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Abstract: We consider representing tree structured features of structured data which are represented by rooted trees
with ordered children. As representations of tree structured features, we use ordered tree patterns, called ordered wild-
card tree patterns, which have structures of rooted ordered trees, structured variables and wildcards for edge labels.
A structured variable can be replaced with an arbitrary rooted ordered tree. First we show that it is hard to compute
two types of optimum frequent ordered wildcard tree patterns. Then we present an algorithm for enumerating all max-
imally frequent ordered wildcard tree patterns. Finally we consider extended ordered wildcard tree patterns, called
ordered tag tree patterns, which have structured variables, wildcards, tags and keywords, and present an algorithm for
enumerating all maximally frequent ordered tag tree patterns.
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1. Introduction

As the amount of tree structured data has increased, the mod-
eling of tree structured features common to given tree structured
data has been more and more important. So we investigate new
models for representing tree structured features. In this paper,
we consider models of tree structured features in two aspects,
i.e., representing power of tree structured patterns and the desired
properties that the tree structured patterns must satisfy.

Tree structured data which we consider in this paper are
semistructured data whose structures are modeled by rooted trees
with ordered children, based on Object Exchange Model (OEM,
for short) [1]. Among tree structured data we consider are XML
files, some biological data such as the secondary structure data of
RNA or glycan data, and parse trees in natural language process-
ing. For example, in Fig. 1, the rooted ordered tree T1 represents
the structure which the XML file xml sample has.

As a model of tree structured features we propose wildcard tree

patterns, which are ordered tree patterns with structured variables
and wildcards, and match whole trees. A structured variable can
be replaced with an arbitrary rooted ordered tree and a wildcard
matches any edge label. Since a variable can be replaced with an
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arbitrary tree and a wildcard matches any edge label, overgeneral-
ized patterns which satisfy the mere frequency and explain given
data are meaningless. Then, in order to model tree structured fea-
tures common to given tree structured data better it is necessary to
find a wildcard tree pattern t which satisfies maximal frequency,
in the sense that t can explain more data of given tree structured
data than a user-specified threshold but any wildcard tree pattern
more specific than t cannot. In this work, the maximal frequency
of wildcard tree patterns is the desired property that the tree struc-
tured patterns must satisfy. That is, we need to find maximally
frequent (or least generalized) wildcard tree patterns. For exam-
ple, consider finding one of the least generalized wildcard tree
patterns explaining at least two trees in {T1,T2, T3} where T1,T2

and T3 are trees in Fig. 1. The wildcard tree pattern t1 in Fig. 1
can explain all trees in {T1, T2, T3}, that is trees T1,T2 and T3 are
obtained from t1 by replacing the variable of t1 with a tree. But t1
can explain all trees, so t1 is an overgeneralized and meaningless
pattern. On the other hand, the wildcard tree pattern t2 in Fig. 1 is
one of the least generalized wildcard tree patterns explaining two
trees T1 and T3 but not T2. For example in Fig. 1, T1 is obtained
from t2 by replacing the variable between vertices u1 and u3 with
the tree g1, and the variable between vertices u4 and u9 with the
tree g2, and by replacing wildcards with the corresponding edge
labels.

In this paper, we consider three computational problems, Max-
imally Frequent Ordered Wildcard Tree Pattern of Maxi-
mum Tree-size, Maximally Frequent Ordered Wildcard Tree
Pattern of Minimum Variable-size, and All Maximally Fre-
quent Ordered Wildcard Tree Patterns over wildcard tree pat-
terns. Maximally Frequent Ordered Wildcard Tree Pattern of
Maximum Tree-size is the problem of finding the maximum wild-
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Fig. 1 An XML file xml sample and a rooted ordered tree T1 as its tree representation. g1 and g2 are
trees. g3, . . . , g10 are word trees. A variable is represented by a box with lines to its elements. A
wildcard tree pattern t1 explains trees T1, T2, and T3. A wildcard tree pattern t2 is one of the least
generalized wildcard tree patterns which explain trees T1 and T3 but not T2. The wildcard tree
pattern t2 is maximally σ-frequent w.r.t.D = {T1,T2,T3}, where σ = 0.5. A wildcard tree pattern
t3 explains trees T1 and T3 but not T2. The wildcard tree pattern t3 is σ-frequent but not maximally
σ-frequent w.r.t.D.

card tree pattern t with respect to the number of vertices such that
t can explain more data of input data than a user-specified thresh-
old and t is minimally generalized. This problem is based on
the idea that the wildcard tree pattern, which has more vertices
than any other wildcard tree patterns, gives more meaningful tree
structured features to us. In a similar motivation, we consider the
second problem Maximally Frequent Ordered Wildcard Tree Pat-
tern of Minimum Variable-size, which is the problem of finding
the minimum wildcard tree pattern t with respect to the number
of variables such that t can explain more data of input data than
a user-specified threshold and t is minimally generalized. Firstly,
we show that Maximally Frequent Ordered Wildcard Tree Pattern
of Maximum Tree-size and Maximally Frequent Ordered Wild-
card Tree Pattern of Minimum Variable-size are NP-complete.
This indicates that it is hard to find an optimum wildcard tree pat-
tern representing given data. Next, we consider All Maximally
Frequent Ordered Wildcard Tree Patterns, which is the problem
of generating all maximally frequent wildcard tree patterns. This
problem is based on the idea that meaningless wildcard tree pat-
terns are excluded and all possible useful wildcard tree patterns
are not missed. We present an algorithm for solving All Max-
imally Frequent Ordered Wildcard Tree Patterns, i.e., an algo-
rithm for enumerating maximally frequent wildcard tree patterns,
and show the correctness of the algorithm.

Since wildcard tree patterns consist of only structured variables
and edges with wildcards for edge labels, maximally frequent
wildcard tree patterns capture tree structured features with em-
phasized views on tree structures only. As an extended model,
from wildcard tree patterns, of tree structured features, we pro-
pose tag tree patterns, which are ordered tree patterns with struc-
tured variables, wildcards, tags and keywords, and match whole
trees. Since tag tree patterns contain tags and keywords, maxi-
mally frequent tag tree patterns, as a kind of structured keywords,
capture tree structured features with emphasis on reflecting users
views. So we propose two types of tree structured patterns, i.e.,
wildcard tree patterns and tag tree patterns in order to reflect two
different views.

Finally, as an application of the algorithm for solving All Max-
imally Frequent Ordered Wildcard Tree Patterns, we present an
algorithm for solving All Maximally Frequent Ordered Tag Tree
Patterns, which is the problem of enumerating all maximally fre-
quent tag tree patterns.

