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Many service providers distribute various kinds of content over the Internet.
They often use replica servers to provide a stable service. To position them
appropriately, service providers must predict the demands for their services
and provide a computing capacity sufficient for servicing the demands. Un-
fortunately, predicting demands is difficult because the demand for a service
usually fluctuates. Our research group is developing ExaPeer, an infrastruc-
ture that apportions computing capacity to services running on hundreds or
thousands of trusted machines all over the Internet. ExaPeer allocates com-
puting capacity to the services running on top of ExaPeer. In this paper, we
describe ExaPeer’s approach to dynamically select candidate spots for replica
servers. This approach, called EPSS (ExaPeer Server Selection), detects fluctu-
ations in the demand and dynamically selects candidate spots on which replica
servers should be placed to best meet the demand. Even if the demand on a
service increases dramatically within a short term, EPSS quickly responds to
the situation and rapidly selects many candidates for replica servers. To deal
with short-term fluctuations, EPSS is designed to be lightweight; each machine
determines whether to be a candidate spot independently of others. Experi-
mental results demonstrate that the candidate spots selected by EPSS work
better than those selected by heuristics even if the scale of the demand changes
rapidly. For 90% of all client accesses, the round-trip-times (RTTs) with EPSS
were 23% less than those with randomly selected machines even if the number
of machines is 6.7 times larger than EPSS.

1. Introduction

Many service providers distribute various kinds of content such as web pages,
streaming videos, and music over the Internet. Getting these contents over the
Internet is the daily activity of many people. To provide a stable service, service
providers often prepare replica servers, or mirror servers, and position them ap-
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propriately on the Internet. The robustness of the service is improved because
the load is distributed over several servers. Even if some of the servers are not
functioning or reachable, the other servers can continue to provide the service.

To position replica servers appropriately on the Internet, service providers must
predict demands for their services and provide a computing capacity sufficient
for meeting the demands. If the estimated capacity is lower than the capacity
actually needed, they cannot provide the service in a satisfactory quality. If the
estimated capacity is abundant, the computing resources prepared for the service
are wasteful and often costly. If the demand for a service is almost constant, the
provider can easily increase or decrease computing capacity to eventually meet
the actual demand. Unfortunately, the demand for a service generally fluctuates
on the Internet; so providers have little time to adjust the capacity.

To deal with demand fluctuations, many researchers are developing infrastruc-
tures for flexibly adjusting the amount of computing capacity. For example,
Amazon.com started a service called Amazon Elastic Compute Cloud (Ama-
zon EC2) 1), which enables users to increase or decrease the computing capacity
within a few minutes. Our research group is developing ExaPeer, an infrastruc-
ture comprising a pool of hundreds or thousands of trusted machines all over the
Internet. ExaPeer apportions a computing capacity to services running on top of
itself; it detects demand fluctuations and adjusts the number and the locations
of replica servers on the basis of these fluctuations. If the demand on a service
A increases, the number of replica servers for A also increases. If the demand
on a service B decreases, the number of replica servers for B also decreases. To
use ExaPeer, the user registers a virtual machine image that can be replicated
to provide the intended service anywhere in ExaPeer.

In this paper, we describe ExaPeer’s approach, called EPSS (ExaPeer Server
Selection), to dynamically select candidate spots for replica servers. In ExaPeer,
EPSS detects fluctuations in a demand and dynamically selects candidate spots
on which replica servers should be placed. EPSS targets short-term fluctuations
as well as long-term ones. Even if the demand for a service dramatically in-
creases, EPSS immediately responds to the situation and selects candidate spots
for replica servers. In fact, it is quite common for the demand for a service to
fluctuate dramatically in a very short term. Flash crowds 2),3) exemplify this. In
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flash crowds, a web server suddenly receives an avalanche of client accesses by,
for example, the “slashdot” effect; that is, many readers access a URL given in
a story listed on http://slashdot.org 4),5).

EPSS is designed to be lightweight and responsive to short-term fluctuations. It
uses an autonomous approach to avoid complicated protocols for sharing the load
information across the network; each machine in ExaPeer determines whether to
be a candidate independently of the others. Each machine analyzes access paths
from clients by exchanging messages with only adjacent machines and detects the
areas in which the demand for a service is increasing or decreasing. It estimates
the benefit of being a replica server from this access path analysis.

Simulation results demonstrate that the candidate spots for replica servers
selected by EPSS work better than the ones selected by heuristics. For 90% of
all client accesses, the round-trip-times (RTTs) with EPSS were 23% less than
those with randomly selected machines even if the number of machines is 6.7
times larger than EPSS. The results also demonstrate that EPSS can adjust the
number and the locations of candidate spots even when the demand fluctuates
quickly. For 90% of all client accesses, the round-trip-times (RTTs) with EPSS
were 47% less than those with randomly selected machines even when the number
of machines was 33 times longer than EPSS.

