階層型行列法ライブラリ*H*ACApKを用いた アプリケーションのメニーコア向け最適化

星野 哲也1 伊田 明弘1 塙 敏博1 中島 研吾1

概要:階層型行列法 (Hierarchical matrices, *H*-matrices) は、科学技術計算に現れる密行列の近似手法として注目されている。密行列の部分行列を低ランク行列を用いて近似し、大きな密行列全体を多数の小密行列と低ランク近似行列の集合として表すことで、計算量と必要メモリ量のオーダーを *O*(*N*²) から *O*(*N*log*N*) へと減らすことができる。本手法は、相対的にメモリ容量の小さいメニーコアプロセッサと相性が良いと考えられるが、メニーコアプロッセサを用いての評価は未だ十分でなく、メニーコアプロセッサ向けの最適化をするにあたってどのような課題があるか明らかではない。本研究では、階層型行列法ライブラリである *H*ACApK を用いたアプリケーションを対象として、メニーコアプロセッサ向けの最適化を行なった。

1. はじめに

多数の演算コアを備えたメニーコアプロセッサを搭載した計算環境は一般的になりつつある。半導体プロセスの微細化に基づく動作周波数の向上による,計算コア単体の性能向上がリーク電流の増大等の物理的制約により難しくなり,周波数の低い多数のコアを用いて全体としての性能を高める手法が主流となったためである。スパコンのLinpak性能を競うTOP500ベンチマーク(2017年6月版[1])において国内最高位となったOakforest-PACS [2]に搭載されているIntel Xeon Phi Knights Landing [3](以下,KNL)や,Linpakの電力効率を競うGreen500ベンチマーク(2017年6月版[4])において世界一位となったTSUBAME3.0[5]に搭載されているNVIDIA Tesla P100[6](以下,P100)も、多数の演算コアを搭載したプロセッサである。

メニーコアプロセッサの登場により,演算性能が向上 を続ける一方で、メモリ容量の向上は比較的緩やかであ る. さらに、メニーコアプロセッサの備えるメモリ容量 は汎用 CPU 向けのメモリの容量と比較して小さい.例え ば、P100 を前世代の Tesla K40 と比較すると、演算性能 が 1.43TFlops から 5.3TFlops へ 3.7 倍となった一方、メモ リ容量は 12GB から 16GB と 1.33 倍の増加率である.ま た、本稿で計算環境として利用する Reedbush-H スーパー コンピュータシステム [7] の計算ノードは、汎用 CPU とし て Broadwell 世代の Intel Xeon プロセッサ 2 台と P100 を 2 台備え、汎用 CPU のメモリ容量が 1 プロセッサあたり 128GBであるのに対し, P1001枚のメモリ容量は16GBで ある.システム全体で比較すると、メモリ容量の差はより 顕著である.メニーコアプロセッサであるKNLを用いた Oakforest-PACSと汎用 CPUから構成される京コンピュー タ[8]を比較すると、Linpack性能ではOakforest-PACSが 13.5PFlops(世界七位)であるのに対し京コンピュータが 10.5PFlops(世界七位)とOakforest-PACSがやや上回る. 一方でメモリ容量を比較すると、Oakforest-PACSのKNL が内蔵する高バンド幅メモリであるMCDRAMの総容量 が131TB(DDR4と合算すると919TB)であるのに対し、 京コンピュータのメモリ総容量は1260TBと、約10倍の 差が生じている.

このような理由から、メニーコアプロセッサの利用に際 してはそのメモリ容量が問題になりがちである。メモリ容 量不足の問題を回避するために、メニーコアプロセッサが 持つ高速・小容量のメモリに加え、汎用 CPU の持つメモ リや NVRAM などのより低速・大容量の記憶媒体を階層 的に用い、データの局所性を高めることによりなるべく計 算速度を落とさない手法や、アプリケーションが使うメモ リ量自体を削減する手法の開発などが求められている。

本研究で対象とする階層型行列法 [9] は後者の手法である. 階層型行列 (Hieralchical matrix, \mathcal{H} -matrix) とは, 一つの巨大な密行列を多数の小密行列と低ランク近似行列の 集合で近似したものである. 階層型行列を用いる場合, 密 行列をそのまま用いる場合と比較して, 計算量・必要メモ リ量は共に $\mathcal{O}(N^2)$ から $\mathcal{O}(N\log N)$ へと減少する. ここで N は行列のサイズ (行数または列数) を表す. 我々は現在 までに, 階層型行列とベクトルの積を対象とし, KNL の前

¹ 東京大学情報基盤センター Information Technology Center, The University of Tokyo

図 1 静電場解析対象と HACApK により生成される行列分割構造 の例

世代である Intel Xeon Phi Knights Corner (KNC) 向けの 最適化 [10] や, FPGA を用いての評価 [11] などを行なっ てきた.

本稿では,階層型行列法ライブラリである HACApK [12][13]を用いたアプリケーションを対象 とし,階層型行列の生成及び階層型行列-ベクトル積計算 を含む BiCGSTAB 法の,P100・KNL 向けの最適化を行 う.特に階層型行列の生成部に関するメニーコアプロセッ サでの評価・最適化は今までになされておらず,メニーコ アプロセッサ向けに最適化を行う上での課題の洗い出しを 目標とする.

2. 対象アプリケーション

本稿では、階層型行列を用いたアプリケーションとして、 ppOpen-APPL/BEM ver.0.5.0 [14] に含まれる HACApK ライブラリ利用版のリファレンス実装を用いる.ppOpen-APPL/BEM とは、JST CREST「自動チューニング機構 を有するアプリケーション開発・実行環境:ppOpen-HPC」 [13] の構成要素の一つであり、境界要素法 (Boundary Element Method, BEM) 用のソフトウェアフレームワーク である.本ソフトウェアでは、境界要素法において係数 行列として出現する密行列を HACApK ライブラリによ り近似するリファレンス実装が提供されており、本稿で はこれをベースラインの実装とし、最適化を行う.なお、 ppOpen-APPL/BEM ver.0.5.0 は [13] よりダウンロードで きる.

