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A recent trend in computing has been to leverage dormant PC resources. To achieve this,
background applications such as peer-to-peer applications and PC Grid run on ordinary users’
PCs, sharing their computing resources. If not properly managed, the background applications
obtrude on the PC user’s active jobs. In particular, the contention over disk bandwidth
severely degrades performance. In this paper, we present DiscNice, a novel scheme for disk
bandwidth management that can host background applications unobtrusively. Its novelty lies
in the fact that it throttles disk I/O completely at the user-level. The user-level approach is
attractive for heterogeneous environments such as differently configured PCs over the world;
portability is enhanced and deployment is easier in comparison with kernel-level approaches.
Experimental results suggest that our prototype DiscNice running on Linux 2.4.27 incurs 12%
or less overhead, and gracefully ensures the unobtrusiveness of background applications.

1. Introduction

A recent trend in computing has been to
leverage dormant PC resources. To achieve
this, background applications aggregate the re-
sources of ordinary users’ PCs to accomplish
their tasks. Network applications such as peer-
to-peer (P2P) applications and PC Grid are
examples of background applications. Exam-
ples of P2P applications include KaZaA 1) and
Gnutella 16). They run on a huge collection of
ordinary users’ PCs to provide file sharing ser-
vices. A feature of these applications is that
they borrow user resources. In other words,
the user lends resources such as the CPU, the
memory, and the disk to these applications. A
PC Grid such as SETI@home 13) is another ex-
ample of background application. SETI@home
uses the CPU time, the disk space, and the net-
work I/O of its users’ PCs to search for artificial
radio signals coming from other stars. House-
keeping utilities such as backup utilities and
virus scanners are other kinds of background
applications. They are executed on ordinary
users’ PCs to keep them stable.

This new style of computing poses a signifi-
cant problem for resource management. If not
properly managed, background applications im-
pede the execution of the PC user’s active jobs,
because commodity operating systems (OSes)
cannot control the amount of resources allo-
cated to the background applications. This
problem is widely recognized 12), and has been
tackled by many research projects 9),11),17).

† Keio University

These projects differed in the target resources
they attempted to control and the layers (either
at the user- or kernel-level) in which resource
management is implemented. For example, the
user-level scheduler that Newhouse et al. pro-
posed 14) controls the CPU time at the user-
level, whereas idletime scheduler 8) controls the
network and disk I/O at the kernel-level.

To the authors’ knowledge, however, no prior
work has addressed the issue of controlling the
disk I/O rate at the user-level. This is proba-
bly because disk I/O is not conceivable at the
user-level. Disk I/O is not always accompanied
by file I/O issued by processes, because the un-
derlying OS caches and reads disk blocks in ad-
vance. Therefore, disk I/O cannot be directly
controlled at the user-level. Despite the dif-
ficulty of user-level control over disk I/O, disk
I/O still needs to be controlled at the user-level.
Since recent computing environments naturally
consist of heterogeneous hardware and OS plat-
forms, it would be unrealistic to assume we
could alter all OSes including proprietary ones
like Windows Vista. Therefore, a user-level
mechanism is required to enhance the porta-
bility and facilitate the deployment of such a
mechanism.

This paper presents the design and imple-
mentation of DiscNice, a mechanism for con-
trolling disk bandwidth at the user-level. To
control disk I/O at the user-level, DiscNice in-
fers what the internal behavior of the underly-
ing OS is and predicts the disk I/O size that
will be caused by file I/O. To infer internal
kernel behavior, we extensively used a concept
called graybox technology 2) and elaborated it
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to predict the disk I/O behavior. In graybox
technology, the underlying OS is treated as a
graybox, which means that we could exploit 1)
our knowledge of the OS, 2) the state informa-
tion the OS exposes to us, and 3) how the OS
reacts to various operations to predict the inter-
nal kernel behavior. By exploiting the graybox
knowledge on Linux, we developed a graybox
technique for predicting the disk I/O behavior.
Our technique could also be applied to Win-
dows Vista with minor modifications because it
does not rely on a detailed knowledge of Linux.

Unlike conventional approaches which just
stop the backgrounds or lower their priorities,
DiscNice provides graceful disk I/O sharing be-
tween foregrounds and backgrounds. DiscNice
enables the users to determine the amount of
disk bandwidth assigned to the backgrounds.
By adjusting the disk I/O rate for backgrounds,
the users can regulate the degree of disk I/O
contention. For example, a backup utility is as-
signed 1MB/s of disk bandwidth and run with
the foregrounds. Since the backup utility runs
with at most 1MB/s of disk bandwidth, the
foregrounds can run with reduced disk I/O con-
tention.

To determine how ‘nice’ DiscNice is, we
implemented the prototype on Linux 2.4.27.
The experimental results suggested that it
could predict the disk I/O behavior accurately
enough to control the disk I/O rate. Disc-
Nice controlled the disk I/O rate successfully
and prevented background applications from
degrading the performance of the PC user’s ac-
tive jobs. In addition, the overhead incurred by
using DiscNice was less than 12%.

The rest of the paper is organized as fol-
lows. Section 2 describes the necessity for the
control of disk I/O and addresses its difficul-
ties. Section 3 describes the key concept be-
hind the graybox technology. Sections 4 and 5
describe the design and implementation of Disc-
Nice. Section 6 presents the experimental re-
sults. Section 7 describes work related to ours.
Section 8 concludes the paper.

2. Necessity and Difficulty

2.1 Disk I/O is Obtrusive.
Disk access is one of the heaviest tasks im-

posed on computer systems and has a signifi-
cant impact on the performance of applications.
A background application often requires disk
access. For example, a backup utility accesses
a lot of files and directories from local disks to

Table 1 Performance degradation of sequential
caused by disk I/O contention with rsync.