The rest of the paper is organized as follows. Section 2 discusses the design is-
sues. Section 3 explains how EPSS dynamically selects candidate spots. Section 4
describes the evaluation of EPSS. Section 5 discusses the qualitative features of
EPSS. Section 6 describes related work, and Section 7 concludes with a brief
summary and a look at future work.

2. EPSS Design Issues

To distribute the load from clients, it is significant to position replica servers
appropriately. Since ExaPeer hosts several services at the same time, it must
be able to dynamically adjust the number of replica servers for each service.
If the demand on a particular service increases, the number of replica servers
for the service is increased to distribute the load across replica servers. If the
demand decreases, the number of replica servers is decreased to reduce the waste
of hardware resources.

Fig. 1 Dynamically adjusting the number of replica servers.

Figure 1 illustrates the concept of ExaPeer. The demand for a service A
increases in Fig. 1 (a). In response to this increase, several physical machines start
to provide service A (Fig. 1 (b)). After that, the demand for a service A decreases
(Fig. 1 (c)). Therefore, as we can see from Fig. 1 (d), some physical machines
spontaneously stop providing service A. Likewise, some physical machines start
to provide service B when the demand for it increases (Fig. 1 (e) and (f)).

In addition, ExaPeer tries to position replica servers appropriately to reduce
the network traffic; if a replica server is placed on a physical machine that re-
lays many requests on the service, the network traffic would be reduced because
the replica server can handle the requests without sending more messages. Fig-
ure 2 shows the difference between the cases with and without ExaPeer. In this
example, with ExaPeer, the load of clients is distributed across three machines
after repositioning replica servers (Fig. 2 (b)). Note that ExaPeer assumes that
a replica server has already been installed on each physical machine.

ExaPeer provides a fundamental service whereby one can select candidate spots
for replica servers. An ExaPeer’s strategy of selecting candidate spots, EPSS,
addresses the following issues to deal with unpredictable and rapid fluctuations
in a service demand.
• Lightweight Detection of Demand Fluctuation:

EPSS handles a short-term fluctuation in service demands as well as a long-
term fluctuation. To deal with short-term fluctuations, EPSS must respond
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(a) Without ExaPeer. A single physical
machine provides a service.

(b) With ExaPeer. Three machines are
providing a service.

Fig. 2 ExaPeer tries to position replica servers appropriately to distribute the load and
reduce the network traffic.

quickly to demand fluctuations. Thus, EPSS which collects load information
must be lightweight; otherwise, a short-term fluctuation could not be detected
because the load information would not be collected frequently enough to
identify a short-term fluctuation. Thus, it would not be a good idea for a
centralized server to collect and analyze access logs from the entire network.
Since the cost of collecting the logs is not low, we cannot collect them in a
timely fashion to detect short-term fluctuations.

• Topologically-Aware Detection of Demand Fluctuation:
EPSS takes a physical network topology into consideration when selecting
candidate spots. By leveraging the topological knowledge, EPSS selects can-
didate spots so that the network traffic can be reduced. If a replica server is
placed on a machine closer to clients, the network traffic is reduced because
the distance over which messages are relayed is shorter. In addition, if a
replica server is placed where many access paths from clients cross, it can
naturally host many requests without having to relay them to other hosts.

• Transparent Access to Repositioned Servers:
If the demand for a certain service fluctuates dramatically during a short
period, EPSS can reposition a large number of replica servers within a short
period. Therefore, EPSS cannot rely on the traditional DNS-RR (round-
robin) for finding replica servers by a user because the delay involved in
updating the DNS database is too large to meet the time constraint. To

ensure a transparent access to repositioned servers, ExaPeer must include a
mechanism for quickly finding repositioned replica servers.

3. Selecting Candidate Spots

In ExaPeer, each physical machine detects a demand fluctuation independently
of others. There is no special server dedicated to collecting or analyzing informa-
tion on the demand fluctuation. EPSS confines the area to be investigated only
to adjacent physical machines and thus eliminates the cost of collecting load in-
formation from the entire network. In this section we describe the basic structure
and the mechanism of EPSS, which selects candidate spots for replica servers.

3.1 Overview
ExaPeer constructs a topologically-aware overlay network for use in finding

physical machines (including client machines) on the Internet. This overlay net-
work is also used to find the replica servers providing a service requested by a
user. ExaPeer assumes the underlying overlay to have the following properties.
• Physical machines have d-dimensional coordinates (d is usually 6 to 8 in

GNP) such that the distance calculated from the coordinates approximates
the RTT between any pair of physical machines. Global Network Positioning
(GNP) 6) and Vivaldi 7) are examples of these systems called network coor-
dinate systems. An overlay network cannot control the coordinates because
they are calculated from the measured RTTs.

