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Abstract: All solutions SAT (AllSAT) is the problem of generating satisfying assignments to a given conjunctive
normal form (CNF) and has been a key issue commonly found in several applications of formal verification including
model checking. CNF encoding, which translates original problems for AllSAT solvers, spawns many auxiliary vari-
ables and, what is worse, obscures functional dependencies over variables. AllSAT solvers consequently have to deal
with unnecessarily larger CNFs, although the original problems might be much more tractable in essence. This paper
proposes a novel AllSAT solver along with a CNF encoding technique; our solver extracts functional dependencies
through the encoding process, and the dependence is effectively utilized to solve the CNF. Our solver is designed
based on the OBDD compilation technique, which allows us to efficiently handle intractable CNFs with a number of
solutions in dynamic programming manner. Our proposal is very simple but powerful; experiments with real network
instances showed that our solver exhibits a great improvement.
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1. Introduction

All solutions SAT (AllSAT) is the problem of generating satis-
fying assignments to a conjunctive normal form (CNF) such that
they form a logically equivalent disjunctive normal form (DNF).
AllSAT has many applications in the field of formal verification:
e.g., model checking [6], [8], [16], predicate abstraction [5], and
network verification [14], [15], [19]. Since problems in those ap-
plications are described in a domain-specific manner, they must
be transformed to CNFs in order to employ an efficient AllSAT
solver. This translation is usually performed in two steps: orig-
inal problems are represented in propositional Boolean formulae
(the modeling part), which are then encoded into CNFs (the en-

coding part). The modeling part is domain-specific and is beyond
the scope of this paper, while the encoding part can be developed
commonly.

The encoding part obscures functional dependencies over vari-
ables, which can be a clue to solve CNFs efficiently. Here, a
functional dependency means that the value of a variable is de-
termined only by the values of some other variables regardless of
assignments, as illustrated below (also see Definition 2).
Example 1. Consider a CNF, ψ, defined as:

(¬x ∨ y) ∧ (¬x ∨ z) ∧ (x ∨ ¬y ∨ ¬z).

Since ψ is logically equivalent to x ↔ y ∧ z, the value of x is

uniquely determined according to the values of y and z so that ψ

is satisfiable.
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Dependent variables are found in many applications; e.g., the
transition relation in model checking is a conjunction of next
state variables, v′i , defined in terms of current state variables as∧

i v
′
i ↔ ψi(s) [1]. Dependent variables are also spawned as auxil-

iary variables through the modeling part; e.g., in data mining [7],
the value of an auxiliary variable, z, is bound to the evaluation of
a constraint, C, so that z ↔ C holds. Auxiliary variables are in-
troduced in the encoding part as well. They could make encoded
CNFs much longer, even though their values are not of interest.
As implied by the above observation, encoded CNFs are often
much more complex than the original problems due to dependent
variables.

Grumberg et al. [6] presented an AllSAT solver that focused on
important variables, i.e., variables whose values are of interest.
Given a CNF formula and dependence information about which
variables are important, the solver returns all assignments for the
CNF such that all important variables are assigned values and the
assignments can be extended to complete solutions. Important
variables must be identified outside the solver, and their work
did not address how to identify them. Their solver is promising
as Toda and Soh confirmed in their experiments [17]. However,
since the solver finds solutions one at a time, the computation
time has to depend on the number of solutions. Hence, there is a
limit to the number of solutions to be generated within a realistic
amount of time.

The compilation-based AllSAT solver, which was proposed by
Huang and Darwiche [9], addresses this issue. This solver iden-
tifies equivalent subproblems in its search process and does not
compute them more than once in dynamic programming manner.
Thus, the computation time does not directly depend on the num-
ber of solutions. The compilation-based solver, however, deals
with all variables equally and does not exploit functional depen-
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dencies. Unfortunately, ordered binary decision diagrams (OB-

DDs), which are a data structure used to represent solutions in
this solver, can be blown up with the number of variables, and
this solver does not work efficiently with many dependent vari-
ables. It is not straightforward for the compilation-based AllSAT
solver to efficiently utilize functional dependencies because the
construction process of OBDD is tightly coupled with all the CNF
variables.

This paper proposes a novel compilation-based AllSAT solver
that exploits functional dependencies over variables. Our AllSAT
solver is integrated with the encoding part to resolve the above is-
sue of a compilation-based solver; given a propositional Boolean
formula, our solver encodes it into a CNF while extracting func-
tional dependencies, which is then effectively used to construct
an OBDD of important variables only, where we consider vari-
ables other than extracted dependent variables important. Exper-
iments are conducted with a real network dataset and a common
model checking dataset. It turns out that CNF instances encoded
from the network dataset have a large number of solutions, and
compilation-based solvers are suitable for this kind of instances:
they find more solutions compared to Grumberg’s solver by a
few orders of magnitude. Our proposed technique accelerates the
original compilation-based solver further.

The paper is organized as follows. Section 2 provides neces-
sary notions concerning binary decision diagrams, and presents
the algorithm for compilation-based solvers. Section 3 proposes
a novel compilation-based solver that exploits functional depen-
dencies and Section 4 presents the experimental results. Section 5
concludes the paper.