Benchmark
Execution Increasing
time [sec] rate

w/o rsync [sec] 4.18 —
w/- rsync [sec] 17.49 418%

w/- low priority rsync 17.26 413%

Table 2 Performance degradation of tar caused by
disk I/O contention with rsync.

Benchmark
Execution Increasing
time [sec] rate

w/o rsync [sec] 4.47 —
w/- rsync [sec] 13.10 293%

w/- low priority rsync 12.82 287%

preserve them on remote or other local storages.
KaZaA 1) searches files requested by a user and
stores them on the local disk. It is well known
that the disk access seriously degrades the per-
formance of PC user’s active or foreground jobs.

To assess the extent of degradation caused
by background applications, we conducted an
experiment on a 2.8 GHz Pentium4 PC with
1024 MB of memory and a SCSI HDD, running
Linux 2.4.27. We prepared a background appli-
cation rsync that backs up a 600MB file to a
remote storage and two foreground applications
as follows.
• Sequential : Reads a 200 MB file sequen-

tially
• Tar : Unpacks a 50 MB archive file.
We measured the execution time for the two

foreground applications and the resources us-
age in three situations. First, we executed
each foreground application without the back-
ground application (rsync). They ran with-
out resources contention. Second, we measured
the usage and the time required to complete
the foregrounds with the background applica-
tion executed. Here, the foreground application
competed with the background for disk band-
width. In the last case, we executed the fore-
grounds with the background application whose
CPU priority was lowered by setting its nice
value to 19. To measure disk I/O rate per each
process, we modified the Linux 2.4.27.

Table 1 and Table 2 list the execution times
of foreground applications in the three situa-
tions. The execution time of sequential with
rsync is about 4.2 times longer than without
rsync. The execution time of tar with rsync
is about 2.9 times longer than without rsync.
Even if the CPU priority of the background
is lowered, the performance of the foregournds
still remains low.
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(a) Standalone (b) Sequential with rsync (c) Sequential with low priority rsync

(d) Standalone (e) Tar with rsync (f) Tar with low priority rsync

Fig. 1 Disk bandwidth usage.

(a) Standalone (b) Sequential with rsync (c) Tar with rsync

Fig. 2 CPU usage.

Figure 1 shows disk bandwidth usage in the
experiment. We plotted a mean value within
one second as disk I/O rate, based on a plot-
ting scheme used by the other paper 18). At
first glance, the execution time of tar is differ-
ent between Table 2 and Fig. 1. This is caused
by Delayed Write, one of the OS features to
improve system performance, as described in
Section 2.2. Therefore, disk I/O requests are
issued after tar finished its execution.

We can see that disk I/O contention occurs
when sequential and tar run concurrently
with rsync. When executed concurrently, disk
I/O rates of sequential and rsync are about
11MB/s and 10MB/s respectively, although
they are about 47 MB/s and 20 MB/s when exe-
cuted in standalone. After sequential finished
executing, disk I/O rate of rsync goes back to
20MB/s as in standalone because disk I/O con-
tention finished. Even if we lower CPU priority
of rsync, the disk I/O contention is hardly re-
solved. The situation similar to that described
above occurs in the case the foreground appli-

cation is tar.
We show CPU usage of the experiment in

Fig. 2 to confirm that the degradation of the
disk bandwidth usage is not caused by CPU
contention. Figure 2 suggests that CPU con-
tention did not occur. Even when the fore-
ground application is executed with rsync,
CPU usage of the system is at most 51%. In
addition, Fig. 2 reveals that the CPU usage is
lowered when the foreground is executed with
rsync. Since disk I/O contention delays seek-
ing data on disk, every application requesting
data on the disk cannot make progress and thus
CPU usage is lowered.

Figure 3 shows the memory usage. From
this figure, the memory was not exhausted in
this experiment. Even if the foreground is ex-
ecuted with the background application, the
memory usage is less than the available mem-
ory.

2.2 Difficulty
Disk I/O should be regulated because the

disk accesses of background applications de-
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Fig. 3 Memory usage.

Fig. 4 Difference between file I/O and disk I/O.

grade the performance of foreground jobs. We
propose DiscNice, a novel scheme of managing
disk I/O at the user-level. To control disk I/O,
we need to understand the difference between
file I/O and disk I/O.

Figure 4 outlines the difference between file
I/O and disk I/O. File I/O refers to the
read/write requests issued by a process. Note
that the file I/O issued by the processes can be
easily and completely monitored at the user-
level. Disk I/O, on the other hand, refers to
the load/store operations performed by the OS
to physically access the disk drive. To control
the contention over disk bandwidth, we must
regulate disk I/O, not file I/O, because file I/O
does not always cause disk I/O. For example,
reading a file does not always load data from
the disk drive. Even if data is actually loaded,
the disk I/O size is not always the same as that
for file I/O. These are caused by the underlying
OS for the following reasons.
• Disk Cache: Reading a file within the

disk cache does not incur disk I/O.
• Block-Based Access: Disk access is done

in units called blocks. Thus, the disk I/O
size is not always equal to the file I/O size.

• Read-Ahead: The underlying OS reads
one or more blocks of a file in advance.
Thus, the disk I/O size is often larger than
the file I/O size.

• Delayed Write: The underlying OS de-
lays writing back dirty blocks to the disk
until the dirty buffer becomes full. This

delay makes disk I/O asynchronous with
file I/O for writes. Since the asynchronous
write combines multiple writes on the same
file location, the disk I/O size is not always
equal to the file I/O size. This is described
in more detail in Section 4.4.