We discuss related work. As knowledge representations for
tree structured data, a tree-expression pattern [16] and a regu-
lar path expression [5] were proposed. In Ref. [16], Wang and
Liu presented the algorithm for finding maximally frequent tree-
expression patterns from tree structured data. In Ref. [2], Asai et
al. presented an efficient algorithm for finding frequent substruc-
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tures from a large collection of tree structured data. In Ref. [5],
Fernandez and Suciu presented the algorithm for finding optimal
regular path expressions from tree structured data. Recent re-
search on tree structure patterns are reported [3], [4], [7], [15].
Our wildcard tree patterns and tag tree patterns are different from
the above mentioned representations, in that our tree patterns have
structured variables which can be replaced with arbitrary trees,
and match whole trees.

In our previous work [8], [10], [12], we considered maximally
frequent tree patterns with unordered children, contractible vari-
ables, and height-constrained variables, all of which are different
from wildcard tree patterns and tag tree patterns. In Ref. [13], we
considered finding a minimally generalized tree pattern, that is,
a least generalized tree pattern of frequency 1.0, from tree struc-
tured data with many edge labels or with no edge label. Finding a
minimally generalized tree pattern from tree structured data with
no edge label has theoretical importance in learning theory. In
this paper we focus on practical aspects of tree structured pat-
terns, and consider finding tree structured features, which are
represented by maximally frequent wildcard tree patterns, from
tree structured data with many edge labels. In Ref. [14], we gave
an efficient pattern matching algorithm for ordered term tree pat-
terns, the extended algorithms of which we use in this paper for
calculating the matching relation of wildcard tree patterns and
trees, and the matching relation of tag tree patters and trees. The
work [6] gave an algorithm for enumerating all maximal tree pat-
terns, which are different tree patterns of frequency 1.0. This pa-
per is a complete version of our previous results on tag tree pat-
terns [9], and presents newly introduced wildcard tree patterns,
full descriptions of improved algorithms and full proofs.

This paper is organized as follows. In Section 2, we introduce
wildcard tree patterns as tree structured patterns. In Section 3, we
show that Maximally Frequent Ordered Wildcard Tree Pattern of
Maximum Tree-size and Maximally Frequent Ordered Wildcard
Tree Pattern of Minimum Variable-size are NP-complete. In Sec-
tion 4, we give an algorithm for solving All Maximally Frequent
Ordered Wildcard Tree Patterns and show its correctness. In Sec-
tion 5, as an application, we give an algorithm for solving All
Maximally Frequent Ordered Tag Tree Patterns and show its cor-
rectness. In Section 6, we conclude this paper.

2. Preliminaries

2.1 Ordered Wildcard Tree Patterns as Tree Structured
Patterns

We explain ordered wildcard tree patterns as tree structured
patterns. Let Λ be a language which consists of infinitely or
finitely many words. Let “?” be a special symbol, called a wild-

card, such that “?” � Λ. Let Λ{?} be a proper subset of Λ. The
set Λ{?} means the set of all words which represent contents and
the set Λ \Λ{?} means the set of all words which do not represent
contents, for example, the set of all words containing escape se-
quences such as carriage returns and tab movements. In the case
where finitely many escape sequences are used, there exists an
algorithm for deciding whether or not any word in Λ is in Λ{?}.
The symbol “?” is a wildcard for any word in Λ{?}. For a set S ,
the number of elements in S is denoted by |S |. In this paper, a

tree means a rooted ordered tree with ordered children such that
each edge is labeled with an element in Λ.

Definition 1 Let T = (VT , ET ) be a tree which has a set VT of
vertices and a set ET of edges. Let Eg and Hg be a partition of ET ,
i.e., Eg∪Hg = ET and Eg∩Hg = ∅. And let Vg = VT . An ordered

wildcard tree pattern (or simply called a wildcard tree pattern) is
a triplet g = (Vg, Eg,Hg) such that each element of Eg is labeled
with the symbol “?”. Each element in Vg, Eg and Hg is called a
vertex, an edge and a variable, respectively.

For a wildcard tree pattern g and its vertices v1 and vi, a path

from v1 to vi is a sequence v1, v2, . . . , vi of distinct vertices of g
such that for any j with 1 ≤ j < i, there exists an edge or a vari-
able which consists of v j and v j+1. If there is an edge or a variable
which consists of v and v′ such that v lies on the path from the
root to v′, then v is said to be the parent of v′ and v′ is a child

of v. We use a notation (v, v′) (resp. [v, v′]) to represent an edge
(resp. a variable) such that v is the parent of v′. Then we call v the
parent port of [v, v′] and v′ the child port of [v, v′]. A wildcard
tree pattern g has a total ordering on all children of every internal
vertex u. The ordering on the children of u is denoted by <gu.

Definition 2 OT denotes the set of all trees whose edge labels
are in Λ. OWTP denotes the set of all wildcard tree patterns.

A tree T is a word tree if |VT | = 2 and |ET | = 1. For a word
w ∈ Λ, T (w) denotes the word tree whose edge is labeled with
the word w. For a subset Λ′ � Λ, we define the set of word
trees WT Λ′ =

⋃
w∈Λ′ {T (w)}. Note that for any set Λ′ � Λ,

WT Λ′ � OT .
Let f = (Vf , E f ,Hf ) and g = (Vg, Eg,Hg) (resp. f = (Vf , E f )

and g = (Vg, Eg)) be two wildcard tree patterns (resp. two trees).
We say that f and g are isomorphic, denoted by f � g, if there
is a bijection, called an isomorphism, ϕ from Vf to Vg such that
(1) the root of f is mapped to the root of g by ϕ, (2) (u, v) ∈ E f

if and only if (ϕ(u), ϕ(v)) ∈ Eg and the two edges have the same
edge label, (3) [u, v] ∈ Hf if and only if [ϕ(u), ϕ(v)] ∈ Hg, and
(4) for any internal vertex u in f which has more than one child,
and for any two children u′ and u′′ of u, u′ < f

u u′′ if and only if
ϕ(u′) <gϕ(u) ϕ(u′′).

