
IPSJ SIG Technical Report

A Memory Performance Analysis Tool Based on
Linux Perf

Christian Helm1,a) Kenjiro Taura1,b)

Abstract: In current high performance computing applications many performance bottlenecks are caused
by the memory system. Such performance bugs are hard to identify precisely. Thus analysis tools play an
important role in performance optimization. Especially hardware assisted instruction sampling has gained
attention for performance analysis. We present a concept for a tool implementation which relies on Linux
perf as backend to record instruction sampling data. Our implementation provides support for all recent
processor architectures. It combines the perf data with other sources and makes the combined data easily
accessible through a database for future experiments and tool development. It is greatly simplifying the
access to instruction sampling data and overcomes perf’s major weaknesses. Using this database we plan to
implement new visualizations and analysis methods.

1. Introduction

Finding the cause of performance problems in modern

HPC applications can be a difficult task. Memory accesses

are a major contributor to bad performance and unsatis-

factory parallel scaling. Throughout this paper the term

memory refers to the memory system from the L1 caches to

DRAM. Memory is not referring to permanent storage like

HDDs.

CPU speed has been increasing much faster than memory

speed. The gap between memory performance and processor

performance has widened over the years. Because of this ev-

ery modern processor employs many techniques to provide

faster access to data. For example cache memory. While

caches increase the average performance cache misses can

occur and limit the performance gain. The cache capacity

is limited and it might be too small to contain all required

data. On multicore systems there are usually shared caches

on the lower levels of the hierarchy. Different cores compete

for the cache capacity on those shared caches evicting each

others data. Conflict misses occur due to limited associa-

tivity of caches. Shared data which is used and modified

by multiple cores causes invalidation of cache lines and in-

creased communication. All those effects increase the mem-

ory access latency. The DRAM is connected to the processor

with a limited bandwidth. If an application requires more

bandwidth than there is available the applications perfor-

mance will be bound by the memory performance. Today

multi socket systems are common. In those systems ev-

ery processor has its own DRAM. All DRAMs belong to

1 The University of Tokyo
a) christian@eidos.ic.i.u-tokyo.ac.jp
b) tau@eidos.ic.i.u-tokyo.ac.jp

the same shared address space. But an access to a remote

DRAM will result in higher latency than an access to a local

DRAM. Bandwidth to remote DRAMs is limited because of

the used communication protocols between the processors

(e.g. Intel QPI). Thus wrong allocation of data can have

negative implications on performance. Figure 1 shows a

typical hardware architecture. Overall the observed latency

depends on where the requested data is actually stored. For

example in an Intel Nehalem processor a local cache hit in

L1 cache has a latency of 4 cycles and an access to a re-

mote DRAM has a latency of 310 cycles. Respectively the

read bandwidth is limited to 9.1 GB/s on a remote DRAM

compared to 45.6 GB/s on a local L1 cache [1].

Core Core

L1 Cache L1 Cache

L2 CacheL2 Cache

L3 Cache

DRAM

Core Core

L1 Cache L1 Cache

L2 CacheL2 Cache

L3 Cache

DRAM

Interconnect

310 cycles

4 cycles

190 cycles

Fig. 1: A typical multi processor system with multiple cache lev-
els and NUMA memory arrangement. Blue lines and numbers
show the access latency from core to memory.

Looking at the software side, nowadays many applications

are bound by memory performance rather than CPU perfor-

mance and a lot of effort is spent optimizing those programs.

An example is mentioned in [10] where an application is run

on a NUMA system and performs mainly matrix multipli-

cations. 63% of its memory accesses are on remote memory.

c© 2017 Information Processing Society of Japan 1

Vol.2017-HPC-160 No.13
2017/7/26

IPSJ SIG Technical Report

A first optimization lead to a performance improvement of

up to 15%. The matrices where allocated interleaved on

all nodes. This even increases the amount of remote access

but it decreases contention on one node which leads to the

higher performance. A second optimization leads to a per-

formance improvement of up to 41%. It was found that one

matrix that causes the most remote accesses is never mod-

ified. Thus this matrix can be duplicated to all nodes and

remote accesses and contention are decreased.