3. Graybox Technology

To control the contention over disk band-
width at the user-level, DiscNice monitors the
file I/O performed by target applications and
predicts the disk I/O behavior in the OS ker-
nel. As described in Section 2.2, the decision
of whether to issue disk I/O or not depends on
OS behavior. Therefore, it is difficult to pre-
cisely predict disk I/O at the user-level unless
the OS provides information on internal behav-
ior related to disk I/O.

Unfortunately, the popular OSes do not ex-
pose these pieces of information. Thus, a mech-
anism that will predict disk I/O is needed. In
this paper, we predict the disk I/O by apply-
ing the graybox technology proposed by Arpaci-
Dusseau, et al. 2). This enables us to predict
the internal state of the OS at the user-level.
When treating the OS as a graybox, we do not
change the OS source code but exploit the gen-
eral characteristics of the algorithms employed
by the OS. By exploiting this knowledge, we
can predict the internal state of the OS even if
there is no interface to obtain this state. More
specifically, we could exploit 1) our knowledge
of the OS, 2) the state information the OS ex-
poses to the users, and 3) how the OS reacts
to various operations. Linux could easily be
treated as a graybox, because its source code is
open and the proc file system provides some of
Linux’s internal states.

Arpaci-Dusseau, et al. 2) applied graybox
technology to predict whether there was a file in
the disk cache. This prediction was used to im-
prove the performance of grep. If multiple files
are to be processed, the modified grep predicts
which file is already in the disk cache, and re-
orders the file operations so that the file already
in the cache can be accessed first. By doing
this, the execution time of the modified grep is
about three times faster than the default grep.

Unfortunately, their technique cannot accu-
rately predict disk I/O behavior. Disk I/O be-
havior depends on not only the state of the
disk cache but also other internal states such
as file read-ahead and block-based access. We
extended their technique to predict disk I/O be-
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Fig. 5 Control flow in DiscNice.

havior.

4. User-level Disk Bandwidth Control

To regulate disk I/O, DiscNice throttles the
file I/O performed by target applications. As
described in Section 2.2, the file I/O is not al-
ways accompanied by disk I/O. To determine
whether to throttle the file I/O, DiscNice pre-
dicts the size of disk I/O that will be caused
by the file I/O. If disk I/O is not incurred, the
disk I/O size is zero. Below, we summarize how
DiscNice handles the following operations.
• Disk Cache: DiscNice must predict the

presence of a file within the cache to avoid
throttling the file I/O that hits the cache.

• Block-Based Access: To predict the disk
I/O size, DiscNice rounds up the file I/O
size to the multiples of the block size.

• Read-Ahead: DiscNice emulates the
read-ahead algorithm employed by the un-
derlying OS.

• Delayed Write: Disk I/O for writes is un-
controllable at the user-level because it is
done asynchronously with file I/O requests.
To keep the average rate of disk I/O lower
than a threshold, DiscNice delays write re-
quests for a while when a dirty buffer is
flushed.

4.1 System Design
In the design of DiscNice, the throttling pol-

icy is separated from the throttling mechanism.
DiscNice has three modules; the graybox mod-
ule, the policy module and the throttling mod-
ule. Figure 5 shows the control flow in Disc-
Nice. The graybox module predicts the disk
I/O size when a target application performs file
I/O. The policy module determines whether to
throttle the file I/O based on the disk I/O size
predicted by the graybox module. Then, the
policy module calculates the rate of file I/O to

throttle the disk I/O. The throttling module
throttles the file I/O. This design allows us to
change the throttling policy without modifying
the mechanism. By changing the policy, the
user can adjust the degree of disk bandwidth
contention.

The graybox module consists of three sub-
modules, i.e., cache detector, read-size predic-
tor, and write-size predictor. The cache de-
tector predicts whether there is a file within
the disk cache. When a file is read, the read-
size predictor predicts the actual disk I/O size
by considering block-based accesses and read-
ahead in the underlying OS. When a file is
written on, the write-size predictor predicts the
actual disk I/O size by considering block-based
accesses and delayed write.

4.2 Cache Detector
The cache detector predicts whether a file to

be read is in the disk cache. The algorithm used
for the cache detector is the same as the one
used in the Arpaci-Dusseau’s graybox technique
except for a minor tuning. The cache detector
measures the time required to probe a file (i.e.,
read a single byte from the file). If the probe
returns quickly, it judges that the file is within
the disk cache. If the probe returns slowly, it
considers the file is not in the cache.

When a target application reads a file, the
M -bytes region from the reading point (file
pointer, fp) is examined to detect which parts of
the region are within the disk cache. We divide
the M -bytes region into smaller m-bytes re-
gions. We probe �M/m� points in the M -bytes
region; i.e., fp+m, fp+2m, ... , fp+�M/m�·m.
If the probe into fp + k ·m returns quickly, the
m-bytes region from fp +(k−1) ·m is regarded
as being in the disk cache. If the probe re-
turns slowly, the region is not considered to be
in the cache. The following reads do not al-



88 IPSJ Transactions on Advanced Computing Systems Dec. 2007

Fig. 6 An example of cache detection.

ways invoke the cache detector. If the current
file pointer is within the M -bytes region that
has already been examined, the cache detector
is not invoked. The results from the previous
probes are reused. Otherwise, the cache detec-
tor is invoked as previously described.

For example, imagine that a target applica-
tion issues read(fd, buf, 4096). Let M and
m be 5MB and 1.25MB respectively, as out-
lined in Fig. 6. If the probes into the points at
1.25MB and 3.75 MB return quickly, the cache
detector considers the region from the reading
point to the 1.25 MB point and the region from
the 2.5 MB point to the 3.75 MB point to be
within the disk cache. After that, if the target
application issues read(fd, buf, 8192), the
cache detector is not invoked because the cur-
rent file pointer is within the M -bytes region
already examined.

