daniel and Eppler, Jochen and
Kremkow, Jens and Muller, Eilif and Pecevski, Dejan and Perrinet,
Laurent and Yger, Pierre: PyNN: a common interface for neuronal
network simulators, Frontiers in neuroinformatics, vol. 2 (2008)

[23] Wang, Runchun and Hamilton, Tara Julia and Tapson, Jonathan and
van Schaik, Andre: An FPGA design framework for large-scale spik-
ing neural networks, IEEE International Symposium on Circuits and
Systems, pp: 457–460 (2014)

[24] Wan, Lei and Luo, Yuling and Song, Shuxiang and Harkin, Jim and
Liu, Junxiu: Efficient neuron architecture for FPGA-based spiking
neural networks, IEEE Irish Signals and Systems Conference, pp: 1–6
(2016)

[25] Smaragdos, Georgios and Isaza, Sebastian and van Eijk, Martijn F and
Sourdis, Ioannis and Strydis, Christos: FPGA-based biophysically-
meaningful modeling of olivocerebellar neurons, ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, pp: 89–98
(2014)

[26] Cheung, Kit and Schultz, Simon R and Leong, Philip HW: A parallel
spiking neural network simulator, IEEE International Conference on
Field-Programmable Technology, pp: 247–254 (2009)

[27] Pani, Danilo and Meloni, Paolo and Tuveri, Giuseppe and Palumbo,
Francesca and Massobrio, Paolo and Raffo, Luigi: An FPGA plat-
form for real-time simulation of spiking neuronal networks, Frontiers
in Neuroscience, vol. 11 (2017)

[28] Zhang, Yiwei and Mcgeehan, Joseph P and Regan, Edward M and
Kelly, Stephen and Nunez-Yanez, Jose Luis: Biophysically accurate
foating point neuroprocessors for reconfigurable logic, IEEE Transac-
tions on Computers, vol. 62, nr. 3, pp: 599–608 (2013)

[29] Moore, Simon W and Fox, Paul J and Marsh, Steven JT and Market-
tos, A Theodore and Mujumdar, Alan: Bluehive-a field-programable
custom computing machine for extreme-scale real-time neural net-
work simulation, IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, pp: 133–140 (2012)

[30] Cheung, Kit and Schultz, Simon and Luk, Wayne: A large-scale spik-
ing neural network accelerator for FPGA systems, Artificial Neural
Networks and Machine Learning–ICANN 2012, pp: 113–120 (2012)

[31] Moctezuma, Juan Carlos and McGeehan, Joseph P and Nunez-Yanez,

Jose Luis: Biologically compatible neural networks with reconfig-
urable hardware Elsevier Microprocessors and Microsystems, vol. 39,
nr. 8, pp: 693–703 (2015)

[32] Ambroise, Matthieu and Levi, Timothée and Saı̈ghi, Sylvain:
Leech Heartbeat Neural Network on FPGA, Springer Conference on
Biomimetic and Biohybrid Systems, pp: 347–349 (2013)

c© 2017 Information Processing Society of Japan 7

Vol.2017-ARC-227 No.23
2017/7/27

