IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

Regular Paper

Introducing New Resource Management Policies
Using a Virtual Machine Monitor

HirosHI YaAMADAT! and KEnJ1 Konofl

Integrating new resource management policies into operating systems (OSes)
is an ongoing process. Despite innovative policy proposals being developed, it is
unrealistic to widely deploy a new one because it is a difficult, costly and often
an impractical endeavor to modify an existing operating system to integrate a
new policy. To address this problem, we explore the possibility of using virtual
machine technology to incorporate a new policy into an existing OS without the
need to make any changes to it. This paper describes FoxyTechnique, which
virtualizes physical devices differently from real ones and tricks a guest OS
into producing behavior similar to a desired policy. FoxyTechnique has three
advantages. First, it allows us to implement a new policy without the need to
make any changes to OS kernels. Second, Foxy-based policies are expected to
be portable across different operating systems because they are isolated from
guest OSes by stable virtual hardware interfaces. Finally, Foxy-based policies
sometimes outperform guest OS policies because they can measure performance
indicators more accurately than guest OSes. To demonstrate the usefulness of
FoxyTechnique, we conducted two case studies, FoxyVegas and Foxyldle, on
the Xen virtual machine monitor. FoxyVegas and FoxylIdle tricked the original
Linux and successfully mimicked TCP Vegas and Idletime scheduling, respec-
tively.

1. Introduction

Integrating new resource management policies into operating systems (OSes) is
an ongoing process, even though resource management has been extensively ex-
plored for the past decades. Because an appropriate resource management policy
depends largely on the type of applications and their computing environments,
OS researchers must continue to develop innovative resource management poli-
cies to satisfy the needs of emerging applications and everchanging computing
environments.

11 Keio University

144

Despite many sophisticated, innovative policy proposals being presented, it
is quite difficult to widely deploy an innovation. The traditional approach to
integrating an innovation is to modify an OS kernel, which is the primary layer
of software for resource management. However, modifying the OS kernel is a
difficult, costly and often an impractical endeavor because modern OSes consist
of large and complex bodies of code. Changes to even a single line of OS code can
make the deploying of an innovative policy much less likely because it is almost
impossible to modify proprietary and/or closed-source OSes. Even if supported
by a single vendor, the new policy is unlikely to get used widely since cross-
platform applications would only be able to use the features available in specific
OSes.

To address this modification issue, many researchers have investigated how the
operating system should be restructured to reduce the efforts required to change
the OS. Microkernels V%), extensible OSes®®, and infokernels ” have all been
used in an attempt to provide a base on which resource management policies can
easily be built. Unfortunately, to benefit from these approaches, users are forced
to replace their favorite OSes with something less familiar. To eliminate the
need to replace an OS, many techniques have been developed that enable us to
build resource management policies on “as is” operating systems. Newhouse, et
al.® have shown that a user-level CPU scheduler for CPU intensive jobs can
be implemented on unmodified FreeBSD. Graybox techniques® facilitate the
development of OS-like services at the user-level by inferring an OS internal
state.

In this paper, we explore the possibility of using virtual machine technology *
to incorporate an innovative policy into an existing OS without the need to
make any changes to it. Inserting a new policy into a virtual machine monitor
(VMM) has many potential benefits. First, we can incorporate innovative policies
without the need to make any changes to guest OSes because the guest OSes
are isolated from the VMM by stable virtual hardware interfaces. Second, the
fact that the VMM is isolated from guest OSes brings us another noteworthy
feature that new policies within a VMM can be portable across many guest OSes.
These advantages are widely recognized, and some researchers are developing
mechanisms 'V)'? that facilitate the development of innovative functionalities

(© 2008 Information Processing Society of Japan

145 Introducing New Resource Management Policies Using a Virtual Machine Monitor

within a VMM.

FoxyTechnique, presented in this paper, enables us to incorporate new resource
management policies into a guest OS without the need to make any changes to
it. FoxyTechnique virtualizes physical devices differently from real ones so that
a guest OS policy is tricked into producing a similar policy to the one we want
to incorporate. For example, a Foxy-enabled VMM can change the rate of timer
interrupts to alter the guest OS policy of CPU scheduling. By changing the rate of
timer interrupts, we can control the length of time slices allocated to each process.
To trick guest OS policies, we extensively use our graybox knowledge about guest
OSes; graybox knowledge means we can predict how a guest OS reacts to virtual
devices whose behavior has been transformed. In the above example, we used the
graybox knowledge that time slices are measured by counting timer interrupts in
the guest OS*!.

FoxyTechnique has the following advantages:

e No changes to OS kernels required.

