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Abstract: We address the problem of extracting functionally similar regions in urban streets and regard such regions
as spatial networks. For this purpose, based on our previous algorithm called the FCE method that extracted func-
tional clusters for each network, we propose a new method that efficiently deals with several large-scale networks by
accelerating our previous algorithm using lazy evaluation and pivot pruning techniques. Then we present our new
techniques for simultaneously comparing the extracted functional clusters of several networks and an effective way of
visualizing these clusters by focusing on the fact that the maximum degree of the nodes in spatial networks is restricted
to relatively small numbers. In our experiments using urban streets extracted from the OpenStreetMap data of four
worldwide cities, we show that our proposed method achieved a reasonably high acceleration performance. Then we
show that the functional clusters extracted by it are useful for understanding the properties of areas in a series of visual-
ization results and empirically confirm that our results are substantially different from those obtained by representative
centrality measures. These region characteristics will play important roles for developing and planning city promotion
and travel tours as well as understanding and improving the usage of urban streets.
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1. Introduction

In such diverse fields as sociology, biology, physics, and com-
puter science [17], studies of the structures and functions of large
complex networks are attracting a great deal of attention. As a
particular class, we focus on the spatial networks embedded in
real spaces such as urban streets whose nodes occupy precise po-
sitions in two- or three-dimensional Euclidean space and whose
links are real physical connections [3]. In this paper, we ad-
dress the problem of clustering and visualizing functionally simi-
lar regions as functional clusters [9] by focusing on urban streets,
which we regard as large spatial networks. Such regional char-
acteristics will play important roles for developing and planning
city promotion and travel tours as well as understanding and im-
proving the usage of urban streets.

Compared with the conventional issue of extracting communi-
ties from networks [18], our issue shares the idea that the nodes
in networks are divided into several groups. However, our issue
is significantly different from the conventional one because we
focus on the functional properties of nodes derived from a net-
work structure [9]. For instance, for social networks where each
node corresponds to a person, our objective is to extract groups of
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similar persons in terms of positions and/or roles with respect to
others, such as the main members of each cluster, where these
nodes (persons) are not necessarily connected directly to each
other, instead of extracting the communities themselves that are
typically defined as densely connected subnetworks. Note that
such functional properties can be assumed in a wide variety of
networks, but in this paper we focus on spatial networks con-
structed by mapping the ends and intersections of streets into
nodes and the streets between the nodes into links. For these net-
works, node functionality is defined through a probability vector
obtained from a random walk process [9]. We believe that ex-
tracting groups of functionally similar nodes in a spatial network
is a critical research topic. Examples of such functional clusters
might include parts of streets constructed in planned cities like
lattices and those reflected by geographical restrictions like cul-
de-sacs.

To extract functional clusters, we employ our previous algo-
rithm called the Functional Cluster Extraction (FCE) method.
The FCE method consists of two phases, the calculation of feature
vectors (or functional vectors) through a random walk process,
and the clustering of these vectors by the k-medoids method based
on a greedy algorithm, where the latter clustering phase requires
a huge computational cost. More specifically, let N be the num-
ber of functional vectors, which equals the number of nodes in
the network, and let S be the dimension of the functional vectors,
which equals the time steps of the random walk process. After
calculating the pair-wise distance of these vectors with computa-
tional cost O(N2S ), we run the k-medoids clustering phase with
computational cost O(KN2) when we have enough memory space
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Table 1 Notation.

Symbol Description and Definitions
V Set of nodes
E Set of links
Γ(u) Set of adjacency nodes of node u

R Set of representative nodes, R ⊂ V
P Set of pivot nodes, P ⊂ V
N Number of nodes, N = |V |
S Dimension of functional vectors
K Number of medoids (clusters), K = |R|
H Number of pivots, H = |P|
ys N-dimensional prob. vector of a random walk process at step s
xu S -dimensional functional vector of node u
ρ(u, v) Cosine similarity between functional vectors of node u and v
μ(u; R) Maximum similarity of node u, μ(u; R) = maxr∈R{ρ(u, r)}
d(u, v) Euclidean distance between functional vectors of node u and v
f (R) Objective function of k-medoids clustering
g(w,R) Marginal gain of objective function