2. Preliminaries

2.1 Binary Decision Diagrams
Binary decision diagrams (BDDs) are a graphical representa-

tion of Boolean functions [4]. Figure 1 depicts an example of a
BDD. Exactly one node has indegree 0, which is called the root.
Each branch node, f , has a label and two children. Node labels
are taken from the indices of Boolean variables. A child pointed
to by a dotted arrow is called a LO child and a child pointed to by
a solid arrow is called a HI child. The arc to a LO child is called
a LO arc, and the LO arc of f means the value, 0, is assigned to
the variable of f . Similarly, the HI arc means 1 is assigned to its
variable. There are two sink nodes denoted by � and ⊥. Paths
from the root to � and ⊥ respectively correspond to satisfying
assignments and falsifying assignments. The values of variables
skipped on the path are “don’t care.” Common prefix and suffix
can be shared among paths. BDDs are ordered if for any node,
u, with a branch node, v, as its child, the label of u is less than
the label of v. In this paper, ordered BDDs (OBDDs for short) are
not necessarily reduced [4]. Here, we remark that each node in

an OBDD is conventionally identified with the subgraph rooted

by that node, which also forms an OBDD.

2.2 Compilation-based AllSAT Solver
Algorithm 1 presents a pseudocode of compilation-based All-

SAT solver [9], [17]. The algorithm integrates DPLL search and
OBDD compilation, which are interleaved in the code as de-

Algorithm 1: OBDD compiler on DPLL. Chronological
backtracking is used for conflict resolution. ksat is key com-
puted when all variables are assigned values.

Input: a CNF formula ψ, an empty assignment ν.

Output: the OBDD for all satisfying assignments of ψ.

1 dl← 0; // Decision level

2 f ← ⊥; // OBDD

3 S ← {(ksat,�)}; // Set of key-result pairs

4 while true do
5 ν← propagate (ψ, ν); // Deduction stage

6 if a conflict occurs then
7 if dl ≤ 0 then return f ;

8 ψ← analyze (ψ, ν); // Diagnosis stage

9 S ← insertcache (dl, ν, S );

10 (ν, dl)← backtrack (ψ, ν, dl);
11 else
12 i← min

{
j | x j is not assigned value

}
;

13 key← computekey (ψ, ν, i − 1);

14 if there exists a pair (key, result) in S then
15 f ← extendobdd ( f , result, ν);

16 if dl ≤ 0 then return f ;

17 S ← insertcache (dl, ν, S );

18 (ν, dl)← backtrack (ψ, ν, dl);
19 else
20 dl← dl + 1; // Decision stage

21 select a value v;

22 ν← ν ∪ {(xi, v)};
23 end
24 end
25 end

scribed below. We begin with the DPLL search which includes
the three stages: decision (lines 20–22), deduction (line 5), and
diagnosis (lines 8 and 10). The procedures concerning OBDD

compilation are skipped for the time being. The DPLL search is a
backtracking-based algorithm, and it searches a satisfying assign-
ment in such a way that a solver extends a candidate assignment
by assigning values to variables and if the assignment turns out
to be not satisfying, the solver proceeds to the next candidate by
canceling the values of some variables.

We will see each stage of DPLL search below. Let ψ be an
input CNF formula. Let x1, . . . , xn be the variables that occur in
ψ, which are selected in the fixed order (line 12). We begin with
the decision stage (lines 20–22). A value, v, is selected, and the
least unassigned variable, xi, is assigned value v. The variable,
xi, is called a decision variable, and the assignment, (xi, v), is
called a decision assignment or simply a decision. The variable,
dl, in the algorithm holds the number of decisions that have been
made, which is called a decision level. The current decision level
is incremented at line 20.

At the deduction stage (line 5), all implications are deduced
from the current assignment, ν. The implications mean assign-
ments to other unassigned variables that are uniquely determined
by the recent assignment. An implication occurs if there is a
clause, C = {l1, . . . , lk}, in ψ such that all but one of the liter-
als, say l1 to lk−1, are evaluated to 0 in the current assignment, ν,
and the remaining literal, lk, is not evaluated to 0 or 1. Clearly, lk
must be evaluated to 1 in order that ψ is satisfiable. In this case, C

is called a unit clause, lk a unit literal, the underlying variable of

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 1 (a) Illustration of CNF. Intervals represent clauses, bullets represents positive literals, and circles
represent negative literals. A dashed line indicates the 3-rd cutset {C2,C3}. (b)–(c) Construction of
OBDD from CNF. Computed states of cutsets are associated with arcs, where underlined clauses
mean that they are satisfied. Gray nodes are those recorded as key-result pairs. Thick arcs in each
OBDD represent the path that is going to be added.

Algorithm 2: Function, backtrack, that performs chronolog-
ical backtracking in OBDD compiler on DPLL. The δ(y) de-
notes the decision levels at which k is made and ν(y) is de-
fined.

Input: a decision level dl, an assignment ν.

Output: the updated objects ν, dl.

1 (x, v)← the decision of level dl;

2 ν← {(y, w) ∈ ν | δ(y) < dl};
3 dl← dl − 1;

4 ν← ν ∪ {(x, v̄)}, where v̄ is the opposite value from v;

lk an implied variable, and its assignment an implied assignment.
The function, propagate, computes all implied assignments until
there is no unit clause or there is a falsified clause. This process is
called unit propagation. If unit propagation is terminated because
of the presence of a falsified clause, this case is called a conflict.

If a conflict occurs, then the diagnosis stage (lines 8–10) is ex-
ecuted. The function, analyze, computes a conflict clause at this
stage, which is a clause that is falsified by the current assignment,
and the conflict clause is added to ψ, by which a solver is guided
not to fall into the same conflict or relevant conflicts.