• A query message is relayed to a replica server providing the requested service.
The message is relayed so that it gets closer to the final destination. If a
distributed hash table (DHT) is constructed in a topologically-aware way,
the resulting overlay network usually has this property.

A straightforward approach to finding candidate spots is to collect and analyze
the coordinates of all clients accessing a certain service. With this approach,
we should be able to calculate nearly optimal locations of candidate spots by
solving an optimal location problem. Unfortunately, this approach is not suitable
for dynamically repositioning replica servers because it is a time- and memory-
consuming task to collect and analyze all the coordinates. Therefore, we could
not select candidate spots quickly enough to respond to short-term fluctuations
in a service demand.
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With EPSS, a physical machine detects the direction in which there is an area
with a high demand for a particular service. Since ExaPeer assumes that a query
message is relayed so that it gets closer to the final destination, a physical machine
that relays a query message from one direction to another can infer that there is a
high-demand area in the direction from where the query comes. If there are many
queries from one direction, EPSS selects a physical machine in that direction as
a candidate. If the newly selected machine also detects that many queries are
coming from one direction, it also selects a candidate in that direction. In this
way, the candidate spots selected by EPSS get closer to a high-demand area;
EPSS continues to improve the locations of candidate spots.

3.2 ExaPeer Overlay Network
To detect the direction of a high-demand area, the current prototype of Exa-

Peer constructs an overlay network by using GNP 6) and a Content-Addressable
Network (CAN) 8). GNP models the Internet as a d-dimensional space (d is usu-
ally 6 to 8) and assigns a d-dimensional coordinate to each physical machine
so that the Euclidean distance between any pair of coordinates approximates
the RTT between the physical machines. CAN is one of the distributed hash
tables (DHTs). It assigns each physical machine a virtual d-dimensional coordi-
nate and divides the d-dimensional space into zones. A physical machine stores
(key K, value V ) pairs if the zone maintained by the machine contains the co-
ordinate (h0(K), · · · , hd−1(K)), where hi is a hash function. If key K is given,
CAN guarantees that a physical machine managing the key K can be reached in
(d/4)(N1/d) hops on average where N denotes the number of nodes on CAN.

Using GNP and CAN, ExaPeer constructs a topologically-aware overlay net-
work. The coordinate calculated by GNP is used, in turn, to construct the CAN.
As a result, adjacent machines on ExaPeer are physically closer than other ma-
chines. When a service is registered to ExaPeer, it selects a physical machine,
called a root, to host the service. The root machine is selected in accordance with
the CAN protocol.

There are some things to note. First, ExaPeer is not tightly coupled with
CAN and GNP. For example, ExaPeer can use SCoLE 9) or Vivaldi 7) instead
of GNP and eCAN 10) instead of CAN. Second, ExaPeer uses virtualization
technologies 11) to deploy replica servers. Each physical machine on ExaPeer

Fig. 3 Selecting a candidate spot on the basis of the degree of access path convergence.

can run several virtual machines (VMs) to provide multiple services at the same
time. ExaPeer assumes that the VM images have already been distributed on
each machine.

3.3 EPSS Basic Mechanism
Figure 3 illustrates the EPSS mechanism, using a 2-dimensional CAN. In this

figure, physical machine A is selected as a root. Client X sends out a service
query, which is relayed according to the CAN protocol until it reaches the root.
Then, clients Y and Z also send out the query.

EPSS selects candidate spots for replica servers on the basis of the degree
of access path convergence. An access path is a network path on the overlay
along which a query is relayed from a client to a target server. The degree of
convergence is the number of access paths that cross the physical machine of
interest. Each physical machine in ExaPeer maintains the degree of convergence
for each service. When a physical machine Q relays a query message for service
A, it increments the degree for service A. In Fig. 3, the degree of convergence for
service A is three on the physical machine Q.

To estimate the degree of access path convergence, each physical machine
records the number of requests for each service that it relays to another ma-
chine. If the demand for a service is increasing in some areas, the number of
relayed requests also increases along the access paths. A physical machine is con-
sidered a candidate if its degree of access path convergence reaches a pre-defined
threshold, upper. If the degree drops below another threshold, lower, the ma-
chine ceases to be considered a candidate. In Fig. 3, the physical machine Q is a
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Fig. 4 Failure to select candidate spots.

candidate spot for replica servers because there are three access paths across Q

(if upper is 3).
EPSS uses a sliding window to count the number of relayed messages and

periodically checks the degree of convergence. To avoid the situation where a
virtual machine starts and stops frequently, lower is set sufficiently lower than
upper.

3.4 Improving EPSS Mechanism
The basic mechanism of EPSS sometimes fails to select candidate spots appro-

priately. In the example shown in Fig. 4, three clients, X, Y , and Z, are accessing
root A. Note that these are the same clients as in the example in Fig. 3, but the
access paths are more distributed. As a result, all machines cannot detect the
increasing demand.