Vj Set of nodes with degree j
V (k) Set of nodes belonging to functional cluster k
V (k)

j Set of nodes with degree j belonging to functional cluster k

Z(k)
j Z-score of degree j and functional cluster k

to store all of the N(N − 1)/2 distances. However, when number
N of the functional vectors is too large and the memory space
is inadequate, we need to re-calculate most of the N(N − 1)/2
distances for each of the K greedy steps at the k-medoids cluster-
ing phase, and thus the computational cost becomes O(KN2S ).
In our experiments below, the typical values for these variables
are K = 10, N = 100,000, and S = 10,000, causing quite large
computation times. To overcome this problem, we propose an
accelerating clustering algorithm.

This paper is an extended version on our results that we pre-
viously presented: accelerating the k-medoids clustering phase
of the FCE method using the lazy evaluation and pivot prun-
ing techniques [8], and simultaneously comparing the extracted
functional clusters of several networks and effectively visualizing
them [7].

This paper is organized as follows. After explaining related
work in Section 2, we describe the problem background of this
paper in Section 3. In Section 4, we describe the details of the
FCE method, our accelerating algorithm of k-medoids cluster-
ing, and the visualization method of extracted functional clusters.
Then after explaining our datasets in Section 5, we evaluate the
computational performance of our proposed algorithm and the
characteristics of the extracted functional clusters in Section 6.
Finally, we offer a conclusion in Section 7. For easy reference,
we summarize the notation in Table 1.

2. Related Work

As mentioned above, the structures and the functions of large
spatial networks have been studied by many researchers [2], [3],
[15], [19], [21], [26]. From structural viewpoints, centrality mea-
sures have been widely used to analyze such networks [3], [21],
especially by extending the conventional notions of central-
ity measures on simple networks into those of weighted net-
works [15], [19]. Traffic usage patterns in urban streets have
been investigated from functional viewpoints [2], [26]. Unlike
these previous studies, in this paper, as the intrinsic properties of
these spatial networks, we extract functional clusters and natu-
rally combine the structural and functional viewpoints in terms of

such clusters.
Functional properties are assumed to exist in a wide variety

of networks. Thus, in sociology, similar notions of node func-
tions or roles have been studied as structural equivalence [14] and
regular equivalence [6] with their extraction algorithms. These
notions focus on local structures like relationships with adjacent
nodes. Functional vectors in the FCE method, however, reflect
not only local structures but also global ones through a random
walk process.

Studies of community extraction are another main branch of
complex network analysis. As mentioned above, our method ex-
tracts functional clusters [9]. This is because the representative
methods for extracting communities as densely connected sub-
networks, which include the Newman clustering method based
on a modularity measure [18], the normalized cut method [24], or
the ratio cut method [10] based on spectral graph analysis, cannot
directly deal with such functional properties. Also, conventional
notions of densely connected subnetworks such as k-core [23] and
k-clique [20] will not function for this purpose. We naturally an-
ticipate that these representative methods have an intrinsic lim-
itation for extracting functional similar nodes. It might also be
difficult to straightforwardly apply these conventional methods to
spatial networks, because the maximum degree of nodes in each
network is generally restricted to a relatively small number, since
densely connected subnetworks are unlikely to appear in these
networks.

In this paper, we focus on the FCE method that employs the
k-medoids clustering method for dividing all nodes into groups
of functionally similar nodes by the greedy maximization of the
objective function. For clustering large-scale datasets, we can
employ representative sampling algorithms like [1], [12]. How-
ever, since they compute approximated centers or clusters from
stochastically selected, relatively small objects, the accuracy of
the results is not guaranteed. Thus, we cite some existing meth-
ods that strictly solve the objective function and accelerate the al-
gorithm using triangle inequality in the clustering fields. A well-
known acceleration of the Lloyd algorithm called the Elkan algo-
rithm [5] avoids redundant distance calculations in the K-means
algorithm and divides N objects into K clusters. The acceleration
results from the effective use of the lower and upper bounds on
the distance and derives them from the triangle inequality. Unfor-
tunately, this requires large amounts of memory space O(NK) for
storing the K lower bounds for each object. The Hamerly algo-
rithm which extends the Elkan algorithm, employs only one lower
bound for each object, resulting in the reduction of memory us-
age to O(N) [11]. Recently, hybrid Elkan and Hamerly algorithms
have been reported [4]. They treat the number of lower bounds as
a variable parameter in the one to K range to best exploit the
strength of each algorithm. By using pivots that efficiently select
initial medoids and accelerate the convergence in iterative steps,
Paterlini et al. proposed a fast algorithm of k-medoids cluster-
ing [22]. Unlike these existing methods, the FCE method based
on a greedy approach theoretically guarantees a unique greedy so-
lution with reasonably high quality because of the submodularity
of the objective function.
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3. Problem Description

