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On Exact Identification of the Structure of a Probabilistic

Boolean Threshold Network from Samples

Avraham A. Melkman1 Xiaoqing Cheng2 Wai-Ki Ching3 Tatsuya Akutsu4,a)

Abstract: We study the problem of exactly identifying the structure of a probabilistic Boolean network (PBN) from

a given set of samples, where PBNs are a probabilistic model of genetic networks and neural networks. We consider

PBNs consisting of Boolean threshold functions, while focusing on those functions with unit coefficients. We show

that wide classes of PBNs with such threshold functions can be exactly identified from samples under reasonable

constraints, including: PBNs with any number of threshold functions each of which has the same number of input

variables, and PBNs consisting of pairs of threshold functions with different numbers of input variables.

1. Introduction

Identification of the network structure from observed data is an

important research topic both in systems biology [1] and in neuro-

science [2]. Various mathematical models have been utilized for

identifying network structures. Among them, the Boolean net-

work (BN) is a well-studied discrete mathematical model, which

has been used in modeling gene regulatory networks [3], [4] and

neural networks [5]. As a probabilistic extension of BNs, the

Probabilistic Boolean Network (PBN) has been proposed [6]. Al-

though extensive theoretical studies have been done on identifi-

cation of BNs, almost no theoretical results had been known on

identification of PBNs.

Recently, Cheng et al. studied classes of PBNs whose struc-

tures can be exactly identified from samples [7]. Although they

focused on PBNs with AND/OR functions, threshold functions

are popular in modeling biological networks, especially in mod-

eling neural networks. Therefore, we study classes of PBNs with

Boolean threshold functions whose structures are exactly identi-

fied from samples. In this extended abstract, we briefly present

our major theoretical findings, where detailed results and their

proofs are given in [8].

2. Definitions

Throughout this abstract, a denotes a 0-1 bit vector of length n,

and ai denotes the 0-1 value of its ith bit (i.e., a = (a1, . . . , an)).

For a Boolean variable x, a literal is either x or its negation x.

Definition 1 A Boolean function f is a threshold func-
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tion with integer threshold θ if there exist integers wi such

that f (x1, . . . , xn) = 1 if and only if
∑

i∈{1,...,n} wiℓi ≥

θ, for all (x1, . . . , xn) ∈ {0, 1}n, where ℓi is either xi or xi.

Definition 2 A Boolean Threshold Network is a directed net-

work with n nodes x1, . . . , xn, in which node xi has an associated

Boolean threshold function f (i). At time step t, node xi takes on

a value xi(t) that is either 0 or 1, and xi(t + 1) is determined by

xi(t + 1) = f (i)(x1(t), . . . , xn(t)). A Probabilistic Boolean Thresh-

old Network (PBTN) is a directed network with n nodes in which

node xi is associated with a set F = { f
(i)

1
, . . . , f

(i)
mi
} of Boolean

threshold functions, and with corresponding selection probabili-

ties c
(i)

j
,
∑mi

j=1
c

(i)

j
= 1. The value of node xi at time t + 1 is de-

termined by xi(t+ 1) = f
(i)

j
(x1(t), . . . , xn(t)) with probability c

(i)

j
,

where selection of f
(i)

j
is independent of selections at previous

time steps and of selections for other nodes.

Denote x(t) = (x1(t), . . . , xn(t)). Our purpose is to identify f
(i)

j
s

assigned to each node xi from a set of (x(0), x(1))s, where we do

not aim to identify the probabilities c
(i)

j
s. Since threshold func-

tions assigned to each node can be identified independently of

other nodes, we focus on identifying a set of threshold functions

for only one output node from a given set of pairs (a, y), where

a ∈ {0, 1}n and y ∈ {0, 1}.

We assume that a class C of PBTNs is given, and that a set

of samples S is generated using some PBTN F ∈ C, mean-

ing that for each (a, y) ∈ S the value y belongs to the set

F(a) = { f1(a), . . . , fp(a)}.

Definition 3 A PBTN F = { f1, . . . , fp} is consistent with a

sample (a, y) if y ∈ F(a) = { f1(a), . . . , fp(a)}. If F is consistent

with every sample in S , it is consistent with S.