M must be selected carefully. If M is too
large, the conditions for the M -bytes region
may change until the current file pointer goes
beyond the M -bytes region, and this lowers the
accuracy of the cache detection. If M is too
small, the cache detector always considers the
entire region is within the cache because the
underlying OS reads the file in advance and the
region around the file pointer is usually in the
cache. In the current implementation, M is set
to 5 MB.

4.3 Read-Size Predictor
The read-size predictor predicts the disk I/O

size for reads. When the target application is-
sues read(fd, buf, n), the read-size predic-
tor invokes the cache detector. If the file to be
read is in the cache, the predicted disk I/O size
is zero. If the read file is not in the cache, the
read-size predictor rounds up n to multiples of
the block size. Then, it adds the read-ahead size
to the rounded n by emulating the read-ahead
behavior of the underlying OS.

To emulate read-ahead, we do not need the
full knowledge of the read-ahead algorithm used
by the OS. It is unnecessary to emulate the
read-ahead algorithm accurately although our
method involves some errors. In most cases,
rough emulation would be sufficient to control

disk I/O, as our experiments suggest; the er-
ror with read prediction by DiscNice is less
than 5%, even though it does not fully emulate
Linux’s read-ahead.

4.4 Write-Size Predictor
To predict the disk I/O size for writes, we

must carefully consider not only block-based ac-
cess but also delayed write. Delayed write is
an OS behavior that delays writing back dirty
blocks to the disk until the dirty buffer becomes
full. Since it combines multiple writes on the
same file location, the disk I/O size is not al-
ways equal to the file I/O size. For example,
imagine that a process opens a new file and
writes 4 KB data on the file, then updates to-
tally a 2 KB region of it. When the 4KB data is
written on that file, the OS creates 4 KB dirty
blocks in memory (Fig. 7 (a)). When the file
is updated, the OS writes the updates on the
dirty blocks (Fig. 7 (b)). In this case, although
the total file I/O size is 6 (= 4 + 2)KB, the ac-
tual disk I/O size is 4 KB; the updates do not
cause disk I/O because the OS does not cre-
ate any new dirty blocks. In the same example,
if the file is deleted instead of being updated,
the total file I/O size is 4 KB but the actual
disk I/O size is zero; the OS removes the dirty
blocks to avoid unnecessary disk writes.

To deal with the difference generated by de-
layed write, we prepared an update region ta-
ble which retains updated regions of files un-
til the dirty buffer is written back to the disk.
When a target application issues write(fd,
buf, n), the write-size predictor calculates the
updated region of the file on which the appli-
cation writes data; the write-size predictor re-
gards [�fp/b� · b, �(fp + n) /b� · b) as being up-
dated, where b denotes the block size. Then,
the write-size predictor refers to the update re-
gion table. If the calculated region is registered
in the table, the write-size predictor considers
that the write() will not incur disk accesses.
Otherwise, the write-size predictor registers the
region in the table. If a file is unlinked, the reg-
istered regions of the file are deleted. When the
underlying OS writes the dirty blocks back to
the disk, the write-size predictor calculates the
total size of the updated regions by looking up
the table and regards the calculated size as the
disk I/O size for writes. After that, the write-
size predictor notifies the policy module of the
size and clears the update region table.

In the above example (shown in Fig. 7), when
a file is opened and written, the size predic-
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(a) When a file is created (b) When the file is updated

Fig. 7 OS behavior in file creation and updates.

(a) When a file is created (b) When the file is updated

Fig. 8 Write-size predictor behavior in file creation and updates.

tor registers the 4KB region in the update re-
gion table (Fig. 8 (a)). When the file is up-
dated, the update region table is not changed
because the updated regions are already reg-
istered (Fig. 8 (b)). When the dirty buffer is
flushed, the write-size predictor sends “4KB”
(the total size of the registered regions) to the
policy module and clears the update region ta-
ble.

5. Implementation

We developed the prototype DiscNice on
Linux 2.4.27. The prototype is composed of
the libDiscNice library, the write-adjuster
process, and the policyd process. Figure 9
outlines DiscNice’s architecture. LibDiscNice
is a dynamic library linked with a target ap-
plication. It contains the cache detector, the
read-size predictor, and the throttling module.
It monitors the file I/O performed by the tar-
get application. When a target application re-
quests to read files, libDiscNice predicts the
disk read size by calling the read-size predic-
tor and the cache detector. When a target ap-
plication requests to write on or delete files,
libDiscNice notifies the write-adjuster of
the requests. The write-adjuster is a process
that implements write-size predictor. Write-
size predictor must collect write requests of tar-
get applications to predict the disk I/O size
with the update region table. Write-size predic-

tor is separated from libDiscNice because this
design makes it easier to manage the update re-
gion table. LibDiscNice and Write-adjuster
send the predicted disk I/O size to the policyd
process. After receiving requests to write on
or delete files, write-size predictor is invoked.
Then, the policyd process determines the file
I/O rate based on a given policy. Finally, the
throttling module in the libDiscNice requests
the file I/O rate from the policyd and throttles
the requested file I/O on the rate as directed by
the policyd process.

5.1 LibDiscNice
LibDiscNice hooks all file I/O requests. It

overrides the standard functions in libc related
to file I/O. In the current implementation,
read(), write(), and unlink() are overrid-
den. To override these functions, we used the
facility of library preload that forces a specific
library to be linked before all other libraries.
In Linux, we can specify the preloaded library
with the environment variable LD PRELOAD.