There are many general profiling tools and they are fre-

quently used when optimizing applications. They can help

programmers to identify the functions where the most ex-

ecution time is spent. Those sections are called hot spots

and are typically the point where the programmer begins to

look for optimization opportunities. An example is shown

in Figure 2. It can be seen that 25% of the execution time

is spent in a memcpy function linked through libc. Another

25% is spent in the function called worker. 21% are spent

in the function called make array. But only about 2% are

spent in the function itself. Its children account for the ma-

jority of the execution time. The output has been truncated

because it reports many more functions.

Samples: 28K of event ’cycles:pp’

Event count (approx.): 21724696824

#

Children Self Shared Object Symbol

........

#

25.67% 25.60% libc-2.23.so __memcpy_sse2

25.67%

__memcpy_sse2

25.66% 25.60% mbw worker

25.66%

worker

21.71% 1.94% mbw make_array

21.71%

make_array

...

Fig. 2: Output of perf report in a typical profile.

But those profilers can not answer what is going on in-

side those functions. Modern processors have many possi-

ble bottlenecks that can cause performance problems if the

software is not optimal. It is difficult to figure out what is

going on inside the memory hierarchy without any tool sup-

port. Thus specialized tools are necessary which can provide

more answers than simply finding hotspots. Programmers

who want to achieve higher performance have a desire to

figure out quickly which performance problems occur and

what is the cause for those problems. It is very useful if a

tool can understand and report the optimization potential of

fixing a reported performance problem. Also code locations

and data responsible for the performance problem should be

identified by a tool.

To get metrics about memory performance detailed in-

formation from the hardware is needed. Modern processors

offer two different ways to get performance data. First there

are performance counters. Performance counters are regis-

ters which can be configured to count certain events. For

example cache misses or branch mispredictions. There is a

fixed number of registers available. For example 3 fixed and

4 programmable on Intel Haswell processors. There are hun-

dreds of events available which can be selected for counting.

The counter values are read at certain intervals and saved

in memory or on disk. At this time the current instruc-

tion pointer or call stack can be recorded. The overhead

mainly depends on how often and how many counters are

read. It is difficult to attribute a certain counter value to

a specific piece of code because of order processing, specu-

lative execution and reading counters more often increases

the overhead. The second method is instruction sampling.

Instruction sampling works by marking an instruction and

observing its execution as it goes through the pipeline of

the processor. For load instructions detailed information

can be obtained. For example the load latency, the actual

place where the data was found (L1, L2, L3, remote or lo-

cal DRAM) and the coherency protocol state at the time of

access. AMD calls this method Instruction Based Sampling

(IBS). Intel calls it Precise Event Based Sampling (PEBS).

The overhead of the sampling method is low since there

is dedicated hardware for observing the instructions. Data

gathered with instruction sampling can be attributed to pre-

cise code locations.

2. Related Work

Numerous memory performance analysis tools have been

developed over the years. This paper is limited to profil-

ing tools for Linux since most HPC applications are run on

Linux systems. This paper also only covers profiling tools

that use metrics from real hardware. Tools that are com-

pletely based on simulation are not considered in this study

because of the high overhead they usually have.

2.1 Linux Perf

Perf, which is included in the Linux kernel is a general

purpose profiler not limited to memory performance. Perf

is well maintained and offers the best support for different

and new hardware architectures out of all considered tools.

Perf supports the usage of performance counters and instruc-

tion sampling. The user is responsible to select which events

to count. The user has to know which events are meaning-

ful and there are hundreds of events available to choose.

It requires knowledge about the hardware and its potential

bottlenecks to configure the right events. It is a powerful

tool but it also requires lots of experience to use efficiently.

Perf is a command line tool and there is no possibility for

visualizing metrics using Perf. In addition to the text out-

put there is an interactive text interface (TUI). Accessing

the source code from this interface is supported and there

are basic filtering functions to restrict the printed data. The

whole perf data must be re-read every time a new type of

evaluation is requested. This can easily take minutes for

realistic workloads. The evaluation for memory metrics is

c© 2017 Information Processing Society of Japan 2

Vol.2017-HPC-160 No.13
2017/7/26

IPSJ SIG Technical Report

limited compared to the use of the profiler. Dynamically

allocated data can not be resolved.