We consider two models, the Partial Information Model (PIM),

and the Full Information Model (FIM).

Definition 4 S identifies F from among C under PIM if F is

the only PBTN in C that is consistent with all samples in S .

Definition 5 S identifies F from among C under FIM if (i) F

is the only PBTN in C that is consistent with all samples in S ,
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and (ii) if (a, y) ∈ S then a × F(a) ⊆ S , i.e. all possible samples

(a, f (a)), f ∈ F were generated.

Definition 6 A class C is identifiable from samples under

PIM (resp., FIM) if for every F ∈ C, there is a set of samples

that identifies F under PIM (resp., FIM).

The following theorem characterizes the identifiable classes

under PIM and FIM.

Theorem 7 A class C of PBTNs is PIM-identifiable if and

only if for every F,G ∈ C there is an assignment a such that

F(a) − G(a) , ∅. C is FIM-identifiable if and only if for every

F,G ∈ C there is an assignment a such that F(a) , G(a).

It is clear from this theorem that if C is PIM-identifiable, C is

FIM-identifiable.

Example 8 Let F = {x1 ≥ 1, x1 ≥ 1}, G = {x2 ≥ 1, x2 ≥

1}, and C = {F,G}, where n = 4. Then, C is not PIM-

identifiable or FIM-identifiable because F(a) = G(a) = {0, 1}

holds for any a ∈ {0, 1}4, i.e., y behaves as a random 0-1

value and thus we cannot discriminate between F and G. Let

F′ = {x1 ≥ 1, x2 ≥ 1}, G′ = {x3 ≥ 1, x4 ≥ 1}, and C′ =

{F′,G′}. Then, C′ is PIM-identifiable (and also FIM-identifiable)

because G′((0, 0, 0, 1)) − F′((0, 0, 0, 1)) = {0, 1} − {0} , ∅ and

F′((0, 1, 0, 0)) − G′((0, 1, 0, 0)) = {0, 1} − {0} , ∅. It means that

if we see a sample ((0, 0, 0, 1), 1) (resp., ((0, 1, 0, 0), 1)), we can

conclude that samples are generated by G′ (resp., F′).

Example 9 Let f1 = x1 + x2 ≥ 1, f2 = x1 + x2 + x3 ≥ 2,

f3 = x1 + x2 + x3 ≥ 3, and f4 = x1 ≥ 1. Let F = { f1, f2},

G = { f2, f4}, H = { f2, f3}, C1 = {F,G} and C2 = {G,H},

where n = 3. Then, C1 is identifiable from samples under FIM

but not under PIM because G(a) ⊆ F(a) for all a, whereas C2

is identifiable from samples under both PIM and FIM because

G(a′)−H(a′) = {1} for a′ = (1, 1, 0) and H(a′′)−G(a′′) = {0} for

a′′ = (1, 0, 1) (see also Table 1).

Table 1 Example illustrating the difference between PIM and FIM.

x1 0 0 0 0 1 1 1 1

x2 0 0 1 1 0 0 1 1

x3 0 1 0 1 0 1 0 1

f1 0 0 1 1 1 1 1 1

f2 0 1 0 0 1 1 0 1

f3 0 0 0 0 0 0 0 1

f4 0 0 0 0 1 1 1 1

F = { f1, f2} 0 0/1 0/1 0/1 1 1 0/1 1

G = { f2, f4} 0 0/1 0 0 1 1 0/1 1

H = { f2, f3} 0 0/1 0 0 0/1 0/1 0 1

3. Results

Before discussing identifiability, we consider the problem of

deciding whether two given threshold functions are equivalent as

Boolean functions.

Proposition 10 Deciding the equivalence of two Boolean

threshold functions is co-NP complete.

Hereafter, we list some of our results on identifiability of

PBTNs [8]. A PBTN F is called admissible if for each i ∈

{1, . . . , n}, at most one of xi, xi appears in F.

Lemma 11 ( Necessary Condition for PIM) A class C of

admissible PBTNs is PIM-identifiable only if it does not contain

F and G, such that F ⊆ G.