Let g be a wildcard tree pattern or a tree with at least two ver-
tices. Let σ = [w0, w1] be a list of two distinct vertices in g where
w0 is the root of g and w1 is a leaf of g. Let f be a wildcard tree
pattern with at least two vertices and e a variable or an edge of
f . The form e := [g, σ] is called a binding for e. A new wild-
card tree pattern or a new tree f ′ is obtained by apply the binding
e := [g, σ] for f in the following way. Let e = [v0, v1] (resp.
e = (v0, v1)) be a variable (resp. an edge) in f . Let g′ be one
copy of g and w′0, w

′
1 the vertices of g′ corresponding to w0, w1

of g, respectively. For the variable or the edge e, we attach g′ to
f by removing e from E f ∪ Hf and by identifying the vertices
v0, v1 with the vertices w′0, w

′
1 of g′, respectively. Further we de-

fine a new total ordering < f ′
u on every vertex u of f ′ in a natural

way. Suppose that u has more than one child and let u′ and u′′

be two children of u of f ′. We have the following three cases.
Case 1: If u, u′, u′′ ∈ Vf and u′ < f

u u′′, then u′ < f ′
u u′′. Case 2:

If u, u′, u′′ ∈ Vg and u′ <gu u′′, then u′ < f ′
u u′′. Case 3: If u = v0,

u′ ∈ Vg, u′′ ∈ Vf , and v1 <
f
u u′′ (resp. u′′ < f

u v1), then u′ < f ′
u u′′

(resp. u′′ < f ′
u u′). A substitution θ for f is a finite collection of
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Fig. 2 Examples of OWTP-bindings and OWTP-substitution. Let t3, f1 and f2 be wildcard tree pat-
terns described in Fig. 1. The left figure displays the process of applying the OWTP-bindings.
The right figure displays the OWTP-instance of t3 by an OWTP-substitution θ′ = {[u1, u4] :=
[ f1, [w1, w3]], [u5, u10] := [ f2, [w1, w2]]}.

bindings {e1 := [g1, σ1], . . . , en := [gn, σn]}, where ei’s are mutu-
ally distinct variables or edges in f . The new wildcard tree pattern
or the new tree f θ, called the instance of f by θ, is obtained by
applying the all bindings ei := [gi, σi] to f simultaneously. We
note that the root of f θ is the root of f .

For a variable e, a binding e := [g, σ] is called an OWTP-
binding for e if g ∈ OWTP. For a variable or an edge e, a binding
e := [g, σ] is called an OT -binding for e if the following two con-
ditions hold. (1) if e is an edge, then g ∈ WT Λ{?} , (2) if e is a
variable then g ∈ OT . For a wildcard tree pattern f and a substi-
tution θ = {e1 := [g1, σ1], . . . , en := [gn, σn]} for f , θ is called an
OWTP-substitution for f if all bindings in θ areOWTP-bindings,
and θ is called an OT -substitution for f if the following two con-
ditions hold. (1) {e1, . . . , en} = E f ∪ Hf , (2) all bindings in θ
are OT -bindings. For an OWTP-substitution θ, the new wildcard
tree pattern f θ is called the OWTP-instance of f by θ. For an
OT -substitution θ, the new tree f θ is called the OT -instance of f

by θ.
Example 1 Let t2 and t3 be two wildcard tree patterns

described in Fig. 1. Let [u1, u4] := [ f1, [w1, w3]] be an
OWTP-binding for the variable [u1, u4] of t3, and [u5, u10] :=
[ f2, [w1, w2]] an OWTP-binding for the variable [u5, u10] of
t3, where f1 and f2 are wildcard tree patterns in Fig. 1. Let
θ′ = {[u1, u4] := [ f1, [w1, w3]], [u5, u10] := [ f2, [w1, w2]]} be an
OWTP-substitution for t3. Then the OWTP-instance t3θ′ of the
wildcard tree pattern t3 by θ′ and the wildcard tree pattern t2
are isomorphic. In Fig. 2, we describe the process of applying
the above OWTP-bindings in the OWTP-substitution θ′ for t3
and the obtained wildcard tree pattern t3θ′ which is the OWTP-
instance of t3 by θ′.
Let θ = {[u1, u3] := [g1, [w1, w3]], [u4, u9] := [g2, [w1, w3]],
(u1, u2) := [g3, [w1, w2]], (u1, u4) := [g4, [w1, w2]], (u1, u5) :=
[g5, [w1, w2]], (u2, u6) := [g6, [w1, w2]], (u3, u7) := [g7, [w1, w2]],
(u4, u8) := [g8, [w1, w2]], (u5, u10) := [g9, [w1, w2]], (u8, u11) :=
[g10, [w1, w2]]} be an OT -substitution for t2, where g1, g2 are trees
and g3, . . . , g10 are word trees in Fig. 1. Then the OT -instance t2θ

of the wildcard tree pattern t2 by θ and a tree T1 in Fig. 1 are
isomorphic.

A wildcard tree pattern t matches a tree T if there exists an
OT -substitution θ such that tθ � T .

Definition 3 The language LΛ(t) of a wildcard tree pattern t

is {s ∈ OT | s � tθ for an OT -substitution θ}.
Let D = {T1, T2, . . . ,Tm} � OT be a set of trees. The match-

Fig. 3 Tree P0.

ing count of a wildcard tree pattern π ∈ OWTPw.r.t.D, denoted
by matchD(π), is the number of trees Ti ∈ D (1 ≤ i ≤ m) such
that π matches Ti. Then the frequency of π w.r.t. D is defined
by suppD(π) = matchD(π)/m. Let σ be a real number where
0 < σ ≤ 1. A wildcard tree pattern π is σ-frequent w.r.t. D if
suppD(π) ≥ σ. A wildcard tree pattern π in OWTP is maxi-

mally σ-frequent w.r.t.D if (1) π is σ-frequent w.r.t.D, and (2) if
LΛ(π′) � LΛ(π) then π′ is not σ-frequent w.r.t.D for any wildcard
tree pattern π′ in OWTP.

3. Hardness Results of Finding an Optimum
Frequent Wildcard Tree Pattern

In this section, we give hardness results of computing an op-
timum wildcard tree pattern. First we show that it is hard to
compute a maximally frequent wildcard tree pattern of maximum
tree-size w.r.t. a set of trees. The formal definition of the problem
is as follows.

Maximally Frequent Ordered Wildcard Tree Pat-
tern of Maximum Tree-size
Instance: A set of trees D = {T1, T2, . . . , Tm}, a real
number σ (0 < σ ≤ 1) and a positive integer K.
Question: Is there a maximally σ-frequent wildcard
tree pattern π = (V, E,H) w.r.t.D with |V | ≥ K?

Theorem 1 Maximally Frequent Ordered Wildcard Tree
Pattern of Maximum Tree-size is NP-complete.

Proof. Membership in NP is obvious. We transform 3-SAT
to this problem. Let U = {x1, . . . , xn} be a set of variables and
C = {c1, . . . , cm} a collection of clauses over U with |c j| = 3 for
any j (1 ≤ j ≤ m). For a tree T and a vertex u of T , we denote the
subtree consisting of u and the descendants of u by T [u]. Let P0

be the tree which is described in Fig. 3. The root of P0 has n chil-
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Fig. 4 Trees T j and T .