図 1 は、本稿で静電場解析の対象とする構造物と HACApK により生成される行列分割構造の例を示した ものである。図1中で黒く塗りつぶされた領域は小密行列 で表現され、それ以外は低ランク近似行列で表現される。 このような階層型行列を係数行列として BiCGSTAB など の線形ソルバーを解くことで、解ベクトルを求める一連の 計算手順について最適化を試みる。

3. 階層型行列計算ライブラリ HACApK の 実装概要

以下では, HACApK ライブラリの実装の概要について 述べる. HACApK は主に,

- (1) 階層型行列の生成
- (2) 階層型行列を係数行列に持つ線形方程式のための線形 ソルバ

の二つのパートから構成され, MPI+OpenMP のハイブ リッドプログラミングモデルにより並列化されている.

3.1 階層型行列の生成

本稿では階層型行列生成手法そのものには手を加えない ため、メニーコアプロセッサ向けに最適化する上で必要な 部分のみの説明にとどめる.詳細は [12] を参照していた だきたい. HACApK の階層型行列の生成は、以下の3ス テップにより行われる.

- (1)幾何情報に基づくクラスタリング(図2:左).
- (2) 階層型行列構造の作成(図2:中央). この時点では部 分行列のフレームを作成するだけで,行列要素は計算 されない.
- (3)部分行列の計算(図 2:右).低ランク近似可能な部 分行列については ACA(Adaptive Cross Approximation [15],図 3)を用いて近似部分行列を生成し,近似 不可能と判定された部分は密行列として計算される。

このうち、ステップ(1)・(2) に関しては全 MPI プロセス で冗長計算を行い、ステップ(3) では、各部分行列の計算 に依存関係がないため、部分行列を単位として並列に計算 を行う.この計算は MPI+OpenMP を用いて行われるが、 プロセス・スレッド間の通信は不要である.本稿で行うメ ニーコア向けの最適化はステップ(3)を対象とし、ステップ (1)・(2) については見送る.ステップ(3)の疑似コードを 図4に示す.1行目の部分行列のループを MPI+OpenMP により並列化している.部分行列の計算開始時点では近似 に必要なベクトルの本数(ランク数) k が未知であるため、 5 行目では作業用に十分大きな配列を確保している.作業 用配列はランク k の確定後に改めて確保した低ランク近似 用の領域に値をコピーした後解放することで、メモリの無 駄遣いを防ぐ実装となっている.

また、7-8 行目及び20 行目の列・行ベクトルと小密行列の 生成において、要素の計算方法はユーザーが定義するとい う手法を採用していることが HACApK の特徴的なところ である.図5は、行列要素値を返す擬似関数である.この 関数は、HACApKを使用するためにユーザーが実装する必 要があり、列・行ベクトルと小密行列の生成の際に繰り返し 呼ばれる.この際、行列要素値の計算に必要な情報を格納 しておくための構造体が3 行目の st_HACApK_calc_entry であり、あらかじめ値を入力しておく必要がある.図5に 示した関数は行列要素数回、つまり O(NlogN) 回呼ばれる こととなるため、行列生成部の実行時間に対して支配的と なる.

図 2 左: Cluster tree の作成,中央: 階層型行列構造の作成,右: 部分行列の計算(数字は部分行列の低ランク近似後のランク)

図 3 ACA による低ランク近似. m×n 行列を k 本の列ベクトル と k 本の行ベクトルの直積により近似する. k が大きくなる ほど近似誤差が小さくなることが期待され, k の値により使用 メモリ量と近似精度を制御する.

```
do i=1, NUM_SUBMTX !部分行列のループ
1
      m = leaf(i)%m !部分行列の列の長さ
2
      n = leaf(i)%n !部分行列の行の長さ
3
      if leaf(i)%isLowRank then !低ランク近似可能の時
4
         allocate(mk_tmp(m,KMAX),kn_tmp(n,KMAX))
5
            do k=1, KMAX
6
               mk_tmp(:,k) = 列ベクトルの選択・生成
7
               kn_tmp(:,k) = 行ベクトルの選択・生成
8
               zeps = 近似誤差の計算
9
               if zeps < EPS exit
10
            enddo
11
            leaf(i)%k = k
12
            allocate(leaf(i)%mk(m,k))
13
            allocate(leaf(i)%kn(n,k))
14
            leaf(i)%mk(:,1:k) = mk_tmp(:,1:k)
15
            leaf(i)%kn(:,1:k) = kn_tmp(:,1:k)
16
         deallocate(mk_tmp,kn_tmp)
17
      else !小密行列の時
18
         allocate(leaf(i)%mn(m,n))
19
         leaf(i)%mn(:,:) = 小密行列の生成
20
21
      endif
   enddo
22
```

 図 4 部分行列の計算の疑似コード (NUM_SUBMTX:部分行列の 数, leaf(i):i番目の部分行列, KMAX:ベクトル本数 k の打 ち切り値, EPS:必要とする近似精度, leaf(i)%k:i番目の部 分行列の近似に必要であったベクトル本数, leaf(i)%mk/kn: i番目の部分行列を近似するための k 本の列/行ベクトル, leaf(i)%mn:i番目の部分行列=小密行列)

3.2 階層型行列を用いた線形ソルバ

HACApK では、線形ソルバとして BiCGSTAB 法と GCR(m)法が提供されているが、本稿では BiCGSTAB 法 を対象とする。階層型行列を用いた BiCGSTAB 法におい ては、階層型行列-ベクトル積が実行時間に対して支配的と なる。階層型行列 A とベクトル b の積 x = Ab の疑似コー ドを図 **6** に示す。