2.2 ScaAnalyzer and HPCToolkit-NUMA

The authors have published two papers [2], [3] related

to this tool which is implemented as an extension of HPC-

Toolkit. As the names suggest ScaAnalyzer focuses on par-

allel scalability problems and HPCToolkit-NUMA is special-

ized for detecting NUMA problems. Unfortunately the tools

have not been made available by the authors. Still the pa-

pers introduce valuable concepts.

The memory architecture is separated into layers to sim-

plify analysis. Private layer (L1 and L2), Shared Layer

(Shared L3 and DRAM) and NUMA Layer (remote socket

DRAM). Performance problems are attributed to one of the

layers.

To identify scalability bottlenecks differential analysis is

applied. Basically an application is run twice increasing the

number of cores used. ScaAnalyzer quantifies the scaling

loss in the memory by comparing both runs. It uses the

latency information and the scalability information to judge

the optimization potential. High latency and high scalability

losses indicate high benefit from optimization. High latency

and low scalability losses indicate memory bottlenecks that

are not related to scalability.

ScaAnalyzer and HPCToolkit-NUMA are GUI tools that

allow to browse the source code which is augmented with

metrics.

As a low level interface for controlling hardware instruc-

tion sampling it uses the perfmon2 library. Identification

of the first touch of a page is implemented using a custom

SIGSEGV handler. First, new pages are created protected.

Because of this the SIGSEGV handler is called upon the

first access to every page. Inside the handler the call stack

can be recorded. Afterwards the original permissions of the

page are restored and the original access can be executed.

2.3 Intel VTune Aplifier XE

VTune Aplifier XE by Intel is a general purpose profiling

tool but it also has some specialized memory performance

features. Many of them were added in the considered 2016

Linux version [4]. The tool is available as binary and is only

one out of the evaluated tools that is not free of charge.

All features are accessible through a single GUI applica-

tion. The source code can be viewed inside of the applica-

tion. DRAM and QPI bandwidth can be visualized using

a histogram. Based on this histogram the code locations of

high bandwidth usage can then be selected from a table. It

offers more visualizations like a time resolved display of the

used bandwidth and tables support many different mem-

ory related performance metrics. It is also possible to do

a data centric analysis to show the objects responsible for

high bandwidth utilization.

Data is obtained though a custom driver which only sup-

ports Intel processors. Performance counters and instruction

sampling are used. Dynamic memory allocations and stack

frames are tracked to resolve variables.

2.4 Memprof

Memprof [5] is a profiler for NUMA multicore systems

published in 2012. Along with the paper the source code

was published [6].

Data is obtained using three different sources. First, the

object life cycle tracking which records allocations and dis-

allocations of dynamic memory. Second, the life cycle of

threads is tracked through kernel hooks for creation and de-

struction of threads. Third, memory access instructions are

sampled to track memory accesses. They use a custom ker-

nel module to control the hardware and record the data. It

is limited to AMD processors.

Using this data the thread event flow and object event

flow is built. The thread event flow lists the memory ac-

cesses performed by each thread. The object event flow

shows which threads access an object. For each of those

access entires the latency, access type (read/write) and call

chain is saved. All event flows are chronologically sorted.

Using these event flows indicators for performance problems

can be found. For example objects that are accessed from

multiple threads running on different nodes.

The evaluation features that come with the tool are lim-

ited to text based output. The percentage of remote DRAM

accesses can be displayed. A memory profile can be created

where the objects, functions and object accesses which cause

the highest delays can be listed.

2.5 Aftermath

Aftermath [7] is graphical tool for performance analysis of

fine-grained task-parallel applications. It is not limited to

memory performance but also has support for other hard-

ware metrics like branch mispredictions. It has been devel-

oped to be used together with the OpenStream [8]. It reads

a trace generated by OpenStream. Hardware metrics are

recorded using PAPI [9] which relies on performance coun-

ters.