FoxyTechnique enables us to incorporate new resource management policies
into an existing OS without the need to make any changes to it. Foxy-based
resource management policies are implemented within a VMM and thus are
isolated from guest OSes by stable virtual hardware interfaces. Hence, even
a proprietary OS can benefit from innovative resource management policies;
we do not have to wait until an OS vendor officially supports the innovations.
e Increased portability.
Foxy-based resource management policies are expected to be portable across
different guest OSes. Although a Fozy-based module, which controls vir-
tual hardware devices within the VMM, uses graybox knowledge about guest
OSes, many resource management policies can be built without using the
knowledge specific to a single guest OS. In this paper, we demonstrate that
a single Foxy-based module can trick many guest OS policies. For example,
one of our Foxy-based modules can trick binary increase congestion (BIC)
control, NewReno, CUBIC TCP, TCP-Hybla, TCP Westwood+ and Scal-

*1 This is an example to help you understand the FoxyTechnique concept. If you actually
want to change a CPU scheduling policy of commodity OSes, you might not only change
the rate of timer interrupts but need to employ another technique.

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

able TCP into TCP Vegas. On the other hand, FoxyTechnique does not
work well in some situations. The limitation of FoxyTechnique is discussed
later in this paper.

¢ Better performance estimation.

Resource management policies are often required to measure performance in-
dicators to estimate the cost of the next possible operations. The accuracy of
performance indicators affects the performance of resource management. For
example, TCP Vegas measures round trip times (RTTs) of network pack-
ets to detect network congestion. If the RTT contains a large error, TCP
Vegas does not work well. Since a Foxy-based module runs directly on phys-
ical hardware, it can measure performance indicators more accurately than a
guest OS running in a virtualized environment. Therefore, Foxy-based mod-
ules may result in an overall better performance than guest OS policies. In
fact, our Foxy-based module for TCP Vegas shows better performance than
TCP Vegas running in the guest Linux.

Note that FoxyTechnique does not facilitate the implementation of resource
management policies. Sometimes, it is not easy to implement Foxy-based modules
because FoxyTechnique indirectly introduces a new policy. At the expense of this
difficulty, FoxyTechnique brings the three advantages described above.

To embody the concept of FoxyTechnique, we conducted two case studies,
FozyVegas and Fozxyldle, on the Xen virtual machine monitor ¥). FoxyVegas is
a Foxy-based module for TCP Vegas, a TCP/IP congestion control algorithm
for determining the congestion window size. FoxyVegas is based on our graybox
knowledge that TCP/IP adjusts its window size for flow and congestion control.
When network congestion occurs, FoxyVegas creates an illusion that a receiver is
overloaded to force a guest OS to make its window size smaller. By doing this,
FoxyVegas brings the benefits of TCP Vegas; many congestion control algorithms
are tricked into mimicking TCP Vegas. Furthermore, FoxyVegas performs better
than Linux TCP Vegas running on Xen. This is because FoxyVegas can measure
the RTTs of network packets more accurately than TCP Vegas in guest OSes.

Foxyldle is a Foxy-based module for regulating disk I/O contention and im-
plements Idletime scheduling '¥). This scheduling prevents background processes
from degrading the performance of foreground processes. The idletime schedul-

(© 2008 Information Processing Society of Japan

146 Introducing New Resource Management Policies Using a Virtual Machine Monitor

Processes Processes

OO0 QOQ

Guest OS
Virtual devices foxy-enabled VMM

& !\'\31\'\ & Virtual devices
provides an environment

VMM different from the real one. Foxy-based Module Foxy-enabled VMM

Guest OS

VMM emulates] |] |

underlying physical

devices
| J

(a) Conventional virtual machine monitor

] Real devices

£ 1

(b) Foxy-enabled virtual machine monitor

] Real devices

Fig.1 Difference between conventional virtualization and Foxy virtualization. These figures show virtualization of a conventional
virtual machine monitor (VMM) and Foxy-enabled VMM. The conventional VMM emulates underlying physical hardware.
In contrast, the Foxy-enabled VMM virtualizes physical hardware so that a guest OS is forced to change its own behavior

differently from the real one.

ing stalls disk read requests from background processes if they interfere with the
requests from foreground processes. To stall the disk read requests, Foxyldle pre-
tends that a virtual disk device has been seeking data for a long time. By carefully
controlling this seek time, Foxyldle mimics the idletime scheduling. Experimen-
tal results show that Foxyldle can trick various disk scheduling algorithms (Noop,
Anticipatory, Deadline, and CFQ) and avoid performance degradation caused by
background processes.

The rest of the paper is organized as follows. Section 2 describes FoxyTech-
nique, and Section 3 presents the implementation of FoxyTechnique. Sections 4
and 5 report the design, implementation and experiments of case studies, FoxyVe-
gas and Foxyldle, respectively. Section 6 describes the work related to ours, and
Section 7 concludes the paper.