1	<pre>real*8 function HACApK_entry_ij(i,j,st_bemv)</pre>
2	integer :: i,j
3	<pre>type(st_HACApK_calc_entry) :: st_bemv</pre>
4	!計算内容はユーザーが実装
5	return HACApK_entry_ij
6	end function

図 5 密行列上の要素番号 *i*, *j* が与えられた時,行列要素値を返す関数. ユーザーが実装する必要がある.

```
do i=1, NUM_SUBMTX !部分行列のループ
1
2
       if leaf(i)%isLowRank then !低ランク近似行列の時
3
          tmp(1:leaf(i)%k) = 0.0d0
4
          do k = 1, leaf(i)%k
5
          do n = 1, leaf(i)%n
6
             ii = n + leaf(i)%nstr !密行列上での要素番号
             tmp(k) = tmp(k) + leaf(i)%kn(n,k)*b(ii)
7
          enddo
8
          enddo
9
          do k = 1, leaf(i)%k
10
          do m = 1, leaf(i)%m
11
             jj = m + leaf(i)%mstr !密行列上での要素番号
12
             x(jj)=x(jj)+leaf(i)%mk(m,k)*tmp(k)
13
          enddo
14
          enddo
15
       else !小密行列の時
16
          do n = 1, leaf(i)%n
17
          do m = 1, leaf(i)%m
18
             ii = n + leaf(i)%nstr !密行列上での要素番号
19
             jj = m + leaf(i)%mstr !密行列上での要素番号
20
21
             x(jj)=x(jj)+leaf(i)%mn(m,n)*b(ii)
22
          enddo
23
          enddo
24
       endif
^{25}
   enddo
```

図 6 図 4 で生成された階層型行列を A とした時, 階層型行列-ベクトル積 x = Ab の疑似コード (b:右辺ベクトル, x:解ベクトル, leaf(i)%mstr/nstr:i 番目の部分行列の元の密行列上での開始位置.開始位置情報を用いて b, x のインデックスを計算する.)

並列化は階層型行列の生成と同様に部分行列を単位とし て行うが、部分行列-ベクトル積の結果の解ベクトルxへの 書き込みが各部分行列で独立ではないため、MPI プロセス による通信や OpenMP スレッド間での atomic 演算などが 必要である。各 MPI プロセスは冗長に解ベクトルx全体 を持ち、各 OpenMP スレッドはローカルに解ベクトル x_t を持つ。各 OpenMP スレッドはローカルに解ベクトル x_t を持つ。各 OpenMP スレッドは図 6 の計算でまず x_t に書 き込みを行い、その後xに atomic 演算により x_t の足し込 みを行う。その後、各 MPI プロセスは他プロセスと通信 を行い、自身の持つ解ベクトルxを更新する。

3.3 *H*ACApK における並列化方針

前述の通り, HACApK では MPI+OpenMP によるハイ ブリッド並列実装が採用されている。MPI・OpenMP どち らの並列化でも,静的に実行領域を決定しており,階層型

図 7 左: MPI の領域分割方針,右: OpenMP の領域分割方針(実際には左の MPI による分割を行なった上で,各 MPI プロセスの担当領域を右の方針で OpenMP スレッド分割することになる).

行列生成部・線形ソルバ部どちらについても同じ分割方法 を適用している.ただし,MPIとOpenMPでは実行領域 割り当て戦略が異なる.OpenMPでは単にスレッド間の 計算負荷不均衡を最小化するよう領域分割する(図7:右) が,MPIは計算負荷の不均衡に加え,解ベクトルの通信量 が少なくなるよう考慮する(図7:左).本稿ではこの並列 化方針をそのまま用いているが,メニーコアプロセッサに おいてこの方針が最適であるかどうかは明らかではない.

4. 計算環境

4.1 評価対象プロセッサ

本研究において評価対象としたプロセッサを表 1 に示 す.表1中のP100, KNL は前述の NVIDIA Tesla P100 と Intel Xeon Phi Knights Landing であり, BDW は Intel Xeon シリーズの最新世代 (Broadwell-EP) である.表1中 のメモリバンド幅性能は, Stream Triad の実測値を示し ている. KNL の主記憶容量・メモリバンド幅性能は MC-DRAM の数値を示しており,この他に DDR4 (主記憶容 量 96GB, メモリバンド幅性能 84.5GB/s) を利用すること ができる.また, KNL のメモリモード・サブ NUMA クラ スタリングモードは,それぞれ Flat・Quadrant モードを 使用している.なお, KNL と BDW では Linux カーネル が常駐するため,プログラム全体を単体で実行できるが, P100 には OS が存在しないため,プログラムの実行にはホ ストプロセッサが必要となる.P100 のホストプロセッサ としては BDW を使用している.

4.2 ソフトウェア環境

本研究において使用したコンパイラ,実行時の環境変数 などについて述べる。特に KNL では計算コアへの MPI プ ロセス・OpenMP スレッドの割り当て方を環境変数で設定 するため,注意する必要がある。

P100 向けのコンパイラとしては, pgfortran 17.3 を 用い,オプションには-acc -ta=tesla:cc60 -O3 -Mcuda mcmodel=medium を指定した. MPI のライブラリには MVAPICH2.2 を用いた.特別な環境変数は特に用いてい

表 1 評価対象プロセッサ				
略称	P100	KNL	BDW	
	NVIDIA	Intel Xeon	Intel Xeon	
夕敌	Tesla P100	Phi 7250	E5-2695	
石协	SXM2	(Knights	v4(Broad	
		Landing)	well-EP)	
動作周波数	$1.328~\mathrm{GHz}$	1.40 GHz	$2.10~\mathrm{GHz}$	
コア数	3,584	68	18	
ピーク性能	4,759 GFlops	3,046 GFlops	$604.8 \ \mathrm{GFlops}$	
主記憶容量	$16 \mathrm{GB}$	16GB	128GB	
メモリバン	534	490	65.5	
ド幅性能	GB/sec	GB/sec	GB/sec	

ない.