The main visualization is a gantt chart timeline view of

all cores in the system. It can be overlayed with hardware

metrics thus providing time resolved analysis and attribu-

tion to tasks and cores. For example the percentage of re-

mote DRAM accesses can be shown. Using execution time

of tasks on certain cores can help identify NUMA problems.

A connection to the source code is possible on the granular-

ity of tasks but not on the level of individual instructions.

With filtering only certain tasks with an execution time in a

certain range or tasks that write to a specified NUMA node

can be selected.

2.6 DProf

This paper [10] and associated thesis [11] describe a tool

to locate cache performance bottlenecks. The source code

of this tool is available online [12]. A modified Linux kernel

is required to run this analysis tool.

DProf has four different views. First, the data profile. It

c© 2017 Information Processing Society of Japan 3

Vol.2017-HPC-160 No.13
2017/7/26

IPSJ SIG Technical Report

is a list of datatypes sorted by the total number of cache

misses. Second, the miss classification view. It shows which

type of misses (capacity, associativity conflict, true sharing

or false sharing) are the most common for each data type.

Third, the working set view. It shows which data types are

the most active and how much are active at a given time.

It can also be shown which associativity sets are used which

helps to find if certain data types are aligned with each other

and cause conflict misses. Last, the data flow view. It shows

which functions access a given data type. It can also indicate

when an object is accessed from multiple cores.

To get information about memory accesses AMD IBS and

specially configured debug registers and interrupts are used.

One object is tracked at a time on all CPUs and the tracked

object is changed during the profile run to provide coverage

of many but not all objects. Dynamically allocated objects

can only be resolved for kernel code.

An important internal data structure is the path trace.

It stores the life cycle of a data object from allocate to free

including all accesses to the object. Cache hit probabilities

and latencies are recorded in each path trace. Some of the

detailed analysis features like categorizing the type of cache

miss require a simulation.

2.7 NUMA Access Visualizer

This tool’s [13] key concept is a visualization that is based

on the physical hardware. It is an enhanced version of pre-

vious work [14]. The previous version relied on custom code

for programming the PMU instead of using a library and it

had less sophisticated visualization. The tools itself has not

been released by the authors.

Data is gathered using the likwid library [15]. This li-

brary uses performance counters to get the used bandwidth.

Both for QPI links and main memory. It is open source and

supports all recent processors from AMD and Intel.

For each socket there is a visualization similar to a ta-

ble. The cell entries show the QPI link utilization from one

socket to another. The graph in each cell is a time resolved

display of the bandwidth. The diagonal from top left to bot-

tom right where source and destination socket are the same

shows the memory bandwidth utilization of that socket.

The maximum possible bandwidth is obtained by running

a micro benchmark before the actual analysis. This maxi-

mum value is then used to color the cells. Red cells indicate

a bandwidth saturation problem. Attribution to hardware

sockets is possible but not to code or objects.

2.8 Summary

Key findings of the survey are that there exist reliable

and wide spread tools that manage to give an overview and

statistics about the whole program execution. Those are

useful to find what kind of performance problem is limit-

ing an applications performance. But those tools can not

help to pinpoint the location in the code where the prob-

lem is coming from. These more specialized tools that pro-

vide more details often suffer from low potability to across

CPU architectures, lacking maintenance and add obstacles

for practical use such as requiring custom kernel modules.

3. Implementation Concept

Our concept uses instruction sampling because it can more

precisely identify the concerned data and code regions. The

central component is Linux perf which is the tool that con-

trols and executes the instruction sampling. We add a few

other software components around perf to make its use eas-

ier and tailored to the analysis of memory accesses. Figure 3

shows the software components in the proposed implemen-

tation. In the beginning a script is executed which sets the

Run Script

ApplicationLinux Perf
Allocation
Tracker

Data Merger

Visualization

Sqlite Database

Fig. 3: Components of the proposed tool implementation.

right options for perf to set up the instruction sampling.