There are two reasons for failing to detect an increasing demand. First, CAN
can choose different access paths even if the same client is sending out query
messages because CAN has some flexibility in choosing access paths. Second, if
the high-demand area is wide and far from the root machine, the root machine
is accessed from many more directions, reducing the likelihood that the access
paths converge on some machine. ExaPeer solves this problem by using two
techniques: virtual path expanding (VPE) and virtual demand raising (VDR).

3.4.1 Virtual Path Expanding
Virtual path expanding (VPE) expands the of an access path. It increments the

convergence degrees of the physical machines adjacent to an access path, thereby
virtually expanding the breadth of an access path. In Fig. 5, VPE increments

Fig. 5 Virtual path expanding (VPE). The convergence degrees of physical machines
adjacent to an access path are incremented.

the convergence degrees of the physical machines adjacent to the paths from X,
Y , and Z to A. For example, Q is adjacent to all access paths, so the convergence
degree of Q becomes four although no access paths cross Q.

With VPE, each physical machine along an access path sends a VPE message to
its neighbors. On receipt of a VPE message, each machine increments by one its
degree of convergence. Since VPE messages are sent to only neighbor machines,
the number of VPE messages is not so large, and the physical machines are not
burdened.

3.4.2 Virtual Demand Raising
If a root machine is accessed from many different directions, the increasing

demand cannot be effectively detected even if VPE is used. To more aggressively
detect the direction in which there is a high-demand area, ExaPeer uses (VDR).
When a query message is relayed to the physical machine that actually provides
the requested service, VDR increments the convergence degree of the relaying
machine by two, thereby raising the probability of selecting candidate spots in
the direction of the high-demand area. As illustrated in Fig. 6, R is adjacent to
the physical machine (A) that actually provides the requested service and is on
the paths from X and Z. Its convergence degree thus becomes 5 (= 2 + 2 + 1).
Note that the degree is incremented by one since R is adjacent to the path from
Y to A.
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Fig. 6 Virtual demand raising (VDR). The convergence degrees of physical machines
adjacent to the servicing machine are incremented by two.

4. Experiments

In this section we report simulation results and analysis. This section shows
that EPSS can detect demand fluctuations and select candidate spots for replica
servers appropriately. We also exhibit that candidates selected by EPSS have a
higher probability of decreasing the amount of traffic than have heuristic strate-
gies.

4.1 Evaluation Methodology
To evaluate the effectiveness of EPSS, we built an ExaPeer prototype with

EPSS on Overlay Weaver 12), a toolkit that enables a structured overlay network
to be easily constructed and its behavior to be emulated. We tested ExaPeer
with EPSS under different load fluctuations conditions on Overlay Weaver, and
we measured three key indicators.
• The number of candidate spots, which shows how well EPSS selects candidate

spots for replica servers on the basis of clients demands. If the number of
spots changes with the fluctuations in the demand, we can say that EPSS
selects candidate spots on the basis of demand fluctuations.

• The number of hops between accessing clients and accessed spots, which shows
how well EPSS selects candidate spots that are close to high-demand areas
on the overlay network. The fewer the hops, the “logically” closer the spots
are to the high-demand areas.

• The RTT between accessing clients and accessed spots, which shows how well
EPSS selects candidate spots that are close to high-demand areas on the
physical network. The lower the RTT, the “physically” closer the spots are
to the high-demand areas.

For comparison, we measured the number of hops and RTTs when no replica
servers are placed, called ROOT ONLY ; that is, only the root machine services
all the requests.

To confirm the behavior of EPSS in realistic environments, we emulated the
Internet environment by introducing the Internet topology derived from a virtual
topology and the Internet measurement data. The Internet measurement data
was collected by the King measurement technique 13). In our experiments, we
used two datasets to construct the Internet topologies.
( 1 ) TS : A Transit-Stub model of the Internet that has a two-level hierarchy

of routing domains, i.e., transit domains interconnect lower-level stub do-
mains 14). To generate a transit-stub topology, we used the GT-ITM topol-
ogy generator. To generate the topology, we assigned the parameters as
follows: 228 transit domains, 5 transit nodes per transit domain, 4 stub
domains attached to each transit node, and 2 nodes in each stub domain.
We selected about 3,000 nodes with unique GNP coordinates from about
10,000 nodes.

( 2 ) Meridian: The dataset used by the Meridian project 15). It contains pair-
wise RTT measurements between 2500 DNS servers whose IP addresses are
unique, spanning 6.25 million node pairs. Data was collected on May 5-13,
2004. We selected about 2,200 nodes whose GNP coordinates are unique.

The number of services was one. The number of replica servers on a physical
machine was one. The number of physical machines is equal to the number of
nodes in each simulation. The dimension of GNP was six.

We set the size of the sliding window to 300 seconds and checked the degree of
convergence every 60 seconds. Jung, et al. 2) reported that in some flash crowds
the access rate increased in 40 seconds to 15 minutes intervals. So, we set the
interval of convergence checking to 60 seconds.