KNL 向けのコンパイラとしては, ifort 17.0.4 を用 い,オプションには-align array64byte -xMIC-AVX512 -qopenmp -O3 -ipo を指定した. MPI のライブラリ としては, Intel MPI 2017 update3 を用いている.環 境変数としては,OMP_STACKSIZE=1G, ulimit -s 1000000, OMP_NUM_THREADS=66/132/198/264, KMP_HW_SUBSET=1T/2T/3T/4T,

 $KMP_AFFINITY=scatter, verbose,$

I_MPI_PIN_PROCESSOR_EXCLUDE_LIST

=0,1,68,69,136,137,204,205, LMPL_PIN_DOMAIN=264 を指定している。各環境変数に関する詳細説明は割愛 する.また, numactl -membind=1を使用することで, MCDRAM を利用している.

BDW 向けのコンパイラとしては, ifort 17.0.2 を用い, オプションには-align array64byte -xHOST -qopenmp -O3 -ipo を指定した.環境変数には,OMP_STACKSIZE=1G, ulimit -s 1000000, OMP_NUM_THREADS=18, KMP_AFFINITY=compact を指定している.

5. OpenACC+CUDAによる*H*ACApKの 実装

前述の通り、HACApK ライブラリは OpenMP+MPI の ハイブリッド並列が実装されているが、P100 を含む GPU 向けの実装は含まれていない.本研究では GPU 向けの実 装として、OpenACC と CUDA による実装を施した.基 本的実装方針としては、OpenMP 並列を行なっている部分 に OpenACC 実装を追加し、そのうち性能上重要性の高い 部分のみ CUDA による実装を行う.この際、MPI 並列実 装はそのまま用いることとする.

5.1 階層型行列の生成

3.1 節で記載した通り,階層型行列の生成は三つのス テップからなるが,ステップ3の部分行列の計算につい て OpenACC+CUDA 実装を行う.図4に示した部分行 列の計算の OpenACC+CUDA 実装を行う上で考えるべき 点は,並列化の方針,メモリ管理,ユーザー関数の扱いである.

5.1.1 並列化の方針

GPUでは、CPUと比較してはるかに多くのスレッド(数 万~数百万)を生成することができ、またハードウェアの 構成上、多くのスレッドを生成した方が効率が良いことが 知られている. このため、CPUと同じ並列化方針が最適と は限らない. また GPU ではこの多数のスレッドを2階層 で管理しており、CUDA ではスレッドとスレッドブロック (スレッドの集合), OpenACC では vector と gang (vector の集合)と呼ぶ。同一スレッドブロック内のスレッド間で は同期をとりかつ低コストで通信することができる。一方 異なるスレッドブロックにあるスレッドと同期を取るため には、必要なデータをメモリに書き込み、スレッドを破棄 し、ホストプロセッサに処理を戻す必要があるため、大き なオーバーヘッドとなる(以下では一連の処理を、カーネ ルを閉じると呼称する). 以上を踏まえて GPU での並列化 の方針を決める必要がある.経験的には、CPUのスレッド 並列と GPU のスレッドブロック並列, CPU の SIMD 並 列と GPU のスレッド並列が、それぞれ同一のループに適 用されることで良好な性能が得られることが多い。そこで 本稿での実装においても OpenMP の並列化に習い,部分 行列を単位としてスレッドブロック並列を行う.ただし, 図 7: 右のような, 計算負荷のバランスは行わない。部分行 列と同じ数のスレッドブロックを生成し、計算負荷のバラ ンスは GPU の動的なスケジューリングに任せる.スレッ ド並列は、図4の7-8行目及び19行目に対して適用する. そのため、スレッドは主に図5の行列要素値を計算する関 数を単位として並列に計算する。なお、この部分に関して の実装は CUDA を用いて行う.

5.1.2 メモリ管理

上記並列化方針において問題となるのが,作業用領域に よるメモリ圧迫である.図4中5行目では,部分行列の計 算毎に独立した作業用領域を確保する実装となっている. しかしGPUでは,論理的には全てのスレッドブロックが 並列に実行されるため,最終的に階層型行列のために必要 なメモリ容量の何倍ものメモリ量が作業用領域のために必 要となってしまい,本末転倒である.そこで本実装では, 決め打ちで大きめな一次元配列を作業用領域として用意し ておき,用意した作業用領域で扱えるだけの量の部分行列 の計算を並列に実行する.一度カーネルを閉じた後,作業 用領域の値をコピーし,また扱える量だけの部分行列の計 算を行う.この一連の処理を,全ての部分行列の計算が終 わるまで繰り返す.

本実装では同時に,図4中13-14行目のleaf(:)%mk/kn の配列も,それぞれコンパイル時に決め打ちのサイズの 一次元配列(P100の場合,メモリ容量を踏まえ,それぞ れ3GB程度の大きさ)で代用してしまっている.19行目 の leaf(:)%mn はあらかじめサイズが求まるため,サイズ を計算した上で,一次元配列化して確保している.つまり leaf(:)%mkの一次元化配列,mk_1Dは,leaf(1)%mkの全 要素,leaf(2)%mkの全要素,...,leaf(NUM_SUBMTX)%mk の全要素の順に格納されている.この時,leaf(*i*)が小行 列の場合には,leaf(*i*)%mkの要素数を0とみなす.また, leaf(*i*)%mkの先頭要素のインデックスを格納した,mk_idx を別途用意している.GPUのメモリの確保に相対的に時 間がかかること,構造体へのアクセスに時間がかかること, 作業用領域に利用できるメモリ量の見積もり易さ,などを 考慮してこのような実装にしているが,この実装では利用 できるメモリ量を自ら制限してしまっている.利用可能な メモリ量制限の緩和は今後の課題である.