After hooking the request to read files,
libDiscNice predicts and notifies policyd
process of the disk read size. When write
or delete requests are hooked, libDiscNice
notifies write-adjuster of the requests.
LibDiscNice communicates with the policyd
and write-adjuster through a TCP/IP con-
nection. When the predicted disk I/O size is
zero, it is not sent to policyd, to avoid unnec-
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Fig. 9 DiscNice architecture.

essary interprocess communications.
When a child process is spawned by a tar-

get application, it is automatically throttled
by DiscNice because it is also linked with
libDiscNice. In the current policy, the disk
I/O issued by the child process is charged to
the parent process. If necessary, the child pro-
cess can be charged separately from the parent
process.

5.2 Write-adjuster
When a target application invokes write(fd,

buf, n), libDiscNice sends the current
position of the file pointer and n to
write-adjuster. Then, write-adjuster in-
vokes the write-size predictor. The write-size
predictor checks whether the updated region is
registered in the update region table, and reg-
isters it if necessary.

The update region table is a hash table of
the wpred st structure, which is looked up with
an inode-number. The wpred st structure has
the inode-number of a file and an array which
retains the update regions of the file.
struct wrepd_st {

/* file’s inode-number */
ino_t ino;

/* updated region */
boolean wpos[MSIZE];

};
The array wpos retains the updated ranges of
the file in 4 KB units because Linux 2.4.27
accesses files in the disk in 4 KB units.
If a value of wpos[i] is true, the region
[i · 4 KB, (i + 1) · 4 KB) is regarded as being
updated. For example, when a target applica-

tion opens a new file and writes 100KB data on
it from the beginning, the write-size predictor
creates a new entry in the update region ta-
ble. Then, it pushes trues in the indices from 0
to 24 (= 100 KB/4 KB − 1) of the wpos array.
If the file is unlinked, the write-size predictor
deletes the entry associated with it. To predict
the disk I/O size for writes, the wsp counts the
number of trues in the update region table. In
the prototype, the wpos is implemented as a
simple array. To deal with huge files, the wpos
should be implemented as a tree structure.

When the OS writes dirty blocks back to
the disk, the write-size predictor sends the pre-
dicted size to the policyd process and then
clears the update region table. The write-size
predictor monitors the proc file system to know
when the dirty buffer is flushed. The proc
exposes the number of written disk blocks in
the whole system. By monitoring the change
of this value, the write-size predictor detects
the time of flushing of the dirty buffer. We
believe that our scheme is applicable to differ-
ent OSes because modern OSes expose the in-
ternal states. For example, Windows supports
System Information Functions, Solaris supports
Dtrace 4) and so on.

To reduce the prediction overhead, we re-
duced the number of accesses to the proc file
system. It is expensive to access the proc file
system every time write() is called. In the pro-
totype, the write-size predictor checks the proc
file system every 500 ms. As shown in Section
6.1 and 6.3, this optimization does not incur
serious loss of prediction accuracy.
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Fig. 10 Rate-window.

5.3 Policyd Process and the Current
Policy

The policyd process receives the predicted
disk I/O size and then invokes function
policy() which implements the throttling pol-
icy. The signature of policy() is policy(pid t
pid, size t predicted). The policy() takes the
process ID and the predicted disk I/O size. It
returns the file I/O rate by which the process
specified by pid should perform the file I/O.

The current policy employs rate-windows 18).
It restricts the disk I/O rate performed by a
target application below a user-defined thresh-
old. To regulate disk I/O rate, we used a sliding
window of recent disk I/O requests to compute
the average rate for a target application. The
target process is put to sleep when it requires
disk I/O that would cause its disk I/O rate to
exceed the threshold.

When a target application requires disk I/O,
the current policy records the following infor-
mation; the predicted disk I/O size and the
time elapsed from the last disk I/O. The policy
calculates the disk I/O rate during the last N
seconds from these pieces of information (see
Fig. 10). Let the threshold be R KB/s, and
assume that the disk I/O size during the last
N seconds is B KB. If B/N ≤ R, the re-
quested disk I/O would not exceed R. There-
fore, policy() directs the throttling module to
execute the file I/O. Otherwise, since the re-
quested disk I/O would exceed R, policy()
sleeps for B/R − N time and then directs the
throttling module to execute the file I/O. In
the prototype, N is set to 1.

Note that B may become large when the dirty
buffer is flushed because the underlying OS
writes back dirty blocks to the disk in batches.
As a result, B/N may exceed R just after the
dirty buffer is flushed. In the current policy,
DiscNice delays file I/O requests until B/N be-
comes less than R. By inserting the delay, Disc-
Nice limits the average disk I/O rate to less
than R.

We reduced the number of libDiscNice’s

communications with the policyd to reduce
the overhead. It is wasteful for libDiscNice to
obtain a file I/O delay time from the policyd
every time write() or unlink() is called, be-
cause OS writes blocks to the disk in batches.
The libDiscNice requests the time per 300 ms.
This does not seriously affect prediction accu-
racy, as is shown in Section 6.1 and 6.3.

5.4 Read-Size Predictor
There are several things to be noted in im-

plementing the read-size predictor. In Linux
2.4.27, the file in the disk drive is accessed in
the unit of page size (4 KB), even though the
disk block size is 1 KB. Therefore, DiscNice re-
gards the block size as 4 KB.

To emulate read-ahead in Linux, we exam-
ined the source code of Linux 2.4.27. Linux
2.4.27 employs two modes for file read-ahead:
synchronous and asynchronous 3). Linux starts
reading a file in synchronous mode, in which
the read-ahead size is fixed at 4 KB. If the
next read is sequential, Linux switches to asyn-
chronous mode. In asynchronous mode, the
read-ahead size increases while the file is read
sequentially. Otherwise, Linux remains in syn-
chronous mode.