In this paper, we extract functional clusters, each of which con-
sists of functionally similar nodes from a given network. Fig-
ure 1 shows an illustrative example of functional clusters ex-
tracted from a synthetic network that consists of five web-like
graphs connected by a single link, where the clusters extracted by
our FCE method are distinguished by red, green, and blue. These
functional clusters are formed by nodes at the center part (red),
the intermediate part (green), and the peripheral part (blue) for
each web-like graph. Thus, for spatial networks constructed from
urban streets, we expect to obtain such functional clusters as city
centers with our designated resolution controlled by the number
of clusters K. Here we emphasize that our method is potentially
applicable to a wide range of complex networks including social
networks constructed from the relationships of people and infor-
mation networks constructed from paper citations. We expect to
obtain functional clusters, such as groups of leaders from each
community in social networks and the authors of outstanding pa-
pers from each field in information networks.

4. Methodology

In this section, we present the details of the FCE method and
new techniques that 1) accelerate the k-medoids clustering phase
of the FCE method; and 2) simultaneously compare the extracted
functional clusters of several networks.

4.1 Functional Cluster Extraction Method
For extracting functional clusters [9], we revisit the FCE

method that consists of two steps: calculation of functional vec-
tors and the clustering of them.

Let G = (V, E) be a given spatial network, where V =

{u, v, w, · · ·} and E = {(u, v), · · ·} ⊂ V × V stand for sets of nodes
and links, where we denote the number of nodes by N = |V |. In
this paper, we only consider undirected networks such that (u, v) ∈
E implies (v, u) ∈ E, but our approach can be straightforwardly
extended to deal with directional ones. For each node u ∈ V , we
denote the set of its adjacent nodes by Γ(u) = {v | (u, v) ∈ E}. We
define random walk probability ys(u) of node u at iteration step s

by considering the following iterative process:

Fig. 1 Synthetic network that resembles an urban street and its functional
clusters.

ys(u) =
∑
v∈Γ(u)

ys−1(v)
|Γ(v)| ,

where ys(v) ≥ 0 and
∑
v∈V ys(v) = 1. This model is a spe-

cial version of PageRank where the teleportation jump probabil-
ity α is set to 0. Note that under some mild conditions, ys(u)
converges to a value proportional to the degree of node u, i.e.,
|Γ(u)|/∑v∈V |Γ(v)|. We focus on the PageRank score vectors at
each iteration step s, i.e., {y0, · · · , yS }, where we set the initial
vector to y0 = (1/N, . . . , 1/N) and S stands for the final step of
the iterations. Then for each node u ∈ V , we consider an S -
dimensional vector defined by

xu = (y1(u), · · · , yS (u)),

where ys(u) also corresponds to the PageRank score of node u at
iteration step s. Here, xu is called the functional vector of node u.
The functional vector of each node contains not only local infor-
mation like the degree of the node as a converged value but also
global information accumulated through a random walk process
like PageRank. Thus, by clustering the functional vectors, we can
extract groups of similar nodes in terms of positions and/or roles
with respect to the other nodes. Note that we set dimension S

of the functional vector to a relatively large value, i.e., 10,000,
because the diameters of the spatial networks in our experiments
are generally large.

Based on the following cosine similarity, ρ(u, v), between each
pair of functional vectors, xu and xv,

ρ(u, v) =

〈
xu

‖xu‖ ,
xv
‖xv‖
〉
,

we divide all the nodes into K groups of functional clusters by
employing the k-medoids algorithm [25] due to its robustness.
Formally, we maximize the following objective function with re-
spect to the set of medoids R ⊂ V:

f (R) =
∑
v∈V

max
r∈R
ρ(v, r).