5.1.3 ユーザー関数の扱い

HACApKでは、図5の行列要素値の計算を行う関数を ユーザーが実装する必要があるが、CPU向けに書かれた 関数はCUDAで書かれた関数からは呼ぶことができない ため、新たにCUDAで書かれた実装を用意する必要があ る.ユーザーにCUDAを書かせることになるが、行列要 素値の計算を行う関数の実装自体はさほど難しくない.本 実装では行列要素値の計算は1スレッドが行うため、関数 内部での並列化を意識する必要がないためである.基本的 には、図5の1行目行頭と、この関数から呼び出される関 数に、attributes(device)を付与するだけである.ただ し、ユーザーはCUDAのデバイス関数の制限を守る必要 があり、例えば save 属性の変数などは利用できない.

むしろ問題となるのは、図5で使用されている構造体, st_bemv の扱いである. この構造体の中には, 行列要素値 の計算を行うために、あらかじめユーザーが用意した配列 などが登録されている。CPUのメモリとGPUのメモリは 物理的に分かれているため, GPU で実行される関数内で 扱うデータは、CPU のメモリからあらかじめ GPU のメモ リ上にコピーしておく必要がある.st_bemvもGPUのメ モリ上にコピーしておく必要があるが、ここでディープコ ピーの問題が発生する。構造体のメンバに allocatable な 配列を含む場合、構造体が持つのはあくまでその配列のア ドレス情報であり、配列が実際に確保されるのはメモリ上 では構造体と別の領域である。そのため CPU メモリ上の 構造体を GPU メモリ上にコピーしても, 配列の実体はコ ピーされない。尚且つ構造体が持つアドレス情報は CPU のメモリ上ものである.正しくコピーするためには、構造 体とは別に配列の実体のコピーを行い、構造体の持つアド レス情報を更新する必要がある. これがディープコピーの 問題である. つまり st_bemv を GPU のメモリ上に正しく コピーするためには、st_bemv をコピーするだけではうま くいかず、構造体メンバもコピーする必要がある.しかし 構造体のメンバはユーザーが用意するため、メンバのコ ピーはユーザーが書く必要がある.

情報処理学会研究報告 IPSJ SIG Technical Report

1	<pre>subroutine HACApK_copy_st_bemv(st_bemv)</pre>
2	type(st_HACApK_calc_entry) :: st_bemv
3	!\$acc enter data &
4	!\$acc copyin(st_bemv) &
5	!\$acc copyin(st_bemv% メンバ1) &
6	!\$acc copyin(st_bemv% メンバ2) &
7	
8	!\$acc copyin(st_bemv% メンバN)
9	end subroutine

図 8 st_bemv をコピーするための関数. ユーザーは OpenACC の 指示文を用い,構造体のメンバのコピーを正しく実装しなくて はならない.

この問題を解決するために, st_benvをコピーするための 関数図 8を用意した.この関数は HACApK 内の適切なタ イミングで呼ばれる.ユーザーは5 行目以降の OpenACC の指示文を正しく実装する必要がある.本実装方針はユー ザーの負担を増やすことになるが,ユーザーの負担軽減方 法の検討については今後の課題である.

5.2 階層型行列を用いた線形ソルバ

前述の通り、本稿では BiCGSTAB を対象として OpenACC+CUDA 化を行う.実行時間に対して支配的な図 6 相当部のみを CUDA により実装し,残りを OpenACC に より実装する.BiCGSTAB の実装方針は行列生成部と同 様,部分行列を単位としてスレッドブロック並列を行い, 部分行列内部の計算をスレッド並列する.ここで,図 6 の 7,13,21 行目 leaf(:)%mk/kn/mn は,行列生成時に一次元 配列化されているため,ここでも同様に一次元配列として 扱う.

CUDA による階層型行列-ベクトル積の実装において特 徴的なのは、atomic 演算の方針である。OpenMP による 実装では、3.2 節で説明した通り、スレッドローカルな解ベ クトル x_t を持ち、図 6 の計算の後に atomic 演算により解 ベクトル x に縮約した。一方 CUDA では、図 6 の 13, 21 行目において直接 x に対して atomic 演算を用いて足し込 んでいる。

6. 最適化

オリジナルの MPI+OpenMP 実装と,今回実装した MPI+OpenACC+CUDA 実装をベースラインとして, P100, KNL 向けに以下の最適化を加えた.

6.1 P100 向け最適化

6.1.1 ノルム計算の並列化

図4の9行目で行われている近似誤差の計算は,7,8行 目で生成されたベクトルのノルムを用いている.このノル ムの計算では,桁の違いすぎる数を足し合わせることによ る桁落ちを防ぐために,演算の順番を工夫している.これ によりループ伝搬依存が生じ,並列化しにくいノルム計算 となっている.このノルム計算を、単なる自乗和のルート によるノルム計算へと置き換えることで、並列化可能とし た.この変更は、解の精度に影響を与える可能性がある. 今回対象とした問題では有意と思われる影響は無かった が、この変更による影響の評価を今後行う必要がある.

6.1.2 部分行列のソートによる負荷不均衡の解消

5.1.2 節で説明した通り,階層型行列生成部における部 分行列の計算は,決まったサイズの作業用配列で扱えるだ けの部分行列を対象として計算する.この際一つのスレッ ドブロックは一つの部分行列を担当し,一つのスレッドブ ロックは P100 の 56 個の SM (64 個のコアを内包するコア 群)のうちの一つの SM にスケジューリングされる.部分 行列のサイズはまちまちであるため,負荷の不均衡が生じ る.この不均衡を解消するため,部分行列を行列の大きさ 順にソートする.部分行列あたりの計算量は,部分行列の サイズのみでなく,収束時のランク k にも依存する.しか し同程度のサイズを持つ部分行列は同程度のランク k で近 似される傾向があるため,サイズによるソートのみである 程度の負荷バランスが取れると期待できる.