Theorem 12 Let 1 ≤ θ1 < θ2 ≤ K be two fixed thresholds,

and let C be a class of admissible PBTNs satisfying the Neces-

sary Condition for PIM, such that each F ∈ C consists of two

(not necessarily different) threshold functions with the following

properties: every f ∈ F depends on exactly K variables, has unit

coefficients, and has a threshold that is either θ1 or θ2. Then C is

PIM-identifiable.

Theorem 13 Let 1 ≤ θ1 < θm ≤ K be two fixed thresholds,

and let C be a class of admissible PBTNs satisfying the Necessary

Condition for PIM, such that each F ∈ C consists of m threshold

functions with the following properties: every f ∈ F depends on

exactly K variables and has unit coefficients, and the thresholds

of F are θ( f1) = θ1, θ( fm) = θm and θ1 < θ( f ) < θm, f , f1, fm.

Then C is PIM-identifiable if f1 , g1 or fm , gm for all pairs

F,G ∈ C.

Lemma 14 (Necessary Condition for FIM) Let C be a class

of admissible PBTNs each of which consists of one or two thresh-

old functions that have unit coefficients. If C is FIM-identifiable,

it does not contain F = { f1, f2} and G = {g1, g2} such that

f1 = ℓ1 ≥ 1 f2 = ℓ2 ≥ 1, g1 = ℓ1 + ℓ2 ≥ 1, g2 = ℓ1 + ℓ2 ≥ 2, with

ℓ1, ℓ2 literals.

Theorem 15 Let C be a class of admissible PBTNs each of

which consists of one or two threshold functions that have unit

coefficients. Then C is FIM-identifiable if and only if the Neces-

sary condition for FIM holds.

Example 16 Let F = {x1 + x2 + x3 ≥ 1, x1 + x2 + x4 ≥ 2},

G = {x1 + x2 + x3 ≥ 1, x1 + x2 + x4 ≥ 3}, and C = {F,G}. Then,

C is FIM-identifiable from Theorem 15. However, C is not PIM-

identifiable because F(a) ⊆ G(a) for all a.

Finally, we discuss the sample complexity.

Theorem 17 Let C be a class of PBTNs consisting of L-

tuplets of functions, each of which has at most K inputs, that

satisfies the condition of PIM (resp., FIM) of Theorem 7. If, for

fixed L and K, O( 1
c
· 22LK · (2LK + 1+α) · log n) samples are gen-

erated uniformly at random, the correct PBTN can be uniquely

identified at all nodes with probability no less than 1 − 1
nα

under

PIM (resp., FIM).

References

[1] Karlebach, G. and Shamir, R.: Modelling and Analysis of Gene Regu-
latory Networks, Nature Reviews Molecular Biology, Vol. 9, 770–780
(2008).

[2] Lichtman, J. W. and Denk, W.: The Big and the Small: Challenges of
Imaging the Brain’s Circuits. Science, Vol. 334, 618–623 (2011).

[3] Kauffman, S. A.: Metabolic Stability and Epigenesis in Randomly
Constructed Genetic Nets, Journal of Theoretical Biology, Vol. 22,
437–467 (1969).

[4] Xiao, Y.: A Tutorial on Analysis and Simulation of Boolean Gene
Regulatory Network Models. Current Genomics, Vol. 10, 511–525
(2009).

[5] Anthony, M.: Discrete Mathematics of Neural Networks, Selected
Topics. SIAM, Philadelphia (2001).

[6] Shmulevich, I., Dougherty, E. R., Kim, S., and Zhang, W.: Proba-
bilistic Boolean Networks: a Rule-based Uncertainty Model for Gene
Regulatory Networks, Bioinformatics, Vol. 18, 261–274 (2001).

[7] Cheng, X., Mori, T., Qiu, Y., Ching, W-K., and Akutsu, T.: Exact
Identification of the Structure of a Probabilistic Boolean Network from
Samples, IEEE/ACM Trans. Computational Biology and Bioinformat-
ics, Vol. 13, pp. 1107–1116 (2016).

[8] Melkman, A. M., Cheng, X., Ching, W-K., and Akutsu, T.: Identify-
ing a Probabilistic Boolean Threshold Network from Samples, IEEE
Trans. Neural Networks and Learning Systems, in press.

2ⓒ 2017 Information Processing Society of Japan

Vol.2017-MPS-113 No.31
Vol.2017-BIO-50 No.31

2017/6/24