To maximize objective function f (R), we employ a greedy al-
gorithm using the following marginal gain with respect to each
candidate node w by establishing a set R of the already selected
medoids:

g(w; R) = f (R ∪ {w}) − f (R)

=
∑
v∈V\R

max{ρ(v, w) − μ(v; R), 0}, (1)

where μ(v ; R) = maxr∈R{ρ(v, r)} if R � ∅; otherwise μ(v ; ∅) = 0.
Then we can summarize the greedy algorithm as follows:
( 1 ) Initialize k ← 1 and R0 ← ∅;
( 2 ) Select r̂k = arg max

w∈V\Rk−1

g(w; Rk−1);

( 3 ) Add Rk ← Rk−1 ∪ {r̂k};
( 4 ) If k = K, output RK = {r1, · · · , rK}.
From the obtained K medoids R = {r1, · · · , rK}, we can calculate
each functional cluster as

V (k) =

{
v ∈ V; rk = arg max

r∈R
{ρ(v, r)}

}
.

Based on the submodularity of the objective function, we are
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guaranteed to obtain a unique greedy solution with reasonably
high quality [16], unlike such other standard methods as K-means
clustering. Moreover, for our problem setting, by setting xv ←
xv/‖xv‖ for each node v ∈ V , we derive the following transforma-
tions:

g(w; ∅) = f ({w}) =
∑
v∈V
ρ(v, w) =

〈
xw,
∑
v∈V

xv

〉
. (2)

Thus, we efficiently obtain the first medoid r̂1 =

arg maxw∈V g(w; ∅) with a computational cost O(NS ). In
our approach, we employ arbitrary similarity definitions without
restricting the cosine similarity. One computational advantage of
using the cosine similarity is that we can efficiently obtain r̂1, as
described above.

4.2 Acceleration of Clustering
As mentioned above, when number N of the functional vec-

tors is large and the memory space is inadequate, we need to re-
calculate most of the N(N−1)/2 distances for each of the K (> 2)
greedy steps at the k-medoids clustering phase, which amounts to
a computational cost of O(KN2S ). To overcome this problem,
we propose a new technique for accelerating the k-medoids clus-
tering phase by combining the lazy evaluation and pivot pruning
techniques.

In the lazy evaluation technique [13], which is applied at the k-
th medoid selection step, we utilize an upper bound value UB(w)
of marginal gain g(w; R) for each candidate node w ∈ V . After
initializing UB(w) ← g(w; ∅), which is calculated in Eq. (2), we
update UB(w)← g(w; Rh) when g(w; Rh) is actually calculated at
the h-th medoid selection step. Evidently, due to the submodu-
lar property, it is guaranteed that g(w; Rk) ≤ UB(w) for k > h.
Let g∗k be the current best marginal gain at the selection step for
obtaining the k-th medoid, we can then omit the calculation of
g(w; Rk) when UB(w) ≤ g∗k. On the other hand, to obtain a better
g∗k at an early stage, we evaluate these candidates from the top of
the sorted list by sorting the candidates nodes in descending order
with respect to UB(w).

In the pivot pruning technique [28], which is applied at the
actual calculation of g(w; Rk), we utilize lower bound distance
LB(w, v; P) of distance d(w, v) for examining pruning condition
ρ(w, v) ≤ μ(v; R), where P ⊂ V is a set of pivots described
below and d(w, v) is a standard Euclidean distance obtained as
d(w, v) =

√
1 − ρ(w, v). Note that from Eq. (1), we do not add

any value when pruning condition ρ(w, v) ≤ μ(v; R) holds. From
triangle inequality, we utilize the following lower bound distance
LB(w, v; P):

LB(w, v; P) = max
p∈P
|d(w, p) − d(v, p)| ≤ d(w, v).