6.1.3 ユーザー関数の最適化

3.1 節で説明した通り,図 5 で示したユーザー関数は, 全体で O(NlogN) 回呼ばれ,行列生成部の実行時間に対 して支配的である.それだけにユーザー関数の最適化は実 行時間に大きな影響を及ぼす.ユーザー関数は無論ユー ザーの実装次第であるため,ライブラリの提供者には本来 手を出せない領域であるが,本稿ではユーザー関数の影響 の程度の検証,新たなインターフェースの検討を行うため に,最適化を行う.ユーザー関数のベースライン実装とし ては,ppOpen-APPL/BEM ver.0.5.0 のリファレンス実装 を用いる.

ユーザー関数の最適化には,以下の2種類が考えられる. (1)ユーザー関数内部で完結する最適化

(2) HACApK の変更を伴う最適化

ユーザー関数内部で完結する最適化としては、割り算の逆数の掛け算への置き換え、などが考えられる.本稿でもこれを実装した. $\mathcal{H}ACApK$ の変更を伴う最適化としては、冗長なメモリアクセスや計算の削減、などが考えられる. 図 5 の関数では、列要素 i と行要素 j から行列要素値を計算する必要があるため、列要素 i に依存する値と行要素 j に依存する値の双方を st_bemv から読み出す必要がある. しかし、例えば図 4 の 7 行目は列ベクトルの生成であるため、一連の行列要素生成過程において、行要素 j は一定である。従って j にのみ依存する値は使い回すことができるが、ループ構造は $\mathcal{H}ACApK$ 側にあるため、ユーザー防らは見えない.このような場合には、ユーザー関数と $\mathcal{H}ACApK$ の双方を最適化する必要がある.

6.2 KNL・BDW 向け最適化

オリジナルの HACApK では,SIMD 最適化は行われて いない.一方 KNL は 512bit の SIMD 幅を持ち,またこ れを使いこなすことが性能向上の鍵であるため,主として SIMD 化を目的として最適化を行う.

6.2.1 ユーザー関数以外の SIMD 化

ユーザー関数に手を加えずできる範囲の SIMD 化を行う ことを目的とし、以下を適用した.

- (1) P100 での変更 (6.1.1 節) と同様,並列化可能なノルム 計算への置き換え
- (2) メモリアライメントの調整
- (3) contiguous 属性の利用
- (4) !\$omp simd alined や, !DEC\$ assume_aligned を用い たコンパイラへのアライメントに関するヒント

メモリアライメントの調整について,例えば図 4 の二 次元配列 mk_tmp のアライメントを調整する場合,5 行目 を allocate(mk_tmp(m+mod(8-mod(m,8),8),KMAX)のよ うに変更する.m+mod(8-mod(m,8),8)は8の倍数であり, mk_tmp は倍精度であることから,mk_tmp(1,:)は64byte 境界にアライメントされる.アライメントされていない場 合,メモリロード命令が2回発行されてしまうが,アライ メントすることにより1回のメモリロードで実行できる.

contiguous 属性は、ポインタ配列に付与することにより、 ポインタの参照先がメモリ上に連続に並んでいることをコン パイラに教えるものである。例えば図 9のように、二次元配 列の二次元目をサブルーチンの引数として渡し、サブルーチ ン内では一次元配列的に使用する場合、実際としては連続に 並んでいないため、gather 命令によりメモリ読み込みを行う 必要がある。コンパイラはこのような呼び出しがある可能性 を考慮し、実際には図 9のような呼び出しがなくても、効率の 悪い gather 命令を発行する。図 9のような呼び出しがない 場合には、real*8、pointer、contiguous :: array(:) のように contiguous 属性を付与することにより、gather 命 令の発行を抑制できる。

!\$omp simd alined や, !DEC\$ assume_aligned などの 指示文は, 配列がアライメントされていることをコンパ イラに教えるためのものである.例えば図 10 の場合, mk_tmp(1,k) が 64byte 境界にアライメントされているこ とをコンパイラに教えることができる.これを行わない場 合, mk_tmpの一次元目のサイズが8の倍数ではない可能性 を考慮し, ロード命令が二回発行されてしまう.また図 11 のように, 同一配列のうち複数箇所についてアライメント されていることを教えるためには, !DEC\$ assume_aligned を利用する.

6.2.2 ユーザー関数の最適化

ユーザー関数の最適化については、6.1.3 節での P100 向 けの最適化に加え、ユーザー関数の SIMD 化を施した. こ れは、*H*ACApK の変更を伴う最適化である. ユーザー関

- 1 ...
 2 call foo(array2D(1,:))
 3 ...
 4 subroutine foo(array)
 5 real*8, pointer, :: array(:)
 6 ...
- 図 9 contiguous ではない例.サブルーチン foo の中では array は 一次元配列に見えるが、実際には二次元配列の二次元目であ り、ストライドアクセスが必要になる。

1 !\$omp simd aligned(mk_tmp:64)

2 do m=1, mmax

```
3 mk_tmp(m,k)=mk_tmp(m,k)*xxx
```

enddo

図 10 !\$omp simd aligned の利用例. mk_tmp(1,k) が 64byte 境 界にアライメントされていることをコンパイラに教えつつ, SIMD 化する.

```
1
   do it=1,k-1
2
      !DIR$ assume_aligned mk_tmp(1,it):64
з
      !DIR$ assume_aligned mk_tmp(1,k):64
4
      !$omp simd
      do m=1. mmax
\mathbf{5}
          mk_tmp(m,k)=mk_tmp(m,k)+xxx*mk_tmp(m,it)
6
      enddo
7
   enddo
8
```

図 11 !DEC\$ assume_aligned の利用例.mk_tmp(1,k) と mk_tmp(1,it) の両方が 64byte 境界にアライメントされ ていることをコンパイラに教えつつ, SIMD 化する.