DiscNice only emulates the synchronous
mode. Emulating the asynchronous mode
would increase the accuracy of disk I/O predic-
tion. However, when the asynchronous mode is
used with DiscNice, the read-ahead size will not
increase. Since the probes done by the cache de-
tector are regarded as random access, the read-
ahead size is reset to 4 KB periodically. Thus,
disk I/O prediction is still sufficiently accurate
even if the asynchronous mode is not emulated.
In fact, the experimental results in Section 6
demonstrate that precision is satisfactory. Fur-
thermore, the overhead caused by nullifying the
asynchronous mode is not large in actual appli-
cations.

5.5 Discussion
Linux has disk I/O not induced by file I/O.

The mmap() system call maps files to memory.
When the mapped memory is accessed for the
first time, Linux loads the accessed page from
the disk into the memory. Therefore, the cur-
rent DiscNice cannot detect disk I/O that have
originated from mmap(). DiscNice can be ex-
tended to detect this kind of disk I/O; It pro-
tects the mapped memory with the mprotect()
system call so that the libDiscNice can be no-
tified of access to the memory. Since a page
fault only occurs when a memory page has been
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Table 3 Experimental environment.

CPU Pentium 4 2.8GHz
Memory 1,024MB
HDD 7200 rpm, SCSI
OS Linux 2.4.27

accessed for the first time, the overhead would
not be that large.

There is one more thing to be noted. Throt-
tling malicious applications is beyond the scope
of this paper. The current implementation of
DiscNice assumes that background applications
are trusted. Therefore, a malicious application
can bypass the I/O control with DiscNice. For
example, a malicious application could disable
the libDiscNice by calling read(), write()
and unlink() directly. Extending DiscNice to
defend against these malicious applications is
an interesting research topic that bears further
investigations.

6. Experiments

We conducted experiments to find out how
effective DiscNice is. The experimental envi-
ronment is summarized in Table 3.

6.1 Micro-benchmark
To demonstrate how precise DiscNice’s pre-

diction is, we compared the actual disk I/O size
to the predicted size. Linux 2.4.27 was modified
to record the total disk I/O size per process. We
prepared the following benchmark programs.
• Sequential: Reads a 600 MB file sequen-

tially.
• Random: Reads a 600 MB file randomly 10

times.
• Stride: A single byte in a 600 MB file is

read every 12KB.
• Create: Creates a 400 MB file and fills it

with the character ‘a’.
• Region-Write: Write 10 KB data in the

same region of a 400MB file 10,000 times.
• Create-Delete: Creates and unlinks a

10KB file 10,000 times.
Table 4 compares the real disk I/O size to

the predicted disk I/O size. In all cases, the
error margin is less than 1%.

To find out whether DiscNice could reg-
ulate disk I/O, we measured the disk I/O
rate for micro-benchmark programs except for
benchmarks which did not almost issue disk
I/O, Region-Write and Create-Delete. The
threshold was set to 5 MB/s. For comparison,
we also measured the disk I/O rate without
running DiscNice. Figure 11 plots the disk

(a) Sequential

(b) Random

(c) Stride

(d) Create

Fig. 11 Results of throttling micro-benchmark
programs.

I/O rates for the benchmarks. The x-axis is
the elapsed time, and the y-axis is the disk I/O
rate. The solid lines plot the disk I/O rates con-
trolled by DiscNice. The dotted lines plot the
rates not controlled by DiscNice. In the graph
for create, the disk I/O rate is averaged over
intervals when the dirty buffer was flushed, be-
cause the disk write was batched. From Fig. 11,
we can see that DiscNice successfully throttles
disk I/O.
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Table 4 Accuracy of disk I/O prediction (micro-benchmark).

Benchmark Sequential Stride Random Create Region-Write Create-Delete

Actual disk
615, 022, 592 411, 250, 688 491, 073, 536 409, 612, 288 24, 576 0

I/O [byte]
Predicted disk

615, 006, 208 410, 173, 440 492, 625, 920 409, 600, 000 24, 576 0
I/O [byte]
Error margin −0.00% −0.26% 0.32% −0.03% 0% 0%

Table 5 DiscNice configuration.

Configration Name
Cache Read-size Write-size

detector predictor predictor
All-off off off off
CacheD on off off
ReadP off on off

CacheD&readP on on off
All-on on on on

We can also say that the cache detector has a
small side effect on disk I/O. The cache detec-
tor causes the extra disk I/O to predict whether
a file to be read is in the disk cache. Stride is
the worst case in our experiment because it per-
forms a lot of small reads but DiscNice success-
fully throttles the disk I/O rate (Fig. 11 (c)).

6.2 Effectiveness of DiscNice Modules
To confirm each module of DiscNice con-

tributes to controlling disk I/O rate, we pre-
pared the benchmark consisting of the following
four phases.
( 1 ) Random-Read phase: Reads a 200 MB

file randomly 10 times.
( 2 ) Stride-Read phase: A single byte in a

200 MB file is read every 12KB.
( 3 ) Region-Write phase: Writes 10 KB data

in the same region of a file 10,000 times.
( 4 ) Create-Delete phase: Creates and un-

links a 10KB file 10,000 times.
This benchmark was executed with DiscNice

in the five configurations summarized in
Table 5. Each configuration turned on and
off some modules of DiscNice (cache detector,
read-size predictor and write-size predictor).

The results are shown in Fig. 12. The thresh-
old was set to 5 MB/s. In all-off which cor-
responds to the control of only the file I/O rate
(Fig. 12 (a)), disk I/O is throttled excessively in
the random-read phase because DiscNice throt-
tles the file access for data in the disk-cache.
In addition, it cannot throttle disk I/O derived
from read-ahead and block-based access. As
a result, disk I/O rate exceeds the threshold
(5MB/s) in the stride-read phase.

When the cache detector is turned on, Disc-
Nice successfully avoids throttling file I/O that
accesses data in the disk cache (Fig. 12 (b)).