Algorithm 2 presents the pseudocode of the function,
backtrack, used in Algorithm 1. This algorithm, for simplicity,
adopts chronological backtracking, although our algorithm
can be integrated with any backtracking method presented in
Ref. [17]. This algorithm cancels all assignments of the current
decision level, dl, in the current assignment, ν (line 2), decreases
dl by one (line 3), and inserts a flipped decision, (x, v̄), into ν

as a non-decision assignment. Because of the presence of the
flipped decision, (x, v̄), solutions that include all decisions before
backtracking occurred are blocked.

We will now shift our attention to the OBDD compilation part,
which consists of the functions computekey, extendobdd, and
insertcache. We first introduce terminology. Let ν be an assign-

ment such that the i-th variable is the least unassigned variable.
The subinstance in ν is the CNF induced from the original CNF,
ψ, by applying the assignments up to xi−1 in ν. The solution space

in ν consists of all solutions of the subinstance in ν.
The basic idea in the OBDD compilation part is to avoid the re-

computation of “equivalent” subinstances by using a similar tech-
nique to dynamic programming. More concretely, since differ-
ent assignments can induce subinstances with the same solution
space, if all solutions of one subinstance are exhausted and they
are stored in some data structure, then an exhaustive search for
other equivalent subinstances do not need to be done because all
solutions have already been computed.

There are two keys to realizing this idea. First, an OBDD is
used as a data structure for solutions in such a way that if a solu-
tion is found, a new path corresponding to the solution is added
to an OBDD. Second, whether there is a past subinstance such
that it has the same solution space as the current subinstance is
decided using the concept of cutsets we are about to introduce.
Definition 1. Let ψ be a CNF, and let V be the set of variables in

ψ. The i-th cutset of ψ is defined as

{
C ∈ ψ | ∃l, l′ ∈ C, id(l) ≤ i < id(l′)

}
,

where id(l) denotes the index of the underlying variable of l (see

Fig. 1 (a)). The state of the i-th cutset in an assignment ν is a bi-

nary sequence with each entry being 1 if the corresponding clause

in the cutset is satisfied by ν and being 0 otherwise. We here as-

sume without loss of generality that the clauses in a cutset is or-

dered in an arbitrary fixed order so that each clause corresponds

to an entry in the sequence.

The following proposition declares that the states of cutsets
provide a sound equivalence test between subinstances.
Proposition 1. Let ψ be a CNF. Let ν and μ be assignments such

that all of the i-th and less variables are assigned values. Assume

that all clauses consisting only some of the (i − 2)-nd and less
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variables are satisfied. If the state of the (i − 1)-st cutset in ν is

identical to the state in μ, then the subinstances in ν and μ are

logically equivalent.

We are now ready to explain the pseudocode of the OBDD
compilation part. Let us start with line 12 of Algorithm 1. The
variable, i, holds the least index of an unassigned variable.

The function, computekey, is a generic function that computes
some data key, called a state, that characterizes the subinstance
induced by ν from an input CNF, ψ. Since states are used for de-
ciding the equivalence of subinstances, they must provide a sound
test, that is, they must ensure that if subinstances are not equiva-
lent, then the test result must be negative. Examples of such a test
include cutsets, separators [9], and a variant of cutsets [18].

We decide at line 14 whether there is a past subinstance such
that it is encoded into the same state, key (thereby, it has the same
solution space), as the current state. To do this, it suffices to sim-
ply search a pair in S with the first element, key, because the func-
tion, insertcache, maintains S so that if the current state is com-
puted and all solutions of the current subinstance are computed as
an OBDD, then the pair of that state and the root of that OBDD is
inserted into S . As illustrated in Figs. 1 (b) and 1 (c), if the search
succeeds *1 and result holds the associated node, then we extend
the current OBDD, f , by adding a new path corresponding to
the current assignment, ν, so that it is connected to result. Since
the OBDD rooted by result represents all solutions of the current
subinstance, connecting the path of ν to result means register-
ing all solutions extending ν into f . The function, extendobdd,
performs this operation (line 15). The following expression rep-
resents how an OBDD is extended in terms of Boolean functions.

F f := F f ∨ Fν ∧ Fresult,

where Fx denotes the Boolean function for x.
All that remains is to explain how to register key-result pairs

into S , which is done by the function insertcache. This func-
tion is called whenever backtracking is performed. Since chrono-
logical backtracking cancels assignments of the highest decision
level, when backtracking is performed, the subinstances induced
by such assignments must be solved. The function insertcache

thus registers all key-result pairs (key, result) such that key is the
state made by computekey with such an assignment and result is
the corresponding OBDD node, which is present in the path most
recently added to an OBDD.

3. AllSAT Procedure Using Variable Depen-
dence

This section presents an AllSAT-solving method that, given a
propositional Boolean formula, extracts functional dependencies
from the formula, and constructs the OBDD for satisfying assign-
ments over important variables only, i.e., variables other than ex-
tracted dependent variables. The formal definition of functional
dependencies is:
Definition 2. Let ψ be a CNF and let V be the set of all vari-

ables in ψ. A variable, x ∈ V, is dependent in ψ if there is a

*1 In the case that no variable is assigned value, i.e., i = 1, let computekey
return the undefined value, kundef , so that the search fails.

nonempty subset, S , of V \ {x} such that for any two total assign-

ments ν, μ : V → {0, 1} that make ψ evaluate to 1, if ν(y) = μ(y)
holds for all y ∈ S , then ν(x) = μ(x) holds. In this case, x is

dominated by S . This dependence relation is denoted by x� S .