数の SIMD 化の例を図 12 示す.スカラ変数のみを引数 にもつ関数 user_func の中に演算を記述する.この関数を SIMD 並列で解くことを目標とする.計算に必要となる st_bemv の値を,2-4 行目・8-10 行目でそれぞれ,スカラ変 数・長さ 8 の配列にあらかじめコピーしておく.12 行目か ら始まる長さ 8 のループの中で,13 行目のように引数を指 定し,user_func を呼ぶ.user_func 側では,20 行目から始ま る!\$omp declare simd 指示文を指定することで,この関数 が SIMD 並列されるべき関数であることをコンパイラに指 示している.simdlen では SIMD 並列長を, linear(ref(ai)) は引数 ai の参照先が連続に並んでいること, uniform は定 数であることをそれぞれ指示している.

7. 性能評価

上述した実装についての性能評価を行う.性能評価の対象とするプロセッサは表1である.実験は全て1プロセッ サのみを用いて行い,MPIによる並列化は行わない.また,入力データとしては表2を用いる.いずれも境界要素法を用いた静電場解析において現れる行列である.

表 2 の 100ts を対象とし,最適化の効果を検証する.適 用した最適化を表 3 に示す.オリジナルの実装と,5章で説

情報処理学会研究報告 IPSJ SIG Technical Report

Vol.2017-HPC-160 No.15 2017/7/27

1	! 行番号に依存する変数の読み込み
2	a = st_bemv%a(j)
3	b = st_bemv%b(j)
4	
5	do m=1,mmax,8
6	! 列番号に依存する変数の長さ8ベクトルへの読み込み
7	i = m + str
8	a8(1:8) = st_bemv%a(i:i+7)
9	b8(1:8) = st_bemv%b(i:i+7)
10	
11	!\$omp simd
12	do l = 1, 8
13	ans(1) = user_func(a8(1),b8(1),, &
14	,a,b,)
15	enddo
16	
17	enddo
18	
19	<pre>real*8 function user_func(ai,bi,,aj,bj,)</pre>
20	<pre>!\$omp declare simd(user_func) simdlen(8) &</pre>
21	<pre>!\$omp linear(ref(ai,bi,)) uniform(aj,bj,)</pre>
22	real*8 :: ai,bi,,aj,bj,
23	

図 12 !\$omp declare simd を用いた関数の SIMD 化の例.

表 2 評価対象とする階層型行列

行列名	100ts	human1x1	216h
行数	101250	19664	21600
近似行列数	89534	16202	17002
小密行列数	132740	20416	33096
H-行列使用時のメモリ量	$3,307 \mathrm{MB}$	472.0 MB	464.0MB
密行列に対するメモリ量	4.22%	16.0%	13.0%

明した OpenACC+CUDA 実装を (1): ベースラインとし, 6章で説明した最適化を順次適用する.なお,(3)の負荷不 均衡の解消についてであるが、3.3 で述べた通り、KNL・ BDW ではベースライン時点で適用済みである. 図 13 に, 行列生成部の実行時間を計測した結果を示す。この実行時 間は、3.1節で説明した、ステップ(3)の部分行列の計算の 実行時間であり、ステップ(1),(2)は含んでいない.また P100 での実行においては、図8に示したデータ転送時間 なども含まれている. P100 については, (3) のソートによ る性能改善が大きく. (2) と比較して 3.13 倍の性能向上を 達成している。KNL では、OpenMP のスレッド数を 66、 132, 198, 264 と 4 通りで実行し、その中の最速値を取って いる. (1)~(5) では、264 スレッドが最速であったが、(6) では132スレッドが最速であった.スレッド数ごとの実 行時間の変遷を図 14 に示す. このような挙動を示した要 因は現在調査中である. また, KNL と BDW 双方におい て、ユーザー関数の最適化、とりわけ SIMD 化が非常に効 果的であった. (5) と比較して (6) では, KNL が 3.41 倍, BDW が 2.79 倍の性能向上を達成した.

また線形ソルバーについて, BiCGSTAB の1 反復あたり の実行時間を図 15 に示す.今回施した最適化は主に行列

主の	見適化内容
AX O	取题们开始

	最適化内容
(1)	ベースライン実装
(2)	(1)+ノルム計算の並列化
(3)	(2)+ソートによる負荷不均衡の解消 (GPU のみ)
(4)	(3)+ユーザー関数以外の SIMD 化 (KNL・BDW)
(5)	(4)+ユーザー関数内で完結する,ユーザ関数の最適化
(6)	(5)+升ACApK の変更を伴う,ユーザ関数の最適化

図 13 表 3 の最適化を適用した際の実行時間の変遷.入力データは 表 2 の 100ts.

図 14 表 3 の最適化を適用した際の KNL の各スレッド数における 実行時間の変遷.入力データは表 2 の 100ts.

生成部のためのものであったため、(3) 以外では大きな影響 はなかった. (3) のソートについては、P100 の実行時間に 悪影響を及ぼし、図 15の実行時間から 10%程度遅くなっ た.この原因は、解ベクトルへのアクセスの局所性が低下 し、atomic 演算の効率が低下したためだと考えられる。部 分行列の並び順は本来, column メジャーライクとなってい るため、番号順に実行した場合には解ベクトルへの足し込 みに局所性が生まれる.一方,部分行列のサイズ順にソー トした場合, 解ベクトルへのアクセスはランダムになり, 局所性が損なわれる.また、P100はハードウェアで倍精度 の atomicAdd をサポートしている. L2 キャッシュレベル で atomic 演算を行うため、L2 キャッシュにヒットする限 りは高速に atomic 演算を実行できる. しかしキャッシュ から外れてしまうと一旦メモリに退避されてしまい、メモ リに退避されたデータへの足し込みを行うためには、もう 一度 L2 キャッシュ上にロードする必要がある。本実装で

Vol.2017-HPC-160 No.15 2017/7/27

情報処理学会研究報告 IPSJ SIG Technical Report

図 15 100ts における,各プロセッサの実行時間. ここで, KNL の カッコ内の数字はスレッド数を表す.