4.2 Changing Demand Scale
EPSS selects candidate spots for replica servers so as to effectively handle
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Fig. 7 Frequency of requests. Fig. 8 No. of candidate spots with EPSS.

client demands. EPSS can also find the spots quickly even if the scale of a
demand changes frequently. If the scale of a demand increases, EPSS selects
more candidate spots, and thus the number of hops and RTTs decrease. If the
scale of a demand decreases, EPSS eliminates wasteful candidate spots. Despite
the decrease of candidate spots, RTTs are still lower than accessing to the root
machine because EPSS maintains the number of candidate spots to efficiently
handle the demand.

To evaluate how well it does this, we tested ExaPeer with EPSS when the
demand for a service fluctuated over the entire network. To generate the fluc-
tuation, we changed the frequency of accessing the service. Figure 7 shows the
access frequency. We used in the TS model as clients. A terminal node is a
node connected to only one other node in the TS topology. A terminal node
corresponds to a gateway in a local area network to which clients belong. The
number of terminal nodes was 1,815. Upper was set to 300, and lower was set
to 150.

4.2.1 Performance of EPSS Mechanism
Figure 8 shows the number of candidate spots for replica servers. The ver-

tical dashed lines denote the times when the access frequency changed. EPSS
dynamically increased/decreased the number of candidates in accordance with
the demand fluctuation. When the access frequency increased, EPSS increased
the number of candidates. When the access frequency decreased, it reduced the
number of candidates. This demonstrates that EPSS quickly adjusts the number
of candidates even when the number of client accesses suddenly increase or de-
crease (compare the number of candidates at 3,200 and 6,400 sec in Fig. 8). For
a given demand fluctuation, EPSS took at most 340 sec to adjust the number of

(a) ExaPeer (b) ROOT ONLY

Fig. 9 Comparison of number of hops between EPSS and ROOT ONLY.

candidates. Reducing the checking interval would make EPSS even more sensitive
to demand fluctuations, enabling it to select a candidate even more quickly.

Figure 9 shows the number of hops between clients and accessed candi-
date spots. Figures 9 (a) and (b) show the number of hops with EPSS and
ROOT ONLY, respectively. The vertical dashed lines denote the times when the
access frequency changed. The tendency towards fewer hops suggests that EPSS
can find candidate spots on the overlay network near the accessing clients. Com-
pared with Fig. 9 (b), the average number of hops with EPSS is lower than that of
ROOT ONLY. When the access frequency was high, the average number of hops
was close to four. When the access frequency was low, the average number was
higher (circled regions in Fig. 9 (a)) because EPSS did not increase the number
to avoid booting unnecessary replica servers.

Figure 10 shows the RTTs between clients and accessed spots. Figure 10 (a)
and (b) show RTTs with EPSS and ROOT ONLY, respectively. The tendency to-
wards lower RTTs suggests that EPSS can select candidate spots which are close
to the accessing clients on the physical network. Compared with Fig. 10 (b), the
average RTTs with EPSS is lower than that of ROOT ONLY. When the access
frequency was low, the average RTTs were longer (circled regions in Fig. 10 (a))
because, once again, EPSS did not increase the number to avoid booting unnec-
essary replica servers.

4.2.2 Comparison with Other Strategies
To determine whether the candidate spots selected by EPSS have a higher
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(a) ExaPeer (b) ROOT ONLY

Fig. 10 Comparison of RTT between EPSS and ROOT ONLY.

probability of decreasing the amount of traffic than other strategies, we compared
EPSS with four strategies as mentioned below.
• ROOT ONLY : Only the root machine services all requests.
• RND : Candidate spots are chosen randomly from all machines.
• MOST EDGE : Candidates are selected from machines that have many con-

nections to terminal nodes.
• GLOBULE : Candidates are selected with the method used by Globule 16)–19).

Globule deals with long-term fluctuations only because it relies on global in-
formation such as access logs on all servers and exact locations of all physical
machines. Since Globule selects nearly optimal spots based on global infor-
mation, EPSS finds candidate spots close to optimal candidates with local
information only if RTTs with EPSS are close to those with GLOBULE.
Since Globule cannot deal with short-term fluctuations used in our exper-
iment, we calculated the candidate spots in off-line. Note that we cannot
measure the number of hops on GLOBULE because Globule uses an overlay
network different from ExaPeer.

RND, MOST EDGE and GLOBULE selected 150 candidate spots because the
largest number of candidates selected by EPSS was 150 in this experiment.

Figure 11 shows the cumulative probabilities of the number of hops and the
RTTs. The performance of EPSS was better than that of RND, MOST EDGE
and ROOT ONLY. With EPSS, 90% of all client accesses were relayed to the
servicing machine within two hops. With RND and MOST EDGE, 13 and 12
hops respectively were required to process the client accesses, with ROOT ONLY,

(a) No. of hops (b) RTT

Fig. 11 Cumulative probabilities of No. of hops and RTT.