When
√

1 − μ(v; R) ≤ LB(w, v; P), noting that√
1 − μ(v; R) ≤ LB(w, v; P) ≤ d(w, v) =

√
1 − ρ(w, v),

pruning condition ρ(w, v) ≤ μ(v; R) holds without actually cal-
culating ρ(w, v). Next we introduce two types of pivots P so
as that the pivot pruning technique works adequately. As the
first type of pivots, we utilize the obtained medoids; after set-
ting P ← {r1}, we successively add the obtained medoid rk as a

pivot by P← P ∪ {rk}.
In the second type, we select some outlier nodes in the func-

tional vector space as pivots. More specifically, by using the first
medoid, r1, we select and add the first outlier pivot by

q̂1 = arg max
v∈V

d(v, r1), P← P ∪ {q̂1}.

Then we select and add the h-th pivot by

q̂h = arg max
v∈V

min
p∈P

d(v, p), P← P ∪ {q̂h}.

Hereafter, we denote the maximum number of outlier pivots by
H, and in our proposed algorithm, we calculate these pivots be-
fore selecting the second medoid, r2.

Hereafter, the lazy evaluation technique, the pruning technique
by medoids, and the pruning technique by the outlier pivots are
referred to as Lazy Evaluation (LE), Medoids Pruning (MP),
and Outlier pivots Pruning (OP), respectively. In our proposed
method, we apply the LE technique prior to the pivot pruning
techniques. This is because when the marginal gain calculation
of g(w; R) is skipped by the LE technique, we can simultaneously
prune all the similarity calculations of ρ(w, v) for any v ∈ V . On
the other hand, in our implementation, we apply the MP tech-
nique prior to the OP technique. This is because as shown later in
our experiments, at the k-medoid selection step, the combination
of the LE and MP techniques achieved a reasonably high perfor-
mance when k becomes large. We summarize the entire flow of
our proposed algorithm as follows:

( 1 ) Select the first medoid, r1;
( 2 ) Select outlier pivots P = {p1, . . . , pH};
( 3 ) Repeat the following steps from k = 2 to K with k incre-

ments:
( a ) Examine the pruning conditions, LE, MP, and OP, in

this order;
( b ) Calculate the similarities and marginal gains for the un-

pruned nodes, and extract the k-th medoid, rk.

4.3 Characterizing and Visualizing Functional Clusters
To characterize the extracted functional clusters, we introduce

the Z-score measure that simultaneously compares these func-
tional clusters of several networks. Let Vj = {u ∈ V ; |Γ(u)| = j}
and V (k)

j = {u ∈ V (k) ; |Γ(u)| = j} be the sets of nodes with de-
gree j and those belonging to functional cluster k, respectively.
By defining the degree and cluster distributions by p j = |Vj|/|V |
and p(k) = |V (k)|/|V |, respectively, we can calculate the following
Z-score, Z(k)

j , with respect to degree j and cluster k:

Z(k)
j =

|V (k)
j | − |V |2 × p(k) × p j√

|V |2 × p(k) × p j × (1 − p(k) × p j)
.

When Z(k)
j is large (or small), a significantly large (or small) num-

ber of nodes with degree j will probably appear in cluster k. In
this paper, we use these Z-scores as a useful measure to charac-
terize each functional cluster. Recall that the maximum degree of
nodes in spatial networks is restricted to relatively small numbers.

In our visualization method which is based on the actual loca-
tion of each node mapped from street intersections, we plot these
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Table 2 Basic statistics as network.

City Area |V | |E| p1 p2 p3 p4 p>4 C L

Shizuoka 155 km × 119 km 110,925 162,322 .121 .070 .576 .228 .005 0.05 83.09
San Francisco 85 km × 55 km 110,700 156,821 .173 .037 .583 .198 .009 0.04 79.43
Barcelona 45 km × 30 km 66,790 99,387 .103 .031 .659 .201 .006 0.06 53.07
Washington D.C. 23 km × 18 km 24,564 38,053 .096 .028 .571 .293 .012 0.05 51.89

Fig. 2 Computation times for four cities, where black dashed lines, blue solid lines, and red solid lines
with squares stand for Lazy-evaluation, Medoid-pruning, and Proposed methods, respectively.

nodes by assigning an individual color to each cluster. In our ex-
periments we set the number of clusters to K = 5 and assigned
green, blue, red, yellow, and magenta to V (1), · · · ,V (K) in this or-
der. Here, we consistently use the same color scheme for different
networks to contrast the differences of each network.