But the disk I/O derived from read-ahead and
block-based access is not controlled well; the
disk I/O rate exceeds the threshold in the
stride-read phase.

When the read-size predictor is turned on,
DiscNice successfully throttles disk I/O derived
from read-ahead and block-based access, but
regulates excessively the access in the random-
read phase (Fig. 12 (c)).

When the cache-detector and the read-size
predictor are turned on, DiscNice controls disk
I/O rate successfully in the stride-read phase
(Fig. 12 (d)). DiscNice also unnecessarily throt-
tles file write requests that will not cause disk
I/O in region-write and create-delete phases.

From Fig. 12 (e), we can see that all-on
successfully throttles disk I/O rate without
largely exceeding the threshold. This means
that DiscNice with all-on avoids throttling
file I/O which does not accompany disk I/O in
the random-read, region-write and create-delete
phases. Thus, the execution time of all-on is
the shortest in all the configurations.

We also observed how each module of Disc-
Nice affects the performance of a foreground
application. We prepared a foreground appli-
cation, sequential, which sequentially reads
five 600MB files. As a background applica-
tion, we used a benchmark called bench sim-
ilar to the one described above; we swapped
the stride phase for the random phase in the
above benchmark to explicitly show effective-
ness of our modules. We concurrently exe-
cuted the foreground application with the back-
ground controlled by DiscNice, and measured
execution times. Note that the performance of
sequential is degraded due to disk I/O con-
tention with bench.

Table 6 lists the results. The threshold is
set to 3 MB/s. At the first glance, the read-
ers might consider that all-off and readP are
better than all-on since the execution times of
sequential are about 1% shorter than all-on.
This is because DiscNice excessively throttles
file I/O rate for bench. The excessive throt-
tling of file I/O slightly shortens the execu-
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(a) All-off

(b) CacheD

(c) ReadP

(d) CacheD&readP

(e) All-on

Fig. 12 Results of throttling micro-benchmark
programs.

Table 6 Comparison of execution times in different
DiscNice configurations.

Configuration
Sequential Bench

[sec] [sec]

All-off 371.47 601.49
CacheD 386.13 484.45
ReadP 371.90 629.12

CacheD&readP 375.26 448.40
All-on 375.32 414.57

Table 7 Accuracy of disk I/O prediction (macro-
benchmark).

Benchmark Tar Make Grep

Actual disk
435, 482, 624 48, 271, 360 215, 965, 696

I/O [byte]
Predicted disk

430, 954, 752 46, 735, 360 206, 376, 960
I/O [byte]
Error margin −1.0% −3.2% −4.4%

tion time of the foreground application but the
performance of the background application is
severely degraded in all-off and readP; the
execution times of bench in all-on and readP
are at worst 1.5 times longer than the other con-
figurations. On the other hand, the execution
time of the foreground is slightly increased in
all-on but the background finishes the execu-
tion fastest.

6.3 Macro-benchmark
To find out how capable DiscNice is in actual

applications, we prepared the following bench-
mark programs.
• tar: Unpacks a 200 MB archive file.
• make: Compiles Apache 21) 2.0.52. The to-

tal size of the source code is about 8MB.
• grep: Searches for lines containing ‘epoch’

in the source code and documents for Linux
kernel 2.4.27. The total file size is about
200 MB.

Table 7 compares the actual disk I/O size
and the predicted disk I/O size. The prediction
errors are less than 5% in the benchmarks. The
error is slightly larger in grep. This prediction
error is caused by reading directories since the
current DiscNice does not hook a system call
for reading these.

To find out whether DiscNice could regu-
late disk I/O in real applications, we measured
the disk I/O rate for these benchmarks. The
threshold was 5MB/s for tar, 500 KB/s for
make, and 3 MB/s for grep. Figure 13 shows
the results. The x-axis represents the elapsed
time, and the y-axis is the disk I/O rate. The
solid lines plot the disk I/O rates controlled
by DiscNice. The dotted lines plot the rates
not controlled by DiscNice. From Fig. 13, we
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(a) Grep (Disk I/O threshold is set to 3MB/s)

(b) Tar (Disk I/O threshold is set to 5MB/s)

(c) Make (Disk I/O threshold is set to 500KB/s)

Fig. 13 Results of throttling macro-benchmark
programs.

can see that DiscNice works well for grep be-
cause it is the read-only benchmark. In the
other benchmarks that involved write opera-
tions, there are some spikes that exceed the
threshold lines. These spikes occur when the
dirty buffer is flushed. For example, look at the
circled region in Fig. 13(b). The disk I/O rate
is below the threshold for a while. When the
dirty buffer is flushed, it exceeds the thresh-
old temporarily. After that, disk I/O is not
issued, since DiscNice delays file I/O requests
until the average disk I/O rate becomes lower
than the threshold. Figure 14 shows the av-
erage disk I/O rate over intervals between the
buffer flush and the following disk I/O. The
circled region in Fig. 14 (a) corresponds to the

(a) Tar

(b) Make

Fig. 14 Average disk I/O rate of tar and make with
DiscNice.

Table 8 Overhead incurred by DiscNice.

Benchmark Tar Make Grep
w/o DiscNice [sec] 29.87 97.13 27.87
w/- DiscNice [sec] 30.78 108.55 27.98

Overhead 3.05% 11.76% 0.40%

one in Fig. 13 (b). In Fig. 14, we can see that
the average disk I/O rates in tar and make are
each below the threshold. This suggests that
DiscNice successfully throttles the disk I/O.

6.4 Overhead
To measure the overhead incurred by Disc-

Nice, we compared the execution times of
macro-benchmarks controlled and not con-
trolled by DiscNice. The threshold was set to
infinity.