Fig. 5 Two examples of the truth assignments: The upper tree represents
(x1, x2, x3) = (true, false, true) and the lower shows (x1, x2, x3) =
(true, false, false).

dren. Let v1, v2, . . . , vn be the n children. For each i (1 ≤ i ≤ n),
P0[vi] corresponds to the truth assignment to xi.

We construct trees T1, . . . ,Tm from the tree P0 and c1, . . . , cm

in the following way. T j (1 ≤ j ≤ m) is described in Fig. 4.
The root of T j has 9 children. Let v j0, v j1, . . . , v j8 be the 9 chil-
dren. The inner 7 subtrees T j[v j1], . . . ,T j[v j7] correspond to the
truth assignments that satisfy c j. Each T j[v ji] (1 ≤ i ≤ 7) is
constructed as follows. Let c j = {� j1, � j2, � j3} where � jk = xnjk

or xnjk (1 ≤ k ≤ 3, 1 ≤ n jk ≤ n). The 7 truth assignments
to (xnj1 , xnj2 , xnj3 ) make c j true. For the i th truth assignment
(1 ≤ i ≤ 7) and all 1 ≤ n j1, n j2, n j3 ≤ n, Pji is obtained from
P0 by removing the right (resp. left) subtree rooted at vn jk of P0 if
xnjk is true (resp. false). This resulting tree Pji becomes T j[v ji].
For example, the upper tree of Fig. 5 represents a truth assignment
(x1, x2, x3) = (true, false, true).

Lastly let T be the special tree (Fig. 4) which is constructed
from P0. Let D = {T1, . . . , Tm,T }, σ = 1, and K = 5n + 4. Then
we can show the following two facts.
( 1 ) Let π be a maximally σ-frequent wildcard tree pattern w.r.t.
D. Then the root of π has just three children and the second
child of the three children has just n children.

( 2 ) Let G1,G2,G3, g1, g2, g3 be trees and wildcard tree patterns
described in Fig. 6, respectively. Then g1 is maximally σ-
frequent w.r.t. {G1,G2,G3}, g2 is maximally σ-frequent w.r.t.

Fig. 6 Trees G1,G2,G3 and wildcard tree patterns g1, g2, g3.

Fig. 7 An example of the wildcard tree patterns π such that π is σ(= 1)-
frequent w.r.t.D.

{G1,G3}, and g3 is maximally σ-frequent w.r.t. {G2,G3}.
From these two facts, if 3-SAT has a truth assignment which

satisfies all clauses in C, there is a σ-frequent wildcard tree pat-
tern π = (V, E,H) w.r.t. D with |V | = 5n + 4 = K (Fig. 7). Con-
versely, if there is a maximally σ-frequent wildcard tree pattern
π = (V, E,H) w.r.t. D with |V | = 5n + 4, the numbers of the chil-
dren of the vertices of depth 5 show one of the truth assignment
which satisfies C. �

Second we show that it is hard to compute a maximally fre-
quent wildcard tree pattern of minimum variable-size w.r.t. a set
of trees. The formal definition of the problem is as follows.

Maximally Frequent Ordered Wildcard Tree Pat-
tern of Minimum Variable-size
Instance: A set of trees D = {T1, T2, . . . , Tm}, a real
number σ (0 < σ ≤ 1) and a positive integer K.
Question: Is there a maximally σ-frequent wildcard
tree pattern π = (V, E,H) w.r.t.D with |H| ≤ K?

Theorem 2 Maximally Frequent Ordered Wildcard Tree
Pattern of Minimum Variable-size is NP-complete.

Proof. Membership in NP is obvious. The reduction is the
same as the one in Theorem 1 but K = n + 2. �

4. Enumeration of Maximally Frequent Wild-
card Tree Patterns

4.1 Enumeration Algorithm
In this section, we consider the following problem.

All Maximally Frequent Ordered Wildcard Tree Patterns
(MFOWTP)
Input: A set of treesD � OT , a real number σ (0 < σ ≤ 1).
Assumption: (1) Λ{?} � Λ, and (2) there exists an algorithm for
deciding whether or not any word in Λ is in Λ{?}.
Problem: Enumerate all maximallyσ-frequent wildcard tree pat-
terns w.r.t.D in OWTP.
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Algorithm 1 Gen-MFOWTP
Input: A setD � OT of trees and a real number σ (0 < σ ≤ 1);

Output: The set Π(σ) of all maximally σ-frequent wildcard tree patterns

w.r.t.D in OWTP;

/* Step1 Enumerate all σ-frequent variable-only tree patterns */

1: Π1(σ) :=EnumFreqTP(D, σ) (Procedure 2)

/* Step2 Enumerate all σ-frequent wildcard tree patterns */

2: Π2(σ) :=ReplaceEdge(D, σ,Π1(σ)) (Procedure 4)

/* Step3 Maximality test */

3: Π(σ) :=TestMaximality(D, σ,Π2(σ)) (Procedure 6)

4: return Π(σ)

Procedure 2 EnumFreqTP
Input: A setD � OT of trees and a real number σ (0 < σ ≤ 1);

Output: A set Πout of variable-only tree patterns;

1: π := ({u, v}, ∅, {[u, v]})
2: Πout :=EnumFreqTPSub(D, σ, π) (Procedure 3)

3: return Πout

Procedure 3 EnumFreqTPSub
Input: A setD � OT of trees, a real number σ (0 < σ ≤ 1), and a variable-

only tree pattern π;

Output: A set Πout of variable-only tree patterns;

1: if π is not σ-frequent w.r.t.D then

2: return ∅
3: end if

4: Πout := {π}
5: for each child tree pattern π′ of π do

6: Πout := Πout∪EnumFreqTPSub(D, σ, π′)
7: end for

8: return Πout

Procedure 4 ReplaceEdge
Input: A setD � OT of trees, a real number σ (0 < σ ≤ 1), and a set Πin of

variable-only tree patterns;

Output: A set Πout of wildcard tree patterns;

1: Πout := Πin

2: for each wildcard tree pattern π ∈ Πin do

3: p := 1

/* p is an index of variables and edges of π in the DFS order */

4: Πout := Πout∪ ReplaceEdgeSub(D, σ, π, p) (Procedure 5)