5. Experimental Data

We used the OpenStreetMap (OSM) data of the following four
cities/urban areas: Shizuoka Prefecture, Barcelona and its sur-
rounding area, San Francisco and the bay area, and Washington
D.C., from Metro Extracts *1 in August, 2015. Three of the four
cities were selected as a subset of those previously studied [3],
but in our experiments, each area of these cities is more than 100
times larger than the one-square mile area used in that previous
study. Then we extracted all the points and lines tagged as high-
ways from the OSM data of each city and constructed individual
spatial networks by mapping the ends and the intersections of
the streets into nodes and streets between nodes into links. To
simplify our analyses, we deleted nodes that represent the curved
segments of highways by directly connecting both sides of the
deleted ones.

Table 2 shows the basic statistics of the networks for the four
cities, where C and L respectively denote the averages of the clus-
tering coefficient and the shortest path length over each network.
We can see that the area and the numbers of nodes and links,
|V | and |E|, are substantially different, and that the degree distri-
butions (defined by p j) as well as C and L are quite similar as
common characteristics of these spatial networks.

6. Experimental Evaluations

In this section, we evaluate the computational performance of

*1 https://mapzen.com/data/metro-extracts

our proposed algorithm and the characteristics of the extracted
functional clusters.

6.1 Evaluation of the Accelerating Algorithm
We evaluate the computational efficiency of the proposed tech-

niques for accelerating the k-medoids clustering phase under the
setting of the dimensionality of functional vector S = 10,000 and
number of clusters K = 5, 10. We compare the following three
methods. The first method, which only employs the LE technique
as a baseline, is called the (a) Lazy-evaluation method; the sec-
ond method, which employs both the LE and MP techniques, is
called the (b) Medoid-pruning method; and our proposed method,
which employs all of the LE, MP, and OP techniques, is the (c)
Proposed method, for which we changed the number of outlier
pivots H from 5 to 30. Here we performed our experiments us-
ing a computer system equipped with an Xeon processor E5-2470
2.3 GHz and 192-GB main memory.

In Fig. 2, we compare the computation times of the three meth-
ods with respect to the networks of the four cities, where the hor-
izontal and vertical axes respectively stand for the outlier pivots
and the computation times. In this figure, we only show the com-
putation times of the k-medoids clustering phase. From Figs. 2 (a)
and (b) for all the networks, we confirmed that our Proposed
method worked substantially faster than the Lazy-evaluation and
Medoid-pruning methods. In our experimental results, we em-
phasize that our Proposed method achieved from three to five
times better performance than the Lazy-evaluation method, which
is regarded as one of the most state-of-the-art methods. On the
other hand, for the desirable number of outlier pivots in our Pro-
posed method, our experimental results indicate that it depends
on the dataset. In the range of 5 ≤ H ≤ 30, as shown in Fig. 2,
the obtained results were almost the same. This result suggests
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that a relatively small number of outlier pivots is reasonable in
our Proposed method.

Next we evaluate the effects of the three pruning techniques in
our proposed method that accelerates the clustering phase. For
each k-th medoid selection step, let LE(k), MP(k), and OP(k)
be the sets of node pairs whose actual similarity calculations
are skipped by the LE, MP, and OP techniques. Recall that in
our proposed method, the LE, MP, and OP techniques are ap-
plied in this order. In this experiment, we set the number of
pivots to H = 30. Thus, the actual pruning rates of the LE,
MP, and OP techniques are calculated as α(LE(k)) = |LE(k)|/N2,
α(MP(k)) = (|LE(k) ∪ MP(k)| − |LE(k)|)/N2, and α(OP(k)) =
(LE(k) ∪ MP(k) ∪ OP(k)| − |LE(k) ∪ R(k)|)/N2, respectively.