We clearly distinguish the fact that x � S holds from the fact
that the relation is identified in some way. Since identifying de-
pendent variables is computationally intractable, we only com-
pute functional dependencies that can easily be determined. We
will simply call determined dependent variables non-important

variables and the other variables important variables.
Our method consists of the stage of extracting functional

dependencies, the stage of determining a static variable or-
der, and the stage of exploiting functional dependencies inside
compilation-based solvers.

3.1 Extracting Variable Dependence
Tseitin encodings are widely used for encoding propositional

formulae into CNFs [2]. Given a propositional formula, φ, the
Tseitin encodings introduce a new variable, x, for each subfor-
mula, α, that constitutes φ and generate clauses that represent the
logical relation, x↔ α *2.

We present a method of extracting functional dependencies
while performing the Tseitin encodings. We denote, by λ, the
mapping from each subformula to the variable introduced by the
Tseitin encodings. Let α be a subformula of φ. If α has form
α1 ◦ α2 for some binary operator ◦, then we extract the relation,
λ(α) � {λ(α1), λ(α2)}. In particular, if α has form, z ↔ α1 or
α1 ↔ z, where z is a variable and α1 is not a variable, then we
in addition extract the relation λ(z) � λ(α1). If α has form ¬α1,
then we extract the relation, λ(α)� λ(α1).

As was explained in Section 1, propositional formulae tend to
include many subformulae of form z↔ α for some variable z and
subformula α. These kinds of subformulae refer to functional
dependencies between original variables. Our AllSAT-solving
method can make better use of such background knowledge if
we consider not only constraints that are necessary for model-
ing, but also extra constraints that can be obtained by using some
heuristic or those added manually according to domain-specific
knowledge in the modeling phase.

3.2 Determining Variable Order
Here, we present a method of determining a static order over

all variables in a CNF to make use of functional dependencies in
compilation-based solvers. Note that compilation-based solvers
do not dynamically change the order of variables due to the re-
strictions of OBDD.

Let us first consider a variable order, <, with the property (P):
if a variable, x, is dominated in some extracted functional de-
pendency, then there is a set of variables, S , such that x � S

and y < x hold for all y ∈ S . This property suggests that the

*2 When satisfiability is all that matters, the subformula α can be replaced
with a new variable x by adding the new constraint x → α instead of
the bidirectional implication x ↔ α when a given propositional formula
is in negative normal form. In this case, x is not a depending variable.
When it comes to computing all solutions, we need bidirectional impli-
cations, which ensure a one-to-one correspondence between satisfying
assignments for the original formula and those for the encoded CNF.
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Fig. 2 (a) CNF in original variable order, where x6 is dominated by x1 and x2. (b) CNF in order deter-
mined by our method. (c) Constructed OBDD with our method. Nodes of label 3 are eliminated
because 3-rd variable, i.e., x6, is dominated. Cutsets are used for equivalence test. Node labels
mean a changed order of variables.

value of x is implied regardless of assignments and search can-
not branch at x (see Corollary 1). One simple instance of such
an ordering is to select important variables first, which is adopted
in the solver of Grumberg et al. and called important first deci-

sion procedure [6]. This ordering, however, is not suitable for
compilation-based solvers using cutsets or their variants because,
as is illustrated in Fig. 2 (a), if clauses contain both independent
and dependent variables, their interval representations lengthen
horizontally, and hence those clauses occur in many cutsets, by
which it is more prone to fail in identifying equivalent subin-
stances.

The basic idea of our variable ordering is to select dependent
variables as early as possible, while maintaining the property (P).
To achieve this, we sort variables in a CNF by moving dependent
variables to earlier positions. To do this, we introduce, for each
variable x, the set, D(x), of candidates for a variable, y, such that
x is moved after y.
Definition 3. Let x be a variable in a CNF, ψ. If x is not dom-

inated in any one of the extracted functional dependencies, then

define D(x) := {x}. Otherwise, define D(x) as the set of all vari-

ables, y, in ψ such that there is a sequence of extracted func-

tional dependencies, x1 � S 1, . . . , xk � S k with xi+1 ∈ S i for all

i ∈ {1, . . . , k − 1} and y ∈ S k, and y is not dominated in any one

of the extracted functional dependencies.

This is well-defined as the following proposition shows.
Proposition 2. Our method of extraction generates no cyclic se-

quence of dependence relations x1 � S 1, . . . , xk � S k with

xi+1 ∈ S i for all i ∈ {1, . . . , k − 1} and x1 ∈ S k.

Proof. Consider the parse tree of a propositional formula, φ,
such that internal nodes correspond to logical operators and
leaves correspond to variables in φ. The Tseitin encodings then
introduce a new variable for each node. If the relation, xi � S i,
is extracted, then the depth of the node for any variable in S i must
be greater than or equal to the depth of the node for xi. In partic-
ular, the depths are equal, if and only if, the current subformula
has form z ↔ α, where z is a variable and α is not a variable.
Since α is not a variable, the variable introduced for α must be

dominated by variables of greater depth. Hence, there is no such
sequence. �

Our variable order is determined as follows: for each variable
x with some extracted relation x � S , move x to the position
immediately after the greatest variable in D(x) with respect to the
original order of the variables in the CNF.
Example 2. Let us look at Fig. 2 (a). Suppose that only the rela-

tion, x6 � {x1, x2}, is extracted. We then have D(x6) = {x1, x2}.
Since the greatest variable in D(x6) is x2, we move x6 just after

x2. Figure 2 (b) outlines the CNF in the new variable order.

Our variable order satisfies the property (P), as promised.
Theorem 1. Let < be the variable order determined by our

method. If a variable, x, is dominated in some extracted func-

tional dependency, then there is a set of variables, S , such that

x� S and y < x hold for all y ∈ S .