5: end for

6: return Πout

We give an algorithm Gen-MFOWTP (Algorithm 1) which
generates all maximally σ-frequent wildcard tree patterns. Let
D � OT be a finite set of trees. In the algorithm Gen-MFOWTP,
we can decide whether or not a candidate wildcard tree pattern
is σ-frequent w.r.t. D, by using a matching algorithm which de-
cides whether or not a wildcard tree pattern matches a tree. This
matching algorithm is an extended version of the efficient pattern
matching algorithm [14] for an ordered term tree pattern and a
tree, where an ordered term tree pattern is an ordered tree pattern
having structured variables and labeled edges. In the matching al-
gorithm for a wildcard tree pattern π and a tree T , we can decide
whether or not π matches T by checking whether Λ{?} contains
the label of the edge of T corresponding to an edge of π by using
the algorithm in Assumption (2) of MFOWTP, instead of check-

Procedure 5 ReplaceEdgeSub
Input: A setD � OT of trees, a real number σ (0 < σ ≤ 1), a wildcard tree

pattern π and a positive integer p;

Output: A set Πout of wildcard tree patterns;

1: if p > |Eπ ∪ Hπ | then

2: return ∅
3: end if

4: Πout := ∅
5: Let TD be the wildcard tree pattern in Fig. 9.

6: Let h be the p-th variable in the DFS order of all edges and variables of

π.

7: π? := π{h := [TD, [RD, LD]]}
8: if π? is σ-frequent w.r.t.D then

9: Πout := {π?}
10: end if

11: Πtmp := Πout ∪ {π}
12: for each wildcard tree pattern π′ ∈ Πtmp do

13: Πout := Πout∪ReplaceEdgeSub(D, σ, π′, p + 1)

14: end for

15: return Πout

Procedure 6 TestMaximality
Input: A setD � OT of trees, a real number σ (0 < σ ≤ 1), and a set Πin of

wildcard tree patterns;

Output: A set Πout of wildcard tree patterns;

1: Πout := Πin

2: Let TA,TB,TC and TD be the wildcard tree patterns in Fig. 9.

3: for each wildcard tree pattern π ∈ Πout do

4: for each variable h in π do

5: if there exists an X ∈ {A, B,C,D} such that π{h := [TX , [RX , LX]]}
is σ-frequent w.r.t.D then

6: Πout := Πout \ {π}
7: end if

8: end for

9: end for

10: return Πout

ing whether the two labels of corresponding edges of π′ and T

are the same in the matching algorithm for an ordered term tree
pattern π′ and a tree T . A variable-only tree pattern is a wildcard
tree pattern consisting of only vertices and variables. We regard
a variable-only tree pattern as a tree with the same tree struc-
ture. Asai et al. [2] presented a rightmost expansion technique

over trees and an algorithm for enumerating all trees using the
rightmost expansion technique, also developed in Refs. [11], [17].
In the following procedure EnumFreqTP, we use this algorithm
in order to enumerate all variable-only tree patterns by regard-
ing a variable as an edge. For two variable-only tree patterns π
and π′, if π′ is obtained from π by applying the rightmost expan-
sion technique, then π′ is called a child tree pattern of π and π
is called the parent tree pattern of π′. An enumeration tree over

the set of all variable-only tree patterns is a tree Tenum defined
as follows. Each node of Tenum is a variable-only tree pattern.
Let π and π′ be two variable-only tree patterns which are nodes
in Tenum. Then there exists an edge from π to π′ if and only if
π′ is a child tree pattern of π. The enumeration tree over the set
of all variable-only tree patterns is illustrated in Fig. 8. By using
the same parent-child relation as in Ref. [2], we can enumerate
without any duplicate all variable-only tree patterns in a way of
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Fig. 8 The enumeration tree over the set of all variable-only tree patterns.

Fig. 9 Wildcard tree patterns TX (X ∈ {A, B,C,D}).

depth first search from general to specific and backtracking. Al-
though the semantics of matching of tree structured patterns and
tree structured data is different from that in Ref. [2], a parent tree
pattern π is more general than its child tree patterns π′, that is
LΛ(π′) � LΛ(π), in generating process of variable-only tree pat-
terns.

4.2 Correctness of the Enumeration Algorithm for Wild-
card Tree Patterns

In this section, we show the correctness of Algorithm Gen-
MFOWTP. Let Λ be a language which consists of infinitely or
finitely many words, and Λ{?} a proper subset of Λ. For a wild-
card tree pattern π, V(π), E(π), and H(π) denote the vertex set,
the edge set, and the variable set of π, respectively. For a tree T ,
V(T ) and E(T ) denote the vertex set and the edge set of T .

Lemma 1 Let π and π′ be wildcard tree patterns. Then
LΛ(π′) � LΛ(π) if and only if there is an OWTP-substitution
θ such that π′ � πθ.

Proof. (If part) Let T be a tree. If T ∈ LΛ(π′), there is
an OT -substitution θ′ such that T � π′θ′. Since π′ � πθ,
there is an isomorphism ϕ : V(π′) → V(πθ). Let θ′ϕ be
the OT -substitution constructed from θ′ by replacing all OT -
bindings [u, v] := [g, [u′, v′]] and (u, v) := [g, [u′, v′]] in θ′ with
[ϕ(u), ϕ(v)] := [g, [u′, v′]] and (ϕ(u), ϕ(v)) := [g, [u′, v′]], respec-
tively. Since T � π′θ′ and π′ � πθ, we have T � (πθ)θ′ϕ. Let
θ′′ = {[u, v] := [gθ′ϕ, [u

′, v′]] | [u, v] := [g, [u′, v′]] ∈ θ} ∪ {(u, v) :=
[gθ′ϕ, [u

′, v′]] | (u, v) := [g, [u′, v′]] ∈ θ}∪θ′ϕ. We see that T � πθ′′.
Therefore LΛ(π′) � LΛ(π) holds.

(Only-if part) Let a be an edge label in Λ \ Λ{?} and b an edge
label in Λ{?}. Let E(π′) = {e′1, . . . , e

′
m′ } and H(π′) = {h′1, . . . , h

′
�′ }.