In Fig. 3, we compare the pruning rates of the k-th medoid
selection step by changing k = 2 to 10, where the gray, blue,
and red bars respectively stand for the pruning rates of α(LE(k)),
α(MP(k)), and α(OP(k)). Recall that our method calculates the
first medoid, r1, by Eq. (2). From Fig. 3, for all the networks,
the LE technique did not skip any marginal gain calculation at
the step of k = 2, and it also worked quite poorly at the steps of
k = 4. This result indicates that each upper bound UB(w) was
a quite rough approximation to the actual marginal gain g(w; R)
at these steps. The MP technique also showed relatively poor
pruning rates at the step of k = 2. This is because just one pivot
was used by the MP technique. Therefore, by applying the OP
technique, our proposed method stably achieved reasonably high
pruning rates.

Fig. 3 Pruning rate for four cities, where gray, blue, and red bars stand for
LE, MP, and OP techniques, respectively.

Fig. 4 Cluster and Z-score distributions for four cities.

6.2 Quantitative Characterization for Extracted Clusters
We evaluated the extracted functional clusters by our method.

To this end, we characterized each of the extracted clusters by Z-
scores and visualized them by actual coordinates and consistently
ordered colors: green, blue, red, yellow, and magenta. Figure 4
shows cluster distribution p(k), which is located at the top left
in each subfigure, with the obtained Z-score distribution Z(k)

j for
each of the four cities by setting K = 5, where we assigned green,
blue, red, yellow, and magenta to V (1), · · · ,V (5) in this order, as
shown below in our visualization results.

From the cluster distribution results, the union of the 1st, 2nd,
and 3rd functional clusters occupied more than around 80% of
the total nodes. From the Z-score distribution results, for all
four cities, the 1st, 2nd, and 3rd functional clusters (V (1), V (2),
and V (3)) have common characteristics, i.e., significantly larger
Z-scores for nodes with degrees j = 3, j = 1, and j = 4, re-
spectively. On the other hand, the 4th and 5th functional clusters
(V (4) and V (5)) lack such shared characteristics. These differences
might be caused by the individual characteristics of these cities,
reflected by geographical restrictions and/or historical and cul-
tural backgrounds. These characteristics of the extracted clus-
ters can also be naturally explained by the nature of the greedy
algorithm employed in the FCE method. This algorithm gener-
ally selects the first medoid r1, creating a cluster with some av-
erage characteristics like 3-intersection regions, and then succes-
sive nodes r2, r3, . . . create those with such salient characteristics
as cul-de-sac and lattice regions. Thus, perhaps the three former
clusters (V (1), V (2), and V (3)) reflected the common characteris-
tics for these cities, while the two latter clusters (V (4) and V (5))
reflected the individual characteristics of each city. We explained
our experimental results using K = 5 as the minimum number,
which clearly and satisfactorily demonstrates the common and
individual characteristics for all four cities.

6.3 Qualitative Characterization for Extracted Clusters
Figure 5 shows our visualization results for the four cities,

where green, blue, red, yellow, and magenta are consistently used
in our experiments in this paper. From these results, all four cities
share the following similar characteristics: green 3-intersection
regions (V (1)), surrounded by blue cul-de-sac regions (V (2)), and
red lattice regions (V (3)).

Figure 6 (a) indicates the main landmarks in and around the
Shizuoka network, like Mt. Fuji, railway stations, mountainous
areas, the Pacific ocean, branch roads, and neighboring prefec-
tures. The red, green, magenta, blue, and yellow areas are dis-
tributed from the center of the main cities in this order. Each red
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Fig. 5 Visualization results by functional clusters.

Fig. 6 Annotation with main landmarks.

region approximately corresponds to the central area of each city,
where at least one railway station exists. Also, the green regions
mainly contain nodes whose degree is three and exist around each
red region. Based on these observations, we call the red and green
areas (functional cluster) the downtown and suburb regions. Sim-
ilarly, the blue regions contain many nodes, whose degree is one,
that exist in agricultural areas or at the foothills of mountains. The
yellow regions contain many nodes whose degree is two, which
means long continuous roads to other towns over mountainous
areas. A similar tendency can be seen in other cities used in
our experiments: Figs. 6 (b), 6 (c), and 6 (d). These observations,
which are naturally interpretable from the aspects of geograph-
ical restrictions, suggest the practical usefulness of our method.
As another advantage of our visualization results, we can intu-
itively understand the detailed regions of each city in terms of the
characteristics of interpretable functional clusters. Therefore, our
method is expected to work as a useful tool for developing and
planning city promotion and travel tours as well as understanding
and improving the usage of urban streets.