The script also sets up the allocation tracker and starts the

application under test. While the application is running the

allocation tracker and perf are recording the relevant info

about the application. Once the application has finished

execution a data merger is started. This data merger ex-

ports the data that was recorded by perf and puts it into

a sqlite database. It also adds the allocation trackers data

to the database which allows to resolve the accessed data

addresses to variable names.

3.1 Perf Settings

A certain set of command line options is used to config-

ure perf for the purpose of analyzing memory accesses. The

perf command line that is used to enable instruction sam-

pling for analyzing memory accesses is perf record -d -W

-g -e cpu/mem-loads/pp -k CLOCK MONOTONIC The

command line options have the following purpose:

• -d activates collection of the accessed data address.

• -W enables reporting the latency of sampled instruc-

tions.

• -g activates capturing callstacks for every sample taken.

This is an optional setting. It can be disabled if call-

stacks are not required.

• -e cpu/mem-loads/pp sets the observed event to mem-

ory loads. Thus only memory load instructions will be

considered. Store instructions could be added by using

the additional event cpu/mem-stores/pp. The pp refers

c© 2017 Information Processing Society of Japan 4

Vol.2017-HPC-160 No.13
2017/7/26

IPSJ SIG Technical Report

to precise events. Which means the event can be asso-

ciated with the executed code. In this case this is using

instruction sampling internally.

• -k CLOCK MONOTONIC sets the clock source which

is required to correlate perf timestamps with times-

tamps captured by other tools

Because this tool is using instruction sampling and the

techniques to gather information from the hardware are very

similar to the ones discussed in [3] and [6] we expect a simi-

lar overhead which is between 2.5% and 20%. The sampling

frequency can be adjusted. The parameters -c or -F can

be used to set the period between samples or the frequency

respectively. By adjusting this parameter the overhead and

accuracy can be balanced.

3.2 Allocation Tracker

The allocation tracker is based on the one used in the

Memprof [5] [6] tool. The memory allocation functions like

malloc and free are replaced with the ones defined in the

allocation tracker. Those new functions record a callstack,

allocated address range and a timestamp before calling the

original memory allocation functions. The allocation tracker

is using the LD PRELOAD feature which is available on

Linux systems to replace the existing allocation functions.

The records are stored in text files. One file for each thread.

The original allocation tracker from the Memprof project

did not keep track of memory free instructions and did not

support freeing memory in the application. This makes the

collection and subsequent analysis much easier because ad-

dress ranges can not be reused. But it limits memory con-

sumption of tools and the applications behavior will be less

realistic. We have enhanced the allocation tracker in our

tool so that also memory frees are supported during execu-

tion.

3.3 Perf Export and Data Merger

Perf stores the recorded sampling data in a binary, perf

specific format. Perf provides a scripting interface. This

interface allows to access the perf data. The scripting inter-

face supports perl and python. We use the python interface

and have written a script which exports the data and puts

it into a relational sqlite database. Using this database the

sampling data is much easier to process compared to the perf

binary format which is not well documented. The export is

done using the command: perf script -s <path-to-script>

<script-options>.

Dynamic memory allocations are only valid for a certain

time period. Thus to make a lookup from a given accessed

data address to an allocation call stack the timestamp of the

sample and the interval in which the allocation was valid

has to be considered. Two different tools are used to col-

lect data. Perf does the instruction sampling collecting data

about the memory access. The allocation tracker records

data about the dynamic memory allocations. Both individu-

ally record a timestamp for each entry. In order to have com-

parable timestamps from both sources both must rely on the

same clock source. Perf provides a parameter (-k) to specify

the clock source. This feature was introduced with the in-

tention to correlate timestamps between perf and userspace

tools. The default clock source for perf is one that is only

available within the kernel and can not be accessed by other

tools. We use the CLOCK MONOTONIC clock source

which returns a timestamp counted in nanoseconds from

the startup of the system. The CLOCK MONOTONIC is

internally based on the Time Stamp Counter (TSC) which

is present in all modern x86 processors. Another point to

look out for is the synchronization of the hardware clock

source between multiple cores and sockets of the same sys-

tem. The TSC is not affected by power management which

may change the operation frequency of the processor. It is

also synchronized at startup with all cores across all sockets.