2. FoxyTechnique

To incorporate new resource management policies into an existing kernel with-
out the need to make any changes to it, FoxyTechnique exploits virtual machine
monitors (VMMs). Figure 1 outlines the difference between conventional virtu-

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

alization and Foxy-enabled virtualization. The major difference lies in the way in
which the Foxy-enabled VMM interacts with the guest OSes. In a conventional
VMM, virtual hardware devices exposed to guest OSes emulate the underlying
physical hardware. In contrast, the Foxy-enabled VMM virtualizes physical de-
vices differently from the real ones; the behavior of physical devices is transformed
by the Foxy-enabled VMM. A guest OS runs on the transformed hardware and
thus behaves differently on the Foxy-enabled VMM from the conventional VMM.
By taking guest policies into consideration, Foxy-enabled VMM can control vir-
tual devices so that the guest policy is tricked into producing behavior similar to
an expected policy.

2.1 Foxy-enabled VMM

In a virtualized environment, a VMM runs in the privileged mode to manage
and multiplex the underlying physical hardware devices, whereas guest OSes run
in the non-privileged mode. When a guest OS executes a privileged instruction,
such as access to MMU or I/O peripherals, software interrupts occur, and control
is transferred to the VMM. At this point, the VMM can catch and regulate all
resources because it processes the interrupts before delivering them to the guest

(© 2008 Information Processing Society of Japan

147 Introducing New Resource Management Policies Using a Virtual Machine Monitor

OS.

By changing the behavior of virtual devices, Foxy-enabled VMM can control
guest OSes. To achieve an expected behavior of a guest OS, FoxyTechnique
takes the guest policy into consideration. In other words, we make use of graybox
knowledge ® on the guest OS. Here, graybox knowledge means we can predict
how the guest OS reacts to virtual devices whose behavior has been transformed.
For example, we change the interrupt rate of the virtual timer device to alter the
policy of CPU scheduling. Because we have graybox knowledge that the CPU
scheduler counts down ticks every timer interrupt, we can control the length of
time slices. To provide a tricked environment with guest OSes, the following
techniques are combined in FoxyTechnique.

e Changing rate of interrupts

A Foxy-based module controls the rate of periodic interrupts, such as a timer.
For example, as explained earlier, if the Foxy-based module raises more timer
interrupts than a real one, the guest OS clock advances more quickly. If
the Foxy-based module raises less timer interrupts, the clock advances more
slowly.

e Delaying or discarding interrupts

Even if a physical device causes an interrupt, it is not sent immediately to
the guest OS. A Foxy-based module delays the interrupt notification or com-
pletely revokes the interrupt. For example, we can throttle network band-
width by delaying or revoking network interrupts. Since network packets do
not arrive at the guest OS, it considers that network congestion has occurred
and reduces the congestion window size. As a result, the TCP window size
is reduced and the effective bandwidth is throttled.

e Rewriting contents of device registers

A Foxy-based module rewrites the value of data registers. When a guest OS
writes data in virtual device registers, a Foxy-based module may rewrite the
value before sending it to the physical device. When the physical device sets
data into registers, the Foxy-based module rewrites values of the registers,
and then sends interrupts to the guest OS. Rewriting the contents of data
registers enables us to control the window size of packets in TCP/IP. By
rewriting the server receivable data size included in packets, we can make the

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

guest OS believe the state of the receiver has changed. As a result, the guest
OS starts regulating the window size.

To build a new policy, a Foxy-based module needs to recognize an OS-level
abstraction, such as processes and files. For example, to implement priority-
based disk I/O scheduling, a Foxy-based module must recognize the ‘process’
abstraction to discern which process issues each disk I/O request. Unfortunately,
the VMM lacks this knowledge of OS-level abstractions; this problem is often
referred to as a semantic gap '*.

To bridge OS-VMM semantic gaps, FoxyTechnique uses techniques already
proposed. Antfarm 'V infers ‘process’ abstraction, and Geiger'® infers ‘buffer
cache’ abstraction from the VMM layer. Unfortunately, the techniques for in-
ferring other OS-level abstractions have not been established yet. To obtain the
information about these abstractions, FoxyTechnique assumes that a user-level
process (running on the guest) informs OS the Foxy-enabled VMM of such infor-
mation. There is one thing to be noted. Currently, we assume the information
coming from the user-level could be trusted. If the user-level information is in-
correct, the Foxy-enabled VMM would not work as expected. In the worst case,
a single virtual machine would monopolize all the resources. Defending against
this kind of attack is beyond the scope of this paper but would be an interesting
research topic that bears further investigation.