17 were required. The RTTs with EPSS were less than 3,300 msec for 90% of all
client accesses, while those with RND and MOST EDGE were less than 17,200
and 11,800 msec, respectively. With ROOT ONLY, the RTTs were less than
21,300 msec.

We also measured the number of hops and the RTTs when the number of
physical machines available to RND and MOST EDGE for use as candidates
was increased from 150 to 1000. As shown in Fig. 11, for 80% or less of all
client accesses, the RTTs were better than those with EPSS. This is because the
number of candidate spots were 6.7 times more than with EPSS. However, to
process 90% of all client accesses, RND and MOST EDGE required five hops
and more RTTs than EPSS.

The performance of candidates selected by EPSS were the closest to GLOB-
ULE. Since the spots selected by GLOBULE are nearly optimal, this result
says that EPSS can select good candidates. Note that GLOBULE collects var-
ious kinds of information from the entire network and thus is not suitable for
short-term fluctuations.

4.3 Moving Localized Demand
EPSS finds candidate spots as close to a high-demand area as possible even

if the area is moving. A high-demand area moves, for example, due to time
differences around the world. To confirm this feature of EPSS, we demonstrate
that EPSS finds candidate spots located around the high-demand areas. To
generate a high, localized demand area, we built two types of client clusters on
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(a) CLS (TS) (b) CLS (Meridian)

Fig. 12 The number of candidate spots with EPSS when the high-demand area moves.

each topology, based on the following schemes.
• CLS (TS): The machines were selected from terminal nodes in TS. We se-

lected center machines, the RTTs between which are over 5,000 msec. Also,
we selected ten machines, including the center machine, for each cluster that
had an RTT from the center machine of less than 2,000 msec.

• CLS (Meridian): The machines were selected from all nodes in Meridian.
RTTs between center machines are over 250 msec. Also, we selected ten
machines, including the center machine, for each cluster that had an RTT
from the center machine of less than 100 msec.

The parameters used for creating clusters differ in CLS (TS) and CLS (Meridian)
because the average RTT differs in CLS (TS) and CLS (Meridian). Note that
the difference between CLS (TS) and CLS (Meridian) is the base’s topologies.
CLS (TS) is based on the TS model and CLS (Meridian) is based on the Merid-
ian model. We switched the cluster requesting a service to another one every
5,000 sec. Upper was set to 300, and lower was set to 200.

4.3.1 Performance of EPSS Mechanism
Figure 12 shows the number of candidate spots found by EPSS in this exper-

iment. The vertical dashed lines denote the times when the requesting cluster
was switched. EPSS changed the number of candidates when the cluster was
switched. The number of candidates tended to increase excessively just immedi-
ately after the cluster was switched. This is because EPSS temporarily selected
candidates along the client access path. It then quickly eliminated the unneeded

(a) CLS (TS) (b) CLS (Meridian)

Fig. 13 The number of hops with EPSS when the high-demand area moves.

(a) CLS (TS) (b) CLS (Meridian)

Fig. 14 RTTs with EPSS when the high-demand area moves.

spots far from accessing clients. Figure 13 shows the number of hops between
clients and candidates, and Fig. 14 shows the RTTs between clients and candi-
dates. EPSS selected candidates closer to the high demand areas.

In CLS (Meridian), the clients in some clusters still got the larger number of
hops and the longer RTTs than those in others. This is because the access paths
of these clients were anomalously longer than those of others. Since there were
long access paths, EPSS took a longer time to improve the location of candidate
spots. In fact, the number of hops and RTTs were improved at the end of the
second period (see Fig. 13 (b) and Fig. 14 (b)).

4.3.2 Comparison with Other Strategies
To determine whether the candidate spots on EPSS are closer to the
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(a) No. of hops (b) RTT

Fig. 15 Cumulative probabilities of number of hops and RTT in CLS (TS).

high-demand areas than in the case of heuristic strategies, we again
used ROOT ONLY, RND and MOST EDGE for comparison. RND and
MOST EDGE chose 30 physical machines as candidates since EPSS selected 30
candidates in this experiment. Note that CLS (Meridian) uses RND only because
the network topology of Meridian is unknown.

Figure 15 shows the cumulative probability of the number of hops and RTTs
in CLS (TS) when the first cluster appeared. EPSS performed better than RND,
MOST EDGE and ROOT ONLY. With EPSS in CLS (TS), 90% of all client
accesses were relayed to the servicing machine within two hops. With RND and
MOST EDGE, 17 and 18 hops were required, respectively. With ROOT ONLY,
27 hops were required. For 90% of all client accesses, the RTTs with EPSS
were less than 2,600 msec, while those with RND and MOST EDGE were less
than 27,300 msec. With ROOT ONLY, the RTTs were less than 27,400 msec.
Figure 16 shows the cumulative probability of the number of hops and RTTs
in CLS (Meridian). EPSS performed better than RND and ROOT ONLY.