Proof. Assume relation x� T was extracted. Let n be the max-
imum length of a sequence of dependence relations x = x1 �
S 1, . . . , xn � S n with xi+1 ∈ S i for all i ∈ {1, . . . , n − 1}. We
show by induction on n that x � D(x) holds. The case of n = 1
is immediate because T ⊆ D(x) holds. In the case of n > 1, any
variable y in T is dominated by D(y) according to induction hy-
pothesis. Because

⋃
y∈T D(y) ⊆ D(x) holds, we obtain x� D(x).

Therefore, x � D(x) holds for all n. All variables in D(x) are
selected earlier than x. �

All dominated variables mentioned in extracted relations are
treated as implied variables inside solvers, as stated in the follow-
ing corollary.
Corollary 1. Let ψ be a CNF. Suppose that a variable, x, is dom-

inated in some extracted functional dependency in the encoding

of ψ. For any assignment ν such that x is unassigned and all

variables in D(x) are assigned values, ordinary unit propagation

with ψ and ν can determine the assignment to x unless a falsified

clause exists.

We will now present an algorithm for computing the greatest
variable in D(x) in our ordering method presented above. We de-
fine the dependence graph, G = (V, E), such that the vertices in
V correspond to variables in a CNF, ψ, and if relation y � S is
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Algorithm 3: Algorithm DFS updates d fields of all vertices
in subgraph rooted by u.

Input: a dependence graph G, a vertex u of G.

1 foreach vertex v pointed to by u do
2 if v. f in = 0 then
3 u. f in = 1;

4 v.d = u.d;

5 DFS (ψ,G, v);
6 end
7 end

extracted in the encoding of ψ, then there is an arc in E from each
variable in S to y. Let each vertex u of G have the following three
fields: u.var holds the variable corresponding to u, u.d is initial-
ized to u.var and updated to the greatest variable in D(u.var), and
u. f in is initialized to 0 and updated to 1 if u is visited.

Given a dependence graph, G, our algorithm selects each root
u of G in decreasing order of the associating variables, u.var, and
performs DFS with G and u. Algorithm 3 has the pseudocode of
DFS .

By definition, the roots of G correspond to variables that are
not dominated in any one of the extracted functional dependen-
cies. For each such root u, our algorithm sets the d fields of all
unvisited vertices v in the subgraph rooted by u to u.var. Since
u is selected in decreasing order, if v is already visited, then v.d
must be greater than u.var. Therefore, once v is updated, v.d must
be the greatest variable of D(v.var) and it will not be updated af-
terward.

3.3 Exploiting Variable Dependence inside Solvers
This section presents a method of exploiting extracted func-

tional dependencies inside compilation-based solvers. Our
method focuses on important variables and avoids explicitly han-
dling non-important variables inside solvers.

We improve the OBDD extension part in Algorithm 1 as fol-
lows. When a solution is found, we add a new path to an OBDD
basically in the same way as stated in Section 2.2. The main dif-
ference is that we only add nodes for important variables so that
the added path represents an assignment to only those variables.
Recall that when the original version of Algorithm 1 extends an
OBDD, the nodes in an added path have consecutive numbers as
their labels; in other words, the node elimination rule of BDD
is never applied to any node in the paths that lead to the sink
node, �. This means that if there are two nodes in an OBDD con-
structed with our method such that one is the child of the other
and the difference in their labels is more than 1, then all elim-
inated nodes between them must correspond to dependent vari-
ables. Note that the assignment to dependent variables, if nec-
essary, can easily be recovered from the assignment to the other
variables and an input CNF, as presented in Corollary 1.

Let us consider that our modified OBDD extension is indepen-
dent of the original mechanism for the equivalence test of subin-
stances, and no inconsistency occurs. Recall that Algorithm 1
only records nodes for decision variables as key-result pairs in S .
For example, see the gray nodes in Fig. 1 (c). Even though multi-
ple nodes have been eliminated in our modified OBDD extension,

all of them are nodes for implied variables, and not for decision
variables. Hence, they are not involved with key-result pairs to be
registered.

Moreover, we do not need to change the function, insertcache,
which registers key-result pairs to S , because as was previously
mentioned, nodes to be registered are not eliminated.
Example 3. Let us look at the OBDD outlined in Fig. 2 (c),

where the solutions that extends the thick path have not yet been

searched. Suppose that x1 and x2 are now assigned 1 and 0, re-

spectively. Note that the equivalence test our solver then performs

is not for subinstances induced by x2, but for those induced by x6.

This means the effect of our solver effectively exploiting depen-

dent variables; indeed, since our method of ordering moves de-

pendent variables just after the variables dominating them, the

assignments to those dependent variables are all implied, and

equivalence test is skipped except for the last one of those de-

pendent variables.

Let us consider how an OBDD is then extended. The least

unassigned variable is the 4-th variable, x3, and the current cut-

set state is {C4}. As the same state is attached to the end of the

path 1� 2� in Fig. 2 (c), this means that the same state was in-

duced by the past assignment where x1 and x2 were both assigned

0. Hence, the current subinstance is already solved. As indicated

by the thick path of Fig. 2 (c), our solver adds a new path for im-

portant variables in the current assignment. Since all solutions

that extend the assignment ν : x1 �→ 1 are exhausted, the left-most

node of label 2 will be colored in gray. This means that the node

associated with its cutset state will be registered as a key-result

pair.