For each i (1 ≤ i ≤ m′), let T ′i (b) be a copy of word tree T (b)
where E(T ′i (b)) = {(u′i , v′i )}, and for each i (1 ≤ i ≤ �′), let T ′i (a)
be a copy of word tree T (a) where E(T ′i (a)) = {(u′i , v′i )}. Let θ1

be an OT -substitution defined as {e′i := [T ′i (b), [u′i , v
′
i ]] | 1 ≤ i ≤

m′} ∪ {h′i := [T ′i (a), [u′i , v
′
i ]] | 1 ≤ i ≤ �′}. Since π′θ1 ∈ LΛ(π′)

and LΛ(π′) � LΛ(π), we have π′θ1 ∈ LΛ(π). Therefore there is an
OT -substitution θ2 such that π′θ1 � πθ2. Let E(π) = {e1, . . . , em}
and H(π) = {h1, . . . , h�}. We see that for all ei ∈ E(π) (1 ≤ i ≤ m),
there are OT -bindings ei := [Ti(b), [ui, vi]] in θ2, where Ti(b)
is a copy of word tree T (b) and E(Ti(b)) = {(ui, vi)}. For any
OT -binding hi := [ti, [ui, vi]] (1 ≤ i ≤ �) where ti is a tree
with ui, vi ∈ V(ti), we make a new word tree pattern t′i that is
constructed from ti by replacing all words a’s and b’s with vari-
ables and ?’s, respectively. Let θ be an OWTP-substitution
{hi := [t′i , [ui, vi]] | hi := [ti, [ui, vi]] ∈ θ2}. Then, we see that
π′ � πθ holds. �

Lemma 2 After the second step of Algorithm Gen-
MFOWTP, Π2(σ) contains all σ-frequent wildcard tree patterns
w.r.t.D.

Proof. Let K = max{|V(T )| | T ∈ D}. At the first
step, according to the enumeration tree Tenum, Algorithm Gen-
MFOWTP generates all σ-frequent variable-only tree patterns of
tree-size at most K. Moreover, since the second step (Procedure
ReplaceEdge) uses a brute-force method for replacing each vari-
able of t in Π1(σ) with a wildcard edge, Π2(σ) contains all σ-
frequent wildcard tree patterns of tree-size at most K. �

Theorem 3 Algorithm Gen-MFOWTP outputs the set of all
maximally σ-frequent wildcard tree patterns w.r.t.D.

Proof. The third step of Algorithm Gen-MFOWTP (Procedure
TestMaximality) removes elements from Π2(σ) only. Therefore,
from Lemma 2, any wildcard tree pattern in Π(σ) is σ-frequent.
Let π be aσ-frequent wildcard tree pattern inΠ(σ). We will prove
that if there is a σ-frequent wildcard tree pattern π′ w.r.t. D such
that LΛ(π′) � LΛ(π), then π � π′ holds. Since LΛ(π′) � LΛ(π),
from Lemma 1, there is an OWTP-substitution θ such that
π′ � πθ. Note that θ has only OWTP-bindings for variables.
We assume that there is an OWTP-binding h := [t, σ] in θ such
that |E(t)| + |H(t)| ≥ 2 or |E(t)| ≥ 1. Since LΛ(π′) = LΛ(πθ), if
|E(t)| + |H(t)| ≥ 2, LΛ(π′) � LΛ(π{h := [TX , [RX , LX]]}) � LΛ(π)
holds for some X ∈ {A, B,C}. If |E(t)| = 1 and |H(t)| = 0,
LΛ(π′) � LΛ(π{h := [TD, [RD, LD]]}) � LΛ(π) holds. This con-
tradicts the fact that π is not removed from Π(σ) in Procedure
TestMaximality. Thus, |E(t)| = 0 and |H(t)| = 1 hold. Therefore,
because the OWTP-binding h := [t, σ] is trivial, we can remove
it from θ. In this way, we show that θ = ∅ finally. Therefore,
π′ � π holds. From this fact, we conclude that π is a maximally
σ-frequent wildcard tree pattern w.r.t.D. �

5. Application to Enumeration of Maximally
Frequent Tree Patterns with Tags and Key-
words

5.1 Enumeration of Maximally Frequent Tree Patterns with
Tags and Keywords

Definition 4 (Ordered tag tree pattern) Let ΛTag be a lan-
guage consisting of infinitely or finitely many words in Λ. Let
ΛKW be a language consisting of infinitely or finitely many words
of the form “/k/” for words k in Λ, where we assume that
“/” � Λ holds. We call a word in ΛTag a tag and a word in
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Fig. 10 The matching relation of an edge of a tag tree pattern and an edge
of a tree.

ΛKW a keyword. For a keyword /k/ ∈ ΛKW , we define the set
Λ{/k/} = {w ∈ Λ | k is a substring of w}. Let T = (VT , ET ) be a
tree which has a set VT of vertices and a set ET of edges. Let Eg
and Hg be a partition of ET , i.e., Eg ∪ Hg = ET and Eg ∩ Hg = ∅.
And let Vg = VT . An ordered tag tree pattern (or simply called
a tag tree pattern) is a triplet g = (Vg, Eg,Hg) such that each ele-
ment in Eg is labeled with any of a tag, a keyword and the symbol
“?”. Each element in Vg, Eg and Hg is called a vertex, an edge

and a variable, respectively.
Two tag tree patterns f and g are isomorphic if f and g are

isomorphic as wildcard tree patterns (defined in Section 2) by re-
garding the symbol “?”, tags and keywords as edge labels. A
substitution for a tag tree pattern is an extended form of a sub-
stitution (defined in Section 2) for a wildcard tree pattern, where
a binding e := [g, σ] for an edge e labeled with a keyword /k/
can replace the edge e with any word tree g ∈ WT Λ{/k/} , a bind-
ing e := [g, σ] for an edge e labeled with the symbol “?” can
replace the edge e with any word tree g ∈ WT Λ{?} , and a binding
e := [g, σ] for a variable e can replace the variable e with any tag
tree pattern or tree. A tag tree pattern t is said to match a tree T if
there exists a substitution θ such that T � tθ holds. An edge e of a
tag tree pattern is said to match an edge e′ of a tree if there exists
a substitution θ such that the edge label of e after the replace-
ment by θ equals the edge label of e′. OTTP(ΛTag,ΛKW ) denotes
the set of all tag tree patterns with tags in ΛTag and keywords in
ΛKW . For t in OTTP(ΛTag,ΛKW ), the language LΛ(t) is defined as
{a tree T in OT | t matches T }.

Example 2 We explain the matching relation of an edge of a
tag tree pattern and an edge of a tree in Fig. 10. Let “Introduction”
be a tag, and “/Sec/” a keyword. We assume that “Introduction”,
“Sec1”, “SubSec2.1” and “Comment” are all included in Λ{?}. In
a tag tree pattern, let us consider an edge e1 with a label “Intro-
duction”, an edge e2 with a label “/Sec/” and an edge e3 with a
label “?”. In a tree, let us consider an edge e′1 with a label “Intro-
duction”, an edge e′2 with a label “Sec1”, an edge e′3 with a label
“Sec2.1” and an edge e′4 with a label “Comment”. Then we have
the following. e1 matches e′1. e2 matches e′2 and e′3. e3 matches
e′1, e′2, e′3 and e′4.