We also measured the number of hops and the RTTs when the number of
physical machines which RND and MOST EDGE could use as candidate spots
was increased from 30 to 1,000 in CLS (TS) and from 6 to 500 in CLS (Meridian).
The experimental results are shown in Figs. 15 and 16. Even if the number of
candidates were increased, RND and MOST EDGE could not find candidates
better than EPSS.

To confirm that EPSS selects good candidates, we compared EPSS with GLOB-

(a) No. of hops (b) RTT

Fig. 16 Cumulative probabilities of number of hops and RTT in CLS (Meridian).

ULE, which selects nearly optimal candidates. In this experiment, EPSS and
GLOBULE selected 30 candidates in CLS (TS) and 6 candidates in CLS (Merid-
ian). As shown in Figs. 15 and 16, the performance of EPSS was the closest to
GLOBULE among all the strategies. We again mention that GLOBULE is not
suitable for short-term fluctuations because it requires the information from the
entire network.

4.4 Effectiveness of EPSS Mechanism Components
To determine whether all EPSS mechanism components contribute to selecting

candidate spots for replica servers, we prepared five different configurations of
the EPSS mechanism: all-off, GNP, VDR & GNP, VPE & GNP, and all-on. In
this experiment, a randomly selected terminal node sent a request to a service
every 500msec. We measured the number of hops and RTTs between clients and
accessed spots. Upper was set to 200, and lower was set to 150.

The cumulative probabilities of the number of hops and RTTs are shown in
Fig. 17. Although the number of hops with all-off was better than the one
with GNP and VDR & GNP, the RTTs with all-off were the largest of all these
configurations. The main reason for this is that all-off does not take positional
relations into consideration because GNP is not used in all-off; adjacent zones
in the constructed CAN may be physically far from each other. With GNP,
EPSS takes positional relations between physical machines into consideration.
Therefore, the RTTs with GNP were better than those with all-off. When VPE
was added to EPSS, along with GNP, the RTTs were lower than with GNP
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(a) No. of hops (b) RTT

Fig. 17 Comparison of the effectiveness of VPE, VDR, and GNP.

only. We also simulated EPSS with VDR & GNP. The results were very similar
to those with GNP. This is because the VDR technique enhances the effect of
VPE. VPE facilitates finding access paths from clients, and then VDR facilitates
finding the direction in which replica servers should be deployed. Therefore, VDR
is useless without VPE. Combining VDR with VPE facilitates finding candidate
spots more precisely. When all the features of EPSS were turned on, the number
of hops and the RTTs between clients and accessed spots were lower than with
GNP & VPE.

5. Discussion

5.1 Scalability
EPSS should be scalable with the number of clients because the communi-

cation traffic it adds is negligible. The total communication traffic with EPSS
that uses 6-dimensional GNP and CAN, including query messages and EPSS
control messages, is no more than 52 ∗ 12(N1/6) bytes, where N denotes the
number of available physical machines. If there are one million machines, the
total communication traffic is at most 6,240 bytes per client request. However,
if the coordinates calculated by GNP are not distributed uniformly, it may be a
bit higher.

The amount of data recorded at each physical machine increases with the num-
ber of hosting services. EPSS should be scalable with the number of services
because EPSS handles only a simple array of integers for each service. If each

physical machine records the number of relayed queries for the last 300 seconds
(i.e., the length of the array is 300), the amount of data recorded on each machine
is only 1.2 Kbytes for each service.

5.2 Consistency
ExaPeer is designed to primarily support services that provide read-only con-

tents. Unlike typical content distribution networks (CDNs), ExaPeer allows us to
provide dynamic contents, which generate the contents dynamically by executing
server-side scripting code. This is because ExaPeer enables the entire image of
virtual machines to be transferred. This feature of ExaPeer widens its applica-
bility. Since each virtual machine can contain read-only databases, ExaPeer can
host a catalog site, for example, for on-line shopping. A catalog site typically
consists of dynamic web pages generated by queries from the users. Since the
database is not frequently updated, ExaPeer can host a catalog site if combined
with techniques for virtual machine migration 20)–22).

To provide a service on ExaPeer that requires frequent updates to databases,
the service designer must divide the database records into two parts: read-
intensive and update-intensive ones. The read-intensive part of the database
can be incorporated into a virtual machine supported by ExaPeer. The update-
intensive part should be located on a special machine to avoid running a compli-
cated protocol for consistency. A load-balancing technique, such as GlobeTP 23),
for database queries should be usable in conjunction with ExaPeer.