From Figs. 6 (b), (c), and (d), we get quite similar explanations
about the results for the other three cities, as discussed for
Shizuoka, especially for the first three functional clusters: V (1):
green regions, V (2): blue regions, and V (3): red regions. Due
to the property of the greedy algorithm used in our proposed
method, which computes a new medoid by fixing previously se-
lected medoids, a new functional cluster is usually formed by
splitting and specifying the existing ones. For example, the 5th
functional clusters (V (5): magenta regions) of San Francisco and
Washington D.C. are respectively formed from the third one (V (3):
red regions) and first one (V (1): green regions). For the 5th func-
tional clusters (V (5): magenta regions) in Fig. 4, the Z-score distri-
butions of Shizuoka and Washington D.C. are substantially differ-
ent from those of San Francisco and Barcelona. Figures 4 and 5

suggest that these functional clusters of the former two cities cor-
respond to peripheral areas for connecting city centers by 3-way
junctions, while those of the latter two cities are probably moun-
tainous areas characterized by cul-de-sacs. As mentioned ear-
lier, the 5th functional clusters are the individual characteristics
of these cities. By focusing just on the three former clusters (V (1),
V (2), and V (3)), our method can perhaps give strict definitions for
such ambiguously discussed notions as the boundaries between
urban and suburban areas.

6.4 Comparison to Results of Centrality Measures
We characterize our method in comparison to three representa-

tive centrality measures: Bonacich (eigenvector), closeness, and
betweenness centralities. For a given network, the Bonacich cen-
trality ranks each node by the principal component of an ad-
jacency matrix, the closeness centrality by the inverse of the
sum of the shortest path lengths, and the betweenness central-
ity by the passing rate over the shortest paths between any pair of
nodes [27].

Figures 7, 8, and 9 show our experimental results using these
centrality measures, where we plotted each node with a grada-
tion color from blue to red based on the rank by each central-
ity measure. As common characteristics for all four cities, the
Bonacich centrality typically gave high ranks to some regions
(faces) of relatively high degree nodes in city centers, represented
by train icons in Fig. 6. The closeness centrality gave high ranks
to some streets (lines) of continuously adjacent nodes, typically
on arterial roads, represented as red curves in Fig. 6, and the be-
tweenness centrality gave high scores to some points of isolated
nodes scattered widely all over the network. The highly ranked
regions obtained by the Bonacich, closeness, and betweenness
centrality measures were respectively represented as single types
of faces, lines, and points. In contrast to these centrality re-

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 7 Visualization results by Bonacich centrality.

Fig. 8 Visualization results by closeness centrality.

Fig. 9 Visualization results by betweenness centrality.

sults, our method extracted several types of regions represented as
faces, which can be more minutely characterized in terms of inter-
pretable functional clusters, where only the 3rd functional cluster
(V (3): red regions) might roughly coincide with the highly ranked
(blue) regions by Bonacich centrality. We empirically confirmed
that our results were substantially different from those obtained
by the representative centrality measures.

7. Conclusion

We addresse the problem of extracting functionally similar re-
gions in urban streets regarding them as spatial networks. To effi-
ciently deal with several large-scale networks, based on our previ-
ous algorithm for extracting functional clusters, we propose a new
method equipped with the lazy evaluation and pivot pruning tech-
niques for accelerating our previous algorithm with a new tech-
nique for characterizing these functional clusters and an effec-
tive way of visualizing them. In our experiments using the urban
streets of four cities, we first showed that our proposed method
achieves a reasonably high acceleration performance and pro-
duced a series of useful visualization results accompanied with
interpretable functional clusters. We also empirically confirm that

our results are substantially different from those obtained by rep-
resentative centrality measures. These promising results suggest
that we have also taken important steps toward tackling the in-
terpretation problem of extracted clusters (or clustering results),
which is one fundamental problem in data mining and machine
learning research. In the future, we will evaluate our method us-
ing various types of networks including social networks and es-
tablish more useful tools for analyzing functional clusters.
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