4. Experiments

Implementation. We compared the following methods.
• Grumberg: the AllSAT solver of Grumberg et al. [6]. We

implemented this on top of MiniSat-C v.1.14.1, where the
sublevel-based first UIP scheme and conflict-directed back-
jumping were used in conflict resolution phase, as proposed
in Ref. [6].

• bdd: a standard compilation-based AllSAT solver based on
Algorithm 1. The implementation bdd minisat all v1.0.0
was obtained from All Solutions SAT Repository *3. The
decision level-based first UIP scheme and limited non-
chronological backtracking were used in conflict resolution
phase, as the efficiency of the combination has been con-
firmed [17].

• depbdd: our proposed method. We implemented this by
modifying bdd.

All methods received DIMACS CNF instances with functional
dependency information included. Grumberg and depbdd used
dependence information inside solvers, based on important first
decision procedure for the former [6] and on our proposed method
for the latter, while bdd did not. Grumberg used, as important
variables, those that were not dominated by any one of the func-
tional dependencies our method extracted. Grumberg searched
all total satisfying assignments, bdd constructed the OBDD for

*3 All Solutions SAT Repository by T. Toda, http://www.sd.is.uec.ac.jp/
toda/code/allsat.html. It was accessed Sep. 30, 2015.
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Table 1 Used instances of LMCS-2006, where bound means the shortest bounds such that counterexam-
ples are found.

model property bound variables ratio of important variables clauses cutwidth
abp4 p2false 17 7,587 0.42 22,909 5,347
abp4 ptimo 16 7,468 0.37 22,532 4,200
bc57-sensors p0neg 103 6,284,394 0.99 18,855,596 1,091,882
bc57-sensors p1neg 103 2,330,258 0.98 6,993,188 3,354,394
bc57-sensors p2neg 103 2,027,654 0.97 6,085,376 2,863,913
bc57-sensors p3 103 89,950 0.65 272,263 107,593
brp p1neg 1 364 0.88 855 75
brp ptimoneg 1 364 0.86 855 40
brp ptimonegnv 24 83,751 0.90 251,013 69,568
counter p0neg 8 66 1.00 131 13
dme2 ptimoneg 1 222 0.85 445 5
dme2 ptimonegnv 39 3,531,818 0.72 10,597,515 6,304,734
dme3 p1neg 1 331 0.72 664 7
dme3 ptimoneg 1 331 0.72 664 7
dme4 p1neg 1 448 0.83 905 10
dme4 ptimoneg 1 448 0.83 905 10
dme5 p1neg 1 559 0.69 1,129 12
dme5 ptimoneg 1 559 0.69 1,129 12
dme6 p1neg 1 672 0.69 1,360 17
dme6 ptimoneg 1 672 0.69 1,360 17
mutex p0neg 6 368 0.45 1,087 53
production-cell p3neg 81 4,068,468 0.99 12,205,968 413,607
production-cell p4neg 81 5,148,273 0.01 15,445,383 419,657
ring p0neg 7 225 1.00 616 235
short p0neg 1 8 1.00 14 1
srg5 ptimoneg 1 35 1.00 62 6
srg5 ptimonegnv 6 2,171 0.95 6,399 2822

all satisfying assignments over all variables, and depbdd con-
structed the OBDD for all satisfying assignments over variables
that were not dominated in any one of the extracted functional
dependencies.

Environment. We conducted all experiments on a computer
with a 2.13-GHz Xeon R©E7-2830 processor and 512 GB of RAM,
running CentOS 6.7 with gcc compiler 4.4.7.

Problem Instances. We modified NuSMV version 2.5.4 *4 to
be able to extract functional dependencies while creating CNF in-
stances from NuSMV models. The basic idea of bounded model
checking is to model a system to be verified as a finite state transi-
tion system and, given a number k, to determine whether there is a
counterexample to a desired property for that system in k steps of
transitions. Our modified NuSMV receives a model, a property,
and bound k, and it generates a CNF such that satisfying assign-
ments correspond to counterexamples *5. This CNF is printed out
in DIMACS CNF format with extracted functional dependencies
in its header.

Our method is evaluated with a real network dataset, denoted
by stanford, obtained from the backbone network in Stanford
university *6 and a common bounded model checking dataset *7,
denoted by LMCS-2006.

The Stanford network has been used to evaluate network ver-
ification tools [10], [12]. It consists of 16 switches with 58 in-

*4 NuSMV version 2.5.4 was obtained from http://nusmv.fbk.eu/. It was
accessed May 29, 2015.

*5 The original NuSMV only computes an equisatisfiable CNF, i.e., a CNF
that is satisfiable if and only if a counterexample exists. Our modified
NuSMV, on the other hand, encodes bidirectional implications between
variables and their renaming subformulae to ensure a one-to-one corre-
spondence between satisfying assignments and counterexamples.

*6 https://bitbucket.org/peymank/hassel-public/
*7 http://fmv.jku.at/aiger/lmcs2006-aiger-1.9-benchmarks.tar.gz

terfaces in total. Packets are forwarded by the switches based on
their header bits; the forwarding decision is made with 88 bits in-
cluding IP address, TCP port number, and so on. The Stanford
backbone network is modeled with 94 binary variables: 88 bits
for packet header and 6 bits for switch interfaces. The dataset
can be converted into NuSMV models by the bundled script
(nu smv/nu smv generator.py).

Network verification is usually used to check conformance
with operational policies, but the Stanford dataset includes no
material that can be used to specify policies. In the experiments,
we try to find counterexamples under a hypothetical policy —
all packets should reach their destinations without being filtered
out inside the network. We randomly choose 765 interface pairs
and examine their reachability. The reachability properties are
converted into CNF instances with the shortest bounds such that
counterexamples are found; the bounds are 2 for internal inter-
faces, while they are 6 for external ones (note that reachability
related to special addresses, e.g., 0.0.0.0, 255.255.255.255, and
224.*.*.*, are ignored, because counterexamples are not found
until bound 100).