2.2 Limitations

Incorporating new policies at the VMM layer is not always successful. If the
policy to be implemented at the VMM layer conflicts with that of the guest OS,
we cannot trick the guest OS. For example, FoxyTechnique cannot implement
the deadline disk I/O scheduling '® if the guest OS employs the idletime schedul-
ing Y. In the idletime scheduling, the guest OS retains background I/O requests
as long as there are foreground I/O requests. Thus, the Foxy-enabled VMM
cannot capture the requests from the background processes. Even if the deadline
for an I/O request from a background process has expired, Foxy-enabled VMM
cannot schedule the request because no such request has been made to the VMM.

Foxy-based modules are not always portable across different OSes if we use
specific graybox knowledge for a single OS. Imagine that we are implementing
a Foxy-based module that reads and writes the kernel data structures of Linux.

(© 2008 Information Processing Society of Japan

148 Introducing New Resource Management Policies Using a Virtual Machine Monitor

In this case, this Foxy-based module would only be effective on Linux. However,
an interesting tradeoff exists between accuracy and portability. If a Foxy-based
module uses detailed knowledge of a single guest OS, the policy forged by this
Foxy-based module would behave very similarly to the expected one, but the
portability would be lost. If a Foxy-based module only uses common features of
ordinary OSes, the portability is high, but the policy implemented by the Foxy-
based module would be slightly different from the expected one because the
Foxy-based module interferes with the guest policy. Recall that our goal is not
to completely emulate the behavior of the expected policy; FoxyTechnique aims
to mimic an expected policy without losing portability. As shown in Section 4
and 5, our case studies demonstrate that FoxyTechnique can incorporate a new
policy without losing the portability. In fact, the tricked guest OS shows behavior
similar to the expected policy, even though the guest policies employed in the
guest OS are completely different.

2.3 Discussion

We need to discuss the scope of resource management policies that FoxyTech-
nique can successfully introduce. It is quite difficult to generally determine the
scope, which depends largely on how to make use of graybox knowledge about
target OSes. Instead, we are trying to show the applicability of FoxyTechnique
by applying it to various kinds of resource management. As a first step, we im-
plemented a couple of resource management policies based on FoxyTechnique in
this paper.

FoxyTechnique may complicate the process of the guest OS maintenance since
it forges a device different from the real one. We assume that the developers
should debug and tune a guest OS without Foxy-enabled VMM to eliminate side
effects of Foxy-based modules. Thus, they can maintain the OS on a regular
basis.

We also discuss the difficulty in designing the tricking actions of Foxy-based
modules. First, when we introduce a new policy with FoxyTechnique, we need
to study the policy in detail and judge whether it can be introduced by altering
device behavior or not. Therefore, we need to be familiar with the targeted OS,
and know how the OS reacts to devices whose behavior has been transformed.
Second, there is a trade-off between portability and efficiency. If we use the

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

knowledge specific to the targeted OS, the portability of the Foxy-based module
is lowered, as we described in Section 2.2.

3. Implementation

To demonstrate the usefulness of FoxyTechnique, we have built two Foxy-based
modules: FoxyVegas and Foxyldle. The target resources of these Foxy-based
modules are different. FoxyVegas targets TCP/IP congestion control whereas
Foxyldle targets disk I/O scheduling. Section 4 and 5 describe Foxyldle and
FoxyVegas, respectively.

FoxyTechnique has been applied to Xen'® virtual machine monitor version
3.0.2-2. Xen is an open source VMM for the intel x86 architecture. Xen pro-
vides a paravirtualized ! processor interface, which reduces the virtualization
overhead at the expense of porting guest OSes. We carefully avoided making
use of this feature of Xen when implementing our Foxy-based modules. Thus,
FoxyTechnique can be applied to a more conventional virtual machine monitor
such as VMware 1819,

Our case studies consist of a set of patches to the Xen hypervisor and Xen’s
backend drivers. FoxyVegas changes the handlers related to sending and receiving
network packets. FoxyVegas patches consist of about 800 lines of code. Foxyldle
changes the VMM handlers for events like page table updates, accesses to priv-
ileged registers and disk reads. Foxyldle patches consist of about 1,500 lines of
code.

4. Case Study: FoxyVegas

FoxyVegas is a Foxy-based module for TCP Vegas??), a TCP congestion control
algorithm. TCP congestion control algorithms adjust the size of the congestion
window to reduce packet loss under network congestion. A lot of congestion
control algorithms have been proposed each of which is superior under different
circumstances and different workloads. TCP Vegas detects network congestion
more sensitively and keeps high throughput in network congestion.

4.1 TCP Vegas

TCP Vegas utilizes RTT values of network packets to decide the size of the
congestion window (cwnd). To detect network congestion, TCP Vegas detects

(© 2008 Information Processing Society of Japan

149 Introducing New Resource Management Policies Using a Virtual Machine Monitor

fluctuation of RTTs. If RTT values are becoming larger, TCP Vegas considers
network congestion