Let D = {T1,T2, . . . ,Tm} (m ≥ 1) be a set of trees. The
matching count of a tag tree pattern π w.r.t. D, denoted by
matchD(π), is the number of trees Ti ∈ D (1 ≤ i ≤ m) such
that π matches Ti. Then the frequency of π w.r.t. D is defined
by suppD(π) = matchD(π)/m. Let σ be a real number where

Fig. 11 A maximally σ-frequent tag tree pattern t4 w.r.t. D = {T1,T2,T3}
given in Fig. 1, where Tag = {Introduction, Comment,
Conclusion}, KW = {/Sec/, /SubSec/} and σ = 0.5.

0 < σ ≤ 1. A tag tree pattern π is σ-frequent w.r.t. D if
suppD(π) ≥ σ. Let Tag be a finite subset of ΛTag and KW a
finite subset of ΛKW . Let Λ(Tag,KW) = Tag ∪ ⋃/k/∈KW Λ{/k/}.
We denote by OTTP(Tag,KW) the set of all tag tree patterns π
with the tags of π in Tag and the keywords of π in KW. A tag
tree pattern π in OTTP(Tag,KW) is maximally σ-frequent w.r.t.
D if (1) π is σ-frequent, and (2) if LΛ(π′) � LΛ(π) then π′ is not
σ-frequent for any tag tree pattern π′ in OTTP(Tag,KW).

Example 3 Let t4 be a tag tree pattern in OTTP(Tag,

KW), which is described in Fig. 11, where we set
Tag = {Introduction,Comment,Conclusion} and KW = {/Sec/,

/SubSec/}. The tag tree pattern t4 is a maximally σ-frequent
w.r.t. D, where σ = 0.5, D = {T1, T2, T3} given in Fig. 1. The
tag tree pattern t4 is more specific than the wildcard pattern t2 in
Fig. 1, that is, LΛ(t4) � LΛ(t2) holds.
All Maximally Frequent Ordered Tag Tree Patterns
(MFOTTP)
Input: A set of trees D � OT , a real number σ (0 < σ ≤ 1), a
finite set Tag of tags, and a finite set KW of keywords.
Assumption: (1) Λ(Tag,KW) � Λ{?} � Λ, (2) Tag ∩
⋃
/k/∈KW Λ{/k/} = ∅, and (3) there exists an algorithm for deciding

whether or not any word in Λ is in Λ{?}.
Problem: Generate all maximally σ-frequent tag tree patterns
w.r.t.D in OTTP(Tag,KW).

We give an algorithm Gen-MFOTTP (Algorithm 7) which gen-
erates all maximally σ-frequent tag tree patterns. LetD � OT be
a finite set of trees. In the algorithm Gen-MFOTTP, we can de-
cide whether or not a candidate tag tree pattern isσ-frequent w.r.t.
D, by using a matching algorithm which decides whether or not
a tag tree pattern matches a tree. This matching algorithm is an
extended version of the efficient pattern matching algorithm [14]
for an ordered term tree pattern and a tree, and is similar to the
matching algorithm for a wildcard tree pattern and a tree. In the
matching algorithm for a tag tree pattern π and a tree T , we can
decide whether or not π matches T by checking the following
three cases (1)–(3), described in Fig. 10, of the matching relation
of an edge e of π and its corresponding edge e′ of T , instead of
checking whether the two labels of corresponding edges of π′ and
T are the same in the matching algorithm [14] for an ordered term
tree pattern π′ and a tree T . (1) If e is labeled with a tag, then we
check whether the two labels of e and e′ are the same. (2) If e

is labeled with a keyword /k/, then we check whether the label
of e′ is in Λ{/k/}. (3) If e is labeled with the symbol “?”, then we
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Algorithm 7 Gen-MFOTTP
Input: A setD � OT of trees and a real number σ (0 < σ ≤ 1);

Output: The set Π(σ) of all maximally σ-frequent tag tree patterns w.r.t.D
in OTTP;

/* Step1 Enumerate all σ-frequent variable-only tree patterns */

1: Π1(σ) :=EnumFreqTP(D, σ) (Procedure 2)

/* Step2 Enumerate all σ-frequent tag tree patterns */

2: Π2(σ) :=ReplaceEdge2(D, σ,Π1(σ)) (Procedure 8)

/* Step3 Maximality test */

3: Π(σ) :=TestMaximality2(D, σ,Π2(σ)) (Procedure 10)

4: return Π(σ)

Procedure 8 ReplaceEdge2
Input: A setD � OT of trees, a real number σ (0 < σ ≤ 1), and a set Πin of

variable-only tree patterns;

Output: A set Πout of tag tree patterns;

1: Πout := Πin

2: for each tag tree pattern π ∈ Πin do

3: p := 1

/* p is an index of variables and edges of π in the DFS order */

4: Πout := Πout∪ ReplaceEdgeSub2(D, σ, π, p) (Procedure 9)

5: end for

6: return Πout

Procedure 9 ReplaceEdgeSub2
Input: A set D � OT of trees, a real number σ (0 < σ ≤ 1), a tag tree

pattern π and a positive integer p;

Output: A set Πout of tag tree patterns;

1: if p > |Eπ ∪ Hπ | then

2: return ∅
3: end if

4: Πout := ∅
5: Let TD be the tag tree pattern in Fig. 12.

6: Let TE(w) be the tag tree pattern in Fig. 12 for any keyword or tag w.

7: Let h be the p-th variable in the DFS order of all edges and variables of

π.

8: π? := π{h := [TD, [RD, LD]]}
9: if π? is σ-frequent w.r.t.D then

10: Πout := {π?}
11: for each keyword or tag w ∈ Tag ∪ KW do

12: πw := π{h := [TE(w), [RE , LE]]}
13: if πw is σ-frequent w.r.t.D then

14: Πout := {πw}
15: end if

16: end for

17: end if

18: Πtmp := Πout ∪ {π}
19: for each tag tree pattern π′ ∈ Πtmp do

20: Πout := Πout∪ReplaceEdgeSub2(D, σ, π′, p + 1)

21: end for

22: return Πout

check whether the label of e′ is in Λ{?} by using the algorithm in
Assumption (3) of MFOTTP.

5.2 Correctness of the Enumeration Algorithm for Tag Tree
Patterns

In this section, we show the correctness of Algorithm Gen-
MFOTTP. For a tag tree pattern π, V(π), E(π), and H(π) denote
the vertex set, the edge set, and the variable set of π, respectively.