Used instances of the bounded model checking dataset LMCS-
2006 and their statistics are listed in Table 1. These instances
are pairs of NuSMV models and their properties, and they are
encoded into CNFs with the shortest bounds such that counterex-
amples are found. The fourth and sixth columns state the number
of variables and the number of clauses in each encoded CNF, re-
spectively. The fifth column states the ratio of the number of
important variables divided by the number of all variables, where
important variables are those extracted by our proposing method
(see Section 3.1). The other instances included in that dataset are
not used because counterexamples could not be reached in several
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Table 2 Distribution of stanford instances according to numbers of found
counterexamples.

Number of Counterexamples Grumberg bdd depbdd
[0, 101) 0 1 1
[101, 102) 0 0 0
[102, 103) 0 0 0
[103, 104) 0 0 0
[104, 105) 0 0 0
[105, 106) 0 0 0
[106, 107) 0 0 0
[107, 108) 0 0 0
[108, 109) 213 0 155
[109, 1010) 552 0 18
[1010, 1011) 0 0 199
[1011, 1012) 0 0 2
[1012, 1013) 0 0 2
total 765 1 377

hours.
Results. The time limit was set to 600 s and the memory limit

was set to 50 GB. If the time limit is exceeded, a solver is in-
terrupted, and it reports the progress at this time. On the other
hand, since memory usage is monitored by ulimit command, if
the memory limit is exceeded, a solver is forced to halt immedi-
ately without reporting any information.

Table 2 shows the distribution of stanford instances accord-
ing to the numbers of found counterexamples. All instances
are classified in terms of the numbers of counterexamples found
by solvers, where we note that all stanford instances cannot be
solved by any one of the compared solvers, i.e. not all counterex-
amples can be found, within the time limit. According to Table 2,
bdd and depbdd run out of memory in almost all the instances
and in half the instances, respectively. This shows an efficiency
of depbdd compared to bdd; our method, depbdd, focuses on
important variables only, thereby saving a large amount of mem-
ory. Furthermore, depbdd can find more counterexamples than
Grumberg by a few orders of magnitude. There is a limit in the
number of counterexamples that can be found in a one-by-one
fashion, and instances with many counterexamples can be effi-
ciently handled with the dynamic programming approach using
BDD data structure. Our method is, thus, suitable for this kind of
instances, and makes it possible to efficiently utilize the dynamic
programming approach within a limited amount of memory. We
remark that bdd and depbdd could not find any counterexample
for one instance because the instance was very large and the ma-
jority of running time was spent in setting up the caching mecha-
nism of BDD solvers, which is a preprocessing phase.

We conducted the same experiment with maximum node limit
enabled in bdd and depbdd to avoid running out of memory. This
functionality *8 limits the maximum number of BDD nodes, and
if the threshold is exceeded, the number of solutions found so
far is recorded, the BDD constructed is then discarded, and the
search resumes while constructing a new BDD where new solu-
tions found afterword are stored. This does not affect the algo-
rithmic behavior of solvers except for the deterioration of “cache
hit”, i.e., the ability of saving the recomputation of equivalent
subproblems. We set the maximum number of BDD nodes in
bdd and depbdd to 109.

*8 The maximum node limit is implemented in the original compilation-
based solver, bdd, and it is available in our solver, depbdd, as is.

Table 3 Distribution of stanford instances according to numbers of found
counterexamples, conducted with maximum node limit.

Number of Counterexamples Grumberg bdd depbdd
[0, 101) 0 1 1
[101, 102) 0 0 0
[102, 103) 0 0 0
[103, 104) 0 0 0
[104, 105) 0 0 0
[105, 106) 0 0 0
[106, 107) 0 0 0
[107, 108) 0 285 127
[108, 109) 213 46 188
[109, 1010) 552 396 210
[1010, 1011) 0 25 223
[1011, 1012) 0 10 12
[1012, 1013) 0 2 4
total 765 765 765

Fig. 3 Cactus plot w.r.t the numbers of found counterexamples, conducted
with maximum node limit.

Fig. 4 Cactus plot w.r.t the ratios of important variables.

As Table 3 shows, out of memory does not occur; bdd and
depbdd find more counterexamples than Grumberg by a few or-
ders of magnitude, although there are instances with fewer coun-
terexamples found due to the deterioration of cache hit. The same
result is depicted as a cactus plot in Fig. 3, which is given in log-
arithmic scale.

A comparison of OBDD sizes between bdd and depbdd is not
presented because the functionality of maximum node limit re-
freshes an OBDD as soon as its size exceeds a threshold, and
thus comparing OBDD sizes does not make sense.