は L2 とデバイスメモリ間のメモリバンド幅を使い切って おり,さらなる高速化を目指すためには atomic 演算の効 率を考える必要がある.一方 KNL については,P100 と同 程度のメモリバンド幅性能を持っているにも関わらず,1.8 倍程度低速であったため、メモリバンド幅を使い切れてい ない.この原因については今後調査が必要である.また, KNL のスレッド数は 66 の時が最適であり,264 スレッド の時が最も悪かった.行列生成部においては,ユーザー関 数を SIMD 化できない場合,264 スレッドが最も高効率で, 66 スレッドの効率が最も悪かったため,最適なスレッド数 を一致させるためにも,ユーザー関数の SIMD 化を促進し なくてはならない.

最後に、入力データを変化させた際の影響を見るために、 表 2 の階層型行列生成に掛かる時間を比較した.図 16 に 示したのは、表 3 の (6)の実装を用いた際の実行時間であ る.human1x1 と 216h は、100ts と比較して階層型行列の メモリ量が小さい.階層型行列生成部における計算量は、 出来上がった階層型行列のメモリ量と比例の関係にあるた め、human1x1 や 216hの方が演算量は 100ts と比較して 一桁小さい.KNL・BDW では概ね演算量に比例した実行 時間の低減が見られる一方で、P100 ではほとんど実行時 間が減少していない.これは負荷の不均衡が主な原因であ り、負荷バランスを均等にするような新たな実装方法を考 える必要がある.

8. おわりに

本稿では、階層型行列法ライブラリである HACApK を 用いたアプリケーションのメニーコア向けの最適化を目指 し、P100・KNL 向けの実装・最適化を行なった.その結 果、特に階層型行列生成部において、KNL・BDW ではユー ザー関数の SIMD 化が重要であることが判明した.しか しユーザー関数を SIMD 化するためには、ユーザー関数と HACApK 双方に手を加える必要がある.このような負担 をユーザーに強いるのは好ましくないため、新たな方法を 考える必要がある.また P100 向けに、OpenACC+CUDA

図 16 入力データの違いによる,階層型行列生成部における実行時 間の変遷。

による実装を行なった.適用した最適化の中で最も効果的 であったのは、計算負荷のバランスを調整するために行っ たソートであり、また部分行列毎の演算量が比較的不均質 な入力データに対して、あまり高速化効果が得られなかっ たことから、新たな負荷不均衡の解消方法を今後考えてい く必要がある.

謝辞 本研究は JSPS 科研費 2611834 の助成を受けたものである.

参考文献

- The TOP 500 List: https://www.top500.org/lists/ 2017/06/.
- [2] Oakforest-PACS スーパーコンピュータシステム: http: //www.cc.u-tokyo.ac.jp/system/ofp/.
- [3] Sodani, A., Gramunt, R., Corbal, J., Kim, H. S., Vinod, K., Chinthamani, S., Hutsell, S., Agarwal, R. and Liu, Y. C.: Knights Landing: Second-Generation Intel Xeon Phi Product, *IEEE Micro*, Vol. 36, No. 2, pp. 34–46 (2016).
- [4] The Green 500 List: https://www.top500.org/ green500/lists/2017/06/.
- [5] TSUBAME3: http://www.gsic.titech.ac.jp/ tsubame3.
- [6] Pascal Architecture Whitepaper: http://www.nvidia. com/object/pascal-architecture-whitepaper. html.
- [7] Reedbush スーパーコンピュータシステム: http://www.cc.u-tokyo.ac.jp/system/reedbush/.
- [8] 京コンピュータ: http://www.aics.riken.jp/jp/k/.
- [9] Börm, S., Grasedyck, L. and Hackbusch, W.: Hierarchical matrices, Technical report, Max Planck Institute for Mathematics in the Sciences (2003).
- [10] 大島聡史,伊田明弘,河合直聡,塙敏博: 階層型行列ベクトル積のメニーコア向け最適化,研究報告ハイパフォーマンスコンピューティング(HPC), Vol. 2016-HPC-155, No. 39, pp. 1–9 (2016).
- [11] 塙敏博, 伊田明弘, 大島聡史, 河合直聡: FPGA を用いた 階層型行列ベクトル積, 研究報告ハイパフォーマンスコ ンピューティング(HPC), Vol. 2016-HPC-155, No. 40, pp. 1–6 (2016).
- [12] Ida, A., Iwashita, T., Mifune, T. and Takahashi, Y.: Parallel Hierarchical Matrices with Adaptive Cross Approximation on Symmetric Multiprocessing Clusters, *Journal* of Information Processing, Vol. 22, No. 4, pp. 642–650 (2014).

- [13] ppOpen-HPC: Open Source Infrastructure for Development and Execution of Large-Scale Scientific Applications on Post-Peta-Scale Supercomputers with Automatic Tuning (AT), http://ppopenhpc.cc.u-tokyo. ac.jp/ppopenhpc/.
- [14] Iwashita, T., Ida, A., Mifune, T. and Takahashi, Y.: Software Framework for Parallel BEM Analyses with Hmatrices Using MPI and OpenMP, *Procedia Computer Science*, Vol. 108, pp. 2200 – 2209 (2017).
- [15] Kurz, S., Rain, O. and Rjasanow, S.: The adaptive crossapproximation technique for the 3D boundary-element method, *IEEE Transactions on Magnetics*, Vol. 38, No. 2, pp. 421–424 (2002).