Table 8 lists the results. The overhead is
less than 4.0% in tar and grep. The one rea-
son for the overhead is the use of Linux’s unso-
phisticated utilities of interprocess communica-
tion. With the improvement of these utilities,
we could lower the overhead. The overhead of
make is higher than those of other benchmarks.
Since make uses CPU time more frequently than
disk bandwidth, DiscNice has a greater impact
on performance. We can see that the overhead
incurred by DiscNice is less than 12.0%.

Note that these overheads include the side
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Table 9 Comparison of execution times of
sequential.

Benchmark
Execution Increasing
time [sec] rate

w/o rsync 4.18 —
w/- controlled rsync (1MB) 4.81 106%
w/- controlled rsync (3MB) 5.91 143%
w/- controlled rsync (5MB) 8.27 201%

w/- low priority rsync 17.26 413%
w/- rsync [sec] 17.49 418%

Table 10 Comparison of execution times of tar.

Benchmark
Execution Increasing
time [sec] rate

w/o rsync 4.47 —
w/- controlled rsync (1MB) 5.02 112%
w/- controlled rsync (3MB) 6.73 151%
w/- controlled rsync (5MB) 9.15 205%

w/- low priority rsync 12.82 287%
w/- rsync [sec] 13.10 293%

effect of the cache detector. As described in
Section 5.4, the cache detector affects the per-
formance of the target application because the
probes by the cache detector disturb the read-
ahead mechanism of the underlying Linux. In
our benchmarks, tar is the worst case because
it reads a 200 MB sequentially. But the over-
head of tar is less than 4.0%.

6.5 Unobtrusiveness of Background
Applications

To demonstrate that DiscNice can make
background applications unobtrusive, we con-
ducted an experiment similar to that described
in Section 2.1. We measured the execution
time for sequential and tar with the back-
ground application rsync controlled by Disc-
Nice. The threshold was set to 1MB/s, 3 MB/s,
and 5 MB/s.

Table 9 lists the execution times for
sequential. We can see that the execution
time for sequential with uncontrolled rsync
is about three times longer than that without
rsync. By controlling rsync, the execution
time improves dramatically. When the thresh-
old is set to 1 MB, the increase in execution
time is about 6%. When the threshold is set
to 5MB, the increase is about 101%, which is
much less than the 318% in the uncontrolled
case.

Table 10 lists the execution times for tar.
Similarly to the case of sequential, the exe-
cution time is improved by controlling rsync.
When the threshold is set to 1 MB, the increase
in the execution time is about 12%. When the
threshold is set to 5 MB, the increase is about

105%. These results suggest that DiscNice can
prevent a background application from obtrud-
ing on the user’s active jobs.

7. Related Work

Some applications, such as SETI@home 13)

and Folding@home 10), attempt to avoid re-
source contention by only running themselves
when the screen saver is running. This ap-
proach relies on the assumption that the system
is idle if and only if the screen saver is running.
This assumption is not reasonable because the
PC user’s jobs may be active even if the screen
saver is running. In addition, numerous PC re-
sources are often idle even if the screen saver is
not running.

Rate-window 18) is a scheme for restricting
I/O performed by a target application. It is
implemented as a loadable kernel module. The
disk I/O size, in the rate-window, is calculated
from the ratio of file I/O and disk I/O requests.
The disk I/O size is obtained from the proc
file system. The disk I/O size obtained here is
not for each process but the total size of disk
I/O incurred by all the processes. Therefore,
it is difficult to determine the disk I/O size for
each process. If two processes, whose disk I/O
ratios are vastly different, compete with each
other for disk bandwidth, the calculated disk
I/O sizes are erroneous. As a result, if the ac-
tual disk I/O size of the target is larger than
the calculated disk I/O size, the target process
is not sufficiently throttled and the performance
of the user’s active job deteriorates.

MS Manners 7) is a mechanism that em-
ploys progress-based regulation 19) to pre-
vent low-importance processes from degrad-
ing the performance of high-importance pro-
cesses. MS Manners monitors the progress of
low-importance processes and determines when
they should politely defer to a high-importance
process. In MS Manners, the user cannot spec-
ify the amount of resources that a background
application can borrow from the PC user.

Entropia 6) is a desktop grid system running
on Windows, which monitors and limits the ap-
plication use of a variety of important resources
such as the CPU, the memory, and the disk.
Entropia limits the amount of disk use but does
not control the disk bandwidth.

A user-level sandbox 5) enforces quantitative
restrictions on the use of resources by applica-
tions. Newhouse and Pasquale 14) developed a
user-level scheduler that allows the user to con-
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trol the CPU time. Neither of these supports
the control of the disk bandwidth.

Much work has been done in the area of pro-
cess scheduling and resource control 8),15),20),22)

in the context of the OS kernel. Disk I/O could
be gracefully controlled if it is implemented at
the kernel-level because the kernel could know
the exact size of disk I/O with a minimum over-
head. Our contribution is that the disk I/O can
be controlled at the user-level with a modest
overhead and greater precision.

8. Conclusion

A background application such as housekeep-
ing and PC Grid shares the resources of a user’s
PC to accomplish a given task. The background
application often competes with and degrades
the performance of the user’s active jobs. In
this paper, we presented DiscNice, a user-level
mechanism of controlling the disk bandwidth; it
prevents background applications from compet-
ing for the disk bandwidth. DiscNice predicts
disk I/O behavior in the kernel from the file I/O
size and from knowledge of the underlying OS.
By doing this, DiscNice can regulate disk I/O
at the user-level. The prototype implementa-
tion of DiscNice runs on Linux 2.4.27, and the
experimental results suggest that the DiscNice
can control disk I/O with a modest overhead
and a great precision.
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