Figure 4 is a cactus plot of stanford instances with respect to
the ratio of the number of important variables divided by the num-
ber of all variables, which shows that the numbers of indenepdent
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Table 4 Time comparison on LMCS-2006 instances, where cex indicates
the number of counterexamples, - means unknown, TO indicates
timeout, and OM indicates out of memory.

model property cex Grumberg bdd depbdd
abp4 p2false 3,072 3.11 138.25 145.69
abp4 ptimo 256 3.50 112.39 89.52
bc57-sensors p0neg - TO OM OM
bc57-sensors p1neg - TO OM OM
bc57-sensors p2neg - TO OM OM
bc57-sensors p3 1,400 9.23 TO TO
brp p1neg 2 0.00 0.00 0.00
brp ptimoneg 2 0.00 0.00 0.00
brp ptimonegnv 5,328 105.72 TO TO
counter p0neg 1 0.00 0.00 0.00
dme2 ptimoneg 3 0.00 0.00 0.00
dme2 ptimonegnv - TO OM TO
dme3 p1neg 4 0.00 0.00 0.00
dme3 ptimoneg 4 0.00 0.00 0.00
dme4 p1neg 5 0.00 0.00 0.00
dme4 ptimoneg 5 0.00 0.00 0.00
dme5 p1neg 6 0.00 0.00 0.00
dme5 ptimoneg 6 0.00 0.00 0.00
dme6 p1neg 7 0.00 0.00 0.00
dme6 ptimoneg 7 0.00 0.00 0.00
mutex p0neg 1 0.00 0.00 0.00
production-cell p3neg 1 333.06 OM OM
production-cell p4neg 1 329.51 OM TO
ring p0neg 3 0.00 0.00 0.00
short p0neg 1 0.00 0.00 0.00
srg5 ptimoneg 7 0.00 0.00 0.00
srg5 ptimonegnv 6 0.00 0.07 0.08

variables amount to 50 to 60 percent of the whole over about half
of the instances.

Table 4 shows the time comparison of solvers over LMCS-
2006 instances. As indicated in the third column, these instances
do not have many counterexamples, and hence, Grumberg sig-
nificantly outperforms BDD-type solvers. This is consistent
with the experimental evaluation on AllSAT solvers conducted
in Ref. [17]. This simply means that BDD-type solvers are not
always the best choice and does not harm the effectiveness of our
proposing method. The bdd and depbdd run out of memory in
several instances. The reason for this is that the memory limit
exceeds in a preprocessing phase prior to searching.

We also conducted a size comparison of BDD-type solvers
over LMCS-2006. As Table 5 shows, depbdd requires less nodes
than bdd, which exhibits an efficiency of our method in memory
usage.

5. Conclusion

The research discussed in this paper improved a state-of-the-
art AllSAT solver based on OBDD compilation in terms of
functional dependencies between variables. We focused on a
compilation-based solver out of the several types of existing
solvers available because its power in finding a large number of
solutions in dynamic programming manner has recently been rec-
ognized. Our AllSAT solver was integrated with the encoding of
propositional Boolean formulae into CNFs to exploit the depen-
dence: i.e., given a propositional Boolean formula, our solver
encodes it into a CNF while extracting functional dependencies;
it is then effectively utilized to construct an OBDD over im-
portant variables only. It turns out that CNF instances encoded
from a real network dataset have a large number of solutions, and

Table 5 BDD size comparison on LMCS-2006 instances.

model property bdd depbdd
abp4 p2false 17,952,139 5,390,393
abp4 ptimo 1,839,721 632,417
bc57-sensors p0neg 0 0
bc57-sensors p1neg 0 0
bc57-sensors p2neg 0 0
bc57-sensors p3 1 1
brp p1neg 575 503
brp ptimoneg 539 376
brp ptimonegnv 1 1
counter p0neg 66 66
dme2 ptimoneg 402 349
dme2 ptimonegnv 0 0
dme3 p1neg 880 560
dme3 ptimoneg 880 560
dme4 p1neg 1,377 1,115
dme4 ptimoneg 1,377 1,115
dme5 p1neg 2,235 1,289
dme5 ptimoneg 2,235 1,289
dme6 p1neg 3,143 1,755
dme6 ptimoneg 3,143 1,755
mutex p0neg 368 164
production-cell p3neg 0 0
production-cell p4neg 0 0
ring p0neg 647 647
short p0neg 8 8
srg5 ptimoneg 84 84
srg5 ptimonegnv 12,666 12,054

compilation-based solvers are suitable for this kind of instances:
they find more solutions compared to Grumberg’s solver by a few
orders of magnitude. Our proposing technique accelerates the
original compilation-based solver further.

In network verification applications [3], [13], [14], solutions
of Boolean formulae correspond to packets that violate network
policies. Since a single packet is not sufficient to identify the
cause of violation, it is important to efficiently compute a packet
set, i.e., a set of packets that corresponds to a subnet, a port range,
and so on.

We are currently applying our AllSAT solver to model check-
ing. Some researches have pursuit integration of SAT solvers
and BDDs; however, to the best of our knowledge, all such ap-
proaches have only used BDDs as a succinct data structure for
representing reached states and have not employed a dynamic
programming technique such as avoiding recomputation of equiv-
alent subproblems, as this paper focused on. As was mentioned in
Section 1, a large number of dependent variables can be spawned
when model checking problems are formulated. We expect that
our optimized compilation-based solver will be effective for those
problems.

Ivrii et al. [11] proposes algorithms for computing an indepen-

dent support, i.e., a set of variables by which the other variables
are all functionally dependent. Although our approach exploits
functional dependencies that are easily obtained from proposi-
tional formulae at the syntactical level, their method incorporates
with an MUS computation so that it is able to find dependent vari-
ables that are hidden deeply below the syntactical level. Their
method, however, only determines that each dependent variable
is dominated by the whole independent support. Since the vari-
ables in the support are selected first in our ordering method, this
is nothing but important first decision procedure of Grumberg
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et al. and it is thus not efficient in compilation-based solvers as
discussed in this paper. We thus need to locate a smaller set of
variables for each dependent variable to efficiently integrate the
method of Ivrii et al. with ours, which is for future work.
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