Some older processors might not have this feature but this

can be verified by checking the presence of the constant tsc

and nonstop tsc flags.

The data from the allocation tracker is initially stored in

text files. To provide easy access to this data it is also im-

ported to the sqlite database. First the data is imported

into a table which contains the allocations. The data in the

original files is sorted by time. Thus the deallocation entry

comes much later in the data than the corresponding allo-

cation entry. When encountering an allocation entry in the

text file an entry in the database is created. When encoun-

tering a disallocation entry the previously added allocation

entry is updated and the correct disallocation timestamp is

set. When reading a disallocation entry the corresponding

allocation entry can be found in the database because the

both refer to the same address range. After all records are

imported a reverse lookup is done to update the sample ta-

ble. Queries to the database usually use the sample table as

main input. The sample table contains a foreign key that

shows for each sample to which allocation the accessed data

belongs. But in the initial import this key is not set because

the text file does not contain this information. For each al-

location entry in the database all samples which are in the

address interval and time interval of that allocation are se-

lected from the sample table. For all of those sample the

foreign key is updated to the currently selected allocation

entry. By doing this reverse lookup once during the import

the following queries to the sample table can be done more

efficiently.

3.4 Database Layout

The central table in a database is the samples table. This

table holds all the recorded samples. Each sample contains

the following information:

• The type of recorded event.

• Process and thread.

• Application and function identifier.

• Instruction pointer.

• Timestamp.

• CPU on which the sample was collected.

• Accessed data address.

c© 2017 Information Processing Society of Japan 5

Vol.2017-HPC-160 No.13
2017/7/26

IPSJ SIG Technical Report

• Latency of the instruction.

• Memory Opcode.

• Cache hit or miss.

• Memory hierarchy level where data was found.

• Memory snoop and coherency protocol status.

• Locked memory transaction information.

• DTLB hit or miss.

• DTLB hierarchy level where lookup was found.

• Callstack.

• Allocated memory including address range, time inter-

val and callstack of the allocation.

To keep a relational structure some of the mentioned infor-

mation is stored in separated tables and linked with foreign

keys.

4. Examples of Collected Data

In this section we show some examples of the collected

data to provide a better understanding of the data content.

The data was recorded by analyzing a memory bandwidth

benchmark [16]. This application allocates two large arrays

of integers, fills them with content and copies the data from

one array to the other. It is using three different methods.

First, the memcpy function applied to the whole array. Sec-

ond, the memcpy function applied to a smaller block size.

Third, a loop in which elements are copied one by one. It

causes a lot of memory accesses and is a good example to

generate many memory access samples. This section is not

intended as a case study to evaluate the usefulness of the

data and analysis methods. The results can be viewed with

a database browser. The following examples all show evalu-

ations of the data that standard perf does not support.

The sql statement in Listing 1 and the table in Figure 4

show the total instruction latency and number of captured

memory read samples aggregated by functions.

select (select name from symbols where id =

symbol id) as funct ion , count (∗) as

numSamples , sum(weight) as ”sumWeight” ,

sum(weight) /count (∗) as averageWeight

from samples group by symbol id order by

sumWeight desc

Listing 1: Sql query for getting the total latency of fuctions.

Fig. 4: Latency of read memory accesses of functions.

The unknown function is one that can not be resolved

because it is a kernel function for which no debugging infor-

mation is available. The functions with a high latency are a

potential target to check for optimizations.

A second example is displaying the data source of memory

reads for a specific function. In this case the function called

worker is being selected and the number of references to

each memory level for this function is displayed as shown in

Figure 5. The required sql statement is shown in Listing 2.

select (select name from symbols where id =

symbol id) as funct ion , (select name

from memory levels where id =

memory level) as l v l , count (∗) as ”

count ”

from samples where f unc t i on = ”worker ”

group by l v l order by count desc

Listing 2: Sql query for obtaining the memory hierarchy level of
memory references for a specified function.

Fig. 5: Accessed memory hierarchy for read memory references
of the function worker. LFB stands for line feed buffer.

The original perf can only do this kind of memory level

analysis for the whole program not for individual functions.