5.3 Fairness of Services
EPSS increases the number of candidate spots for a highly demanded service.

At first glance, EPSS favors the highly demanded service and degrades the quality
of service for lightly demanded services. A closer look reveals that EPSS does
not degrade the overall performance of lightly demanded services even if there is
an avalanche of accesses to a highly demanded service.

EPSS selects candidate spots from the areas in which there are a large number
of clients requesting a specific service. As a result, replica servers are placed on
physical machines close to or within the high-demand areas. Thus, the overall
load on the Internet is reduced, so the responsiveness of lightly demanded services
should improve.
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5.4 Security
Unlike typical peer-to-peer (P2P) systems, ExaPeer is assumed to be built on

top of trusted physical machines. In normal P2P systems, any user can add a
machine to the system without any process of authentication. In ExaPeer, a
machine is added to the system only when it is successfully authenticated, for
example, by a challenge and response protocol; ExaPeer overlay is closed. Thus,
ExaPeer does not have to beware of malicious physical machines. Of course,
physical machines may be cracked if ExaPeer is vulnerable in its implementation.

ExaPeer is highly robust against denial of service (DoS) attacks, which are in-
herently the same as flash crowds 2). EPSS can handle DoS attacks as well as it
can handle flash crowds because it can handle extreme short-term demand fluc-
tuations. However, if an attacker accesses a physical machine directly, ExaPeer
is susceptible to a DoS attack. To improve ExaPeer’s robustness against DoS
attacks, we must incorporate another mechanism, such as dFence 24).

6. Related Work

6.1 Content Distribution Networks
CDNs handle high demand by replication of content. Akamai 25) and other

commercial CDNs use DNS redirection to reroute client requests to local clusters
of physical machines by building detailed maps of the Internet through a combi-
nation of BGP feeds and their own measurements. These systems do not control
the amount of computing capacity in accordance with demand fluctuations.

Globule 17) is a web server module that replicates documents on the basis of
observed access patterns in order to spontaneously create cache copies on peer
servers close to clients. It experiences difficulties to respond to short-term demand
fluctuations because it uses a simulation to decide where to place cache copies 18).

CoralCDN 26) is a peer-to-peer content distribution network that relies on a
hierarchical structure, called “distributed sloppy hashtables,” to reduce the load
on web servers. It has trouble detecting certain types of demand distributions,
such as far and wide but low density demand. To detect such distributions, EPSS
mechanism uses VPE and VDR.

Basically, ExaPeer has more power than CDNs. CDNs mainly target a web
service, while ExaPeer can provide other services because it repositions replica

servers including all of the server system. ExaPeer enables provision of dynam-
ically generated content because a complete image of virtual machines can be
distributed. In addition, a service provider can configure its own image of virtual
machines; the provider can select operating systems, libraries, and applications
truly.

Amazon.com recently released Amazon Elastic Compute Cloud (Amazon EC2)
service 1). The purpose of the service is similar to that of ExaPeer. When a user
calls the provided API manually, Amazon EC2 increases or decreases the number
of replica servers in a local cluster of physical machines. Amazon EC2 does not
reposition the location of replica servers on the Internet. Without any manual
operations, EPSS dynamically adjusts the number and the locations of replica
servers.

6.2 Server Selection
From the viewpoint of clients, ExaPeer is an anycast service. IP anycast is

a network-level solution to a server selection 27)–29). However, IP anycast is not
widely used or available. ExaPeer can serve as a flexible, demand-distribution-
based server-selection mechanism for clients.

Akamai also supports a mechanism for selecting a server. Akamai traceroutes
the IP address space from multiple vantage points to detect the route convergence
and pings the common router found by the traceroute to select a server close to
clients 30). Unlike ExaPeer, Akamai does not handle demand fluctuations.

Meridian 15) (used for DNS redirection by ClosestNode.com 31)) creates an over-
lay network with neighbors chosen from a particular distribution; routing to closer
nodes is guaranteed to find a minimum RTT given a growth-restricted metric
space 32). EPSS does not need on-demand probes to select candidate spots.

OASIS 33) is a globally distributed anycast system that enables legacy clients to
find nearby or unloaded replica servers for distributed services. OASIS provides
only an anycast service; it does not adjust the computing capacity for each service.

7. Conclusion

EPSS selects candidate spots for replica servers to handle short-term demand
fluctuations (such as flash crowds) as well as long-term fluctuations. From the
degree of access path convergence, EPSS detects demand fluctuations and adjusts
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the number and the locations of candidate spots for replica servers. Even if
the demand for a service increases in the short term, EPSS quickly responds
and selects candidates for replica servers. Simulation results demonstrated that
the candidate spots with EPSS work better than the ones selected by heuristic
methods no matter how much the scale of the demand changes.

The next step in this research is twofold. First, we have to develop a technique
for repositioning replica servers in accordance with physical machines loads. Sec-
ond, we plan to evaluate EPSS on the Internet using PlanetLab 34).
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