Procedure 10 TestMaximality2
Input: A setD � OT of trees, a real number σ (0 < σ ≤ 1), and a set Πin of

tag tree patterns;

Output: A set Πout of tag tree patterns;

1: Πout := Πin

2: Let TA,TB,TC and TD be the tag tree patterns in Fig. 12.

3: Let TE(w) be the tag tree pattern in Fig. 12 for any keyword or tag w.

4: for each tag tree pattern π ∈ Πout do

5: for each variable h in π do

6: if there exists an X ∈ {A, B,C,D} such that π{h := [TX , [RX , LX]]}
is σ-frequent w.r.t.D then

7: Πout := Πout \ {π}
8: end if

9: end for

10: for each edge e labeled with “?” in π do

11: if there exists a keyword or a tag w ∈ Tag ∪ KW such that

π{e := [TE(w), [RE , LE]]} is σ-frequent w.r.t.D then

12: Πout := Πout \ {π}
13: end if

14: end for

15: for each edge e labeled with /k/ ∈ KW in π do

16: if there exists a keyword /k′/ ∈ KW such that Λ{/k′/} � Λ{/k/} and

π{e := [TE(/k′/), [RE , LE]]} is σ-frequent w.r.t.D then

17: Πout := Πout \ {π}
18: end if

19: end for

20: end for

21: return Πout

Fig. 12 Tag tree patterns TX (X ∈ {A, B,C,D}) and a tag tree pattern TE(w).

Lemma 3 Let π and π′ be tag tree patterns. Then LΛ(π′) �
LΛ(π) if and only if there is a substitution θ such that π′ � πθ.

Proof. (If part) Let T be a tree. If T ∈ LΛ(π′), there is a
substitution θ′ such that T � π′θ′. Since π′ � πθ, there is an
isomorphism ϕ : V(π′) → V(πθ). Let θ′′ be the substitution con-
structed from θ′ and ϕ in the same way as the if part of Lemma 1.
We see that T � πθ′′. Therefore LΛ(π′) � LΛ(π) holds.

(Only-if part) Let a be an edge label in Λ \ Λ{?} and b an edge
label inΛ{?} \Λ(Tag,KW). We make a substitution θ1 in the same
way as the only-if part of Lemma 1. Let T be the tree obtained
from π′θ1 by replacing all keyword edges labeled /k/ ∈ KW with
copies of word tree T (k). Since LΛ(π′) � LΛ(π), T ∈ LΛ(π) holds.
Therefore, there is a substitution θ2 such that T � πθ2. In a similar
way to Lemma 1, we can construct the new substitution θ from θ2
by replacing all edges labeled a with variables, all edges labeled b

with wildcard edges, and all edges labeled k with keyword edges
labeled /k/ for any /k/ ∈ KW. Finally, we see that π′ � πθ holds.

�
The following lemma can be proved in a similar way to

Lemma 2.
Lemma 4 After the second step of Algorithm Gen-MFOTTP,
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Π2(σ) is the set of all σ-frequent tag tree patterns w.r.t.D.
Theorem 4 Algorithm Gen-MFOTTP outputs the set of all

maximally σ-frequent tag tree patterns w.r.t.D.
Proof. From Lemma 4, any tag tree pattern in Π(σ) is σ-

frequent. Let π be a σ-frequent tag tree pattern in Π(σ). We will
prove that if there is a σ-frequent tag tree pattern π′ w.r.t.D such
that LΛ(π′) � LΛ(π), then π � π′ holds. Since LΛ(π′) � LΛ(π),
from Lemma 3, there is a substitution θ such that π′ � πθ.
We assume that there is a binding h := [t, σ] in θ such that
|E(t)| + |H(t)| ≥ 2 or |E(t)| ≥ 1, where h is either a variable or an
edge. Since LΛ(π′) = LΛ(πθ), if |E(t)| + |H(t)| ≥ 2, h is a variable
and LΛ(π′) � LΛ(π{h := [TX , [RX , LX]]}) � LΛ(π) holds for some
X ∈ {A, B,C}. If |E(t)| = 1 and |H(t)| = 0, we have the following
three cases: Let e is the unique edge in E(t). (1) h is a variable and
e is either a wildcard edge or an edge labeled with w ∈ Tag∪KW,
(2) h is a wildcard edge and e is labeled with w ∈ Tag∪KW, and
(3) h is an edge labeled with some /k/ ∈ KW and e is labeled
with keyword /k′/ ∈ KW such that Λ{/k′/} � Λ{/k/}. If either
(1) or (2) holds, LΛ(π′) � LΛ(π{h := [TD, [RD, LD]]}) � LΛ(π)
holds, or there is a keyword or tag w ∈ Tag ∪ KW such that
LΛ(π′) � LΛ(π{h := [TE(w), [RE , LE]]}) � LΛ(π). This con-
tradicts the fact that π is not removed from Π(σ) at lines 4–
14 in Procedure TestMaximality2. If the last case (3) holds,
there is a keyword /k′/ ∈ KW such that LΛ(π′) � LΛ(π{h :=
[TE(/k′/), [RE , LE]]}) � LΛ(π). This contradicts the fact that π is
not removed from Π(σ) at lines 15–19 in Procedure TestMaxi-
mality2. Thus, |E(t)| = 0 and |H(t)| = 1 hold. If h is a variable,
because the binding h := [t, σ] is trivial, we can remove it from θ.
If h is an edge, it contradicts the definition of the binding. In this
way, we show that θ = ∅ finally. Therefore, π′ � π holds. From
this fact, we conclude that π is a maximally σ-frequent tag tree
pattern w.r.t.D. �

6. Conclusions

In this paper, we have considered the modeling of tree struc-
tured features of structured data which are represented by rooted
trees with ordered children. As a model of tree structured fea-
tures we have proposed wildcard tree patterns, which are ordered
tree patterns with structured variables and wildcards, and match
whole trees. A structured variable can be replaced with an arbi-
trary rooted ordered tree and a wildcard matches any edge label.

First we have shown that it is hard to compute a maximally
frequent wildcard tree pattern of maximum-tree size and a max-
imally frequent wildcard tree pattern of minimum variable-size.
Then we have presented an algorithm for enumerating all max-
imally frequent wildcard tree patterns. As an extended model,
from wildcard tree patterns, of tree structured features, we have
proposed tag tree patterns, which are ordered tree patterns with
structured variables, wildcards, tags and keywords, and match
whole trees. Finally, as an application of the former algorithm,
we have presented an algorithm for enumerating all maximally
frequent tag tree patterns.
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