In complex programs the whole program analysis often fails

to point the programmer to the right locations in the code.

Using our implementation it is possible to get this data on

for every function with a simple sql statement.

The example in Listing 3 shows how to get the latency in-

formation of individual memory allocations. Each allocation

corresponds to one object in the code.

select a l l o c a t i o n i d , p r i n t f (’%x ’ ,

a d d r e s s s t a r t) as a d d r e s s s t a r t , p r i n t f

(’%x ’ , address end) as address end , (

select t i d from threads where id =

a l l o c a t i o n s . th r ead id) as t id , count (∗)

as numSamples , sum(weight) as

sumWeight , sum(weight) /count (∗) as

averageWeight

from samples inner join a l l o c a t i o n s on

samples . a l l o c a t i o n i d = a l l o c a t i o n s . id

group by a l l o c a t i o n i d having a l l o c a t i o n i d

i s not null

Listing 3: Sql query for getting memory access information for
allocated objects.

The clause having allocation id is not null excludes samples

for which the accessed data can not be resolved. Figure 6

shows the result of the query. The start address and end ad-

dress of the allocated memory region and the thread which

allocated it are shown. Along with the number of samples,

total latency and average latency of accessing these objects.

Fig. 6: Latency information of objects.

c© 2017 Information Processing Society of Japan 6

Vol.2017-HPC-160 No.13
2017/7/26

IPSJ SIG Technical Report

Using this allocation information the call stack of the al-

location can be printed. It requires multiple sql queries to

print the hierarchical call stack. The output for one of the

allocations is shown in Figure 7. Each line shows one stack

level. Depending on which information can be resolved due

to the availability of debugging symbols the content in the

lines can differ. In the first two lines all information can be

resolved. There is the binary name, address, function and

location in the source file. In third line the location in the

source file can not be resolved thus there is only the func-

tion name and offset. In the last line no information can

be resolved thus there is only the address printed. The file

name and line in the source code has been resolved with the

GNU binutils tool addr2line.

./mbw [0 x400ece] make_array at mbw.c:84

./mbw [0 x400c2d] main at mbw.c:277

libc.so [0 x7f8edca02830] __libc_start_main +0xf0

[0 xafb84220541]

Fig. 7: Call stack of the allocation with id 1074.

5. Conclusion and Future Work

We present a tool implementation which is using Linux

perf and thus inherits all its good features like extensive

and updated hardware support. Our implementation en-

hances perf to overcome its major weaknesses. We select

the right events out of hundreds available ones for the use

case of memory performance analysis. The burden to access

the data and to implement new analysis tools is reduced

by providing the sqlite export capability for perf. In previ-

ous approaches the perf source code has been modified to

implement new analysis features. Using the prepared data

visualizations can be easily created by querying the database

and displaying the data. New metrics based on the existing

data can be explored. Also our tool adds support to resolve

dynamically allocated objects. New analysis of the data can

be done efficiently by querying the database instead of hav-

ing to read the whole perf data file every time a new type of

analysis is requested. The unmodified perf that comes with

the Linux kernel can be used and it can be installed by using

packages available in many Linux distributions. This makes

our implementation easy to install and use.

We want to develop a tool to provide guidance to users

who are unfamiliar with programming memory optimized

applications. Our approach is to create a tool that can give

detailed hints for programmers where to look in their pro-

grams and identify the kind of performance problem thats

limiting the performance at certain places. We want to

achieve this by evaluating new metrics to judge the severe-

ness and optimization potential of performance problems

and by using new visualizations that help users to better

understand their performance problems. We will evaluate

our tool using benchmarks such as PARSEC [17] and other

realistic applications to proof that our tool can give valu-

able insights for programmers who are aiming to improve

the performance of their applications.

References

[1] Hackenberg, D. and Nagel, W. E.: Comparing Cache Archi-
tectures and Coherency Protocols on x86-64 Multicore SMP
Systems, IEEE/ACM International Symposium on microar-
chitecture, pp. 413–422 (2009).

[2] Liu, X. and Mellor-Crummey, J.: A tool to Analyze the Per-
formance of Multithreaded Programs on NUMA Architec-
tures, ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPoPP), pp. 259–272 (online),
DOI: 10.1145/2555243.2555271 (2014).

[3] Liu, X. and Wu, B.: ScaAnalyzer: a tool to identify mem-
ory scalability bottlenecks in parallel programs, Interna-
tional Conference for High Performance Computing, Net-
working, Storage and Analysis, pp. 47:1—-47:12 (online),
DOI: 10.1145/2807591.2807648 (2015).

[4] Oleary, K.: Finding your memory access perfor-
mance bottlenecks, Intel (online), available from
〈https://software.intel.com/en-us/articles/finding-your-
memory-access-performance-bottlenecks〉 (accessed 2017-06-
16).

[5] Lachaize, R., Lepers, B. and Quéma, V.: MemProf: A Mem-
ory Profiler for NUMA Multicore Systems, Proceedings of
the 2012 USENIX Conference Annual Technical Conference,
p. 5 (2012).

[6] Lepers, B.: Memprof Repository, Memprof (online), avail-
able from 〈https://github.com/Memprof〉 (accessed 2017-06-
16).

[7] Drebes, A., Pop, A., Heydemann, K., Cohen, A. and
Drachtemam, N.: Aftermath : A graphical tool for
performance analysis and debugging of fine-grained task-
parallel programs and run-time systems, 7th workshop
on Programmability Issues for Heterogeneous Multicores
(MULTIPROG-2014), No. 1, pp. 1–13 (2014).

[8] Pop, A. and Cohen, A.: OpenStream: Expressiveness and
Data-Flow Compilation of OpenMP Streaming Programs
Antoniu, IACM Transactions on Architecture and Code Op-
timization (2013).

[9] Terpstra, D., Jagode, H., You, H. and Dongarra, J.: Collect-
ing Performance Data with PAPI-C, Tools for High Perfor-
mance Computing (2010).

[10] Pesterev, A., Zeldovich, N. and Morris, R. T.: Locating cache
performance bottlenecks using data profiling, EuroSys ’10, p.
335 (2010).

[11] Pesterev, A.: Locating Cache Performance Bottlenecks Us-
ing Data Profiling, PhD Thesis, Massachusetts Institute of
Technology (2010).

[12] Pesterev, A., Zeldovich, N. and Morris,
R. T.: DProf, MIT (online), available from
〈https://pdos.csail.mit.edu/archive/dprof/〉 (accessed
2017-06-23).

[13] Weyers, B., Terboven, C., Schmidl, D., Herber, J., Kuhlen,
T. W., Müller, M. S. and Hentshel, B.: Visualization of Mem-
ory Access Behavior on Hierarchical NUMA Architectures,
Proceedings of VPA 2014: 1st Workshop on Visual Perfor-
mance Analysis - held in conjunction with SC 2014, pp. 42–
49 (online), DOI: 10.1109/VPA.2014.12 (2015).

[14] Iwainsky, C., Reichstein, T., Dahnken, C., Mey, D. A., Ter-
boven, C., Semin, A. and Bischof, C.: An approach to vi-
sualize remote socket traffic on the intel Nehalem-EX, Lec-
ture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), Vol. 6586 LNCS, pp. 523–530 (2011).

[15] Treibig, J., Hager, G. and Wellein, G.: LIKWID: A
lightweight performance-oriented tool suite for x86 multi-
core environments, Proceedings of the International Confer-
ence on Parallel Processing Workshops, pp. 207–216 (on-
line), DOI: 10.1109/ICPPW.2010.38 (2010).

[16] Horvath, A.: Memory Bandwidth Benchmark, raas (on-
line), available from 〈https://github.com/raas/mbw〉 (ac-
cessed 2017-06-20).

[17] Bienia, C., Kumar, S., Singh, J. P. and Li, K.: The PARSEC
benchmark suite: characterization and architectural impli-
cations, Proceedings of the 17th international conference on
Parallel architectures and compilation techniques, ACM, pp.
72–81 (2008).

c© 2017 Information Processing Society of Japan 7

Vol.2017-HPC-160 No.13
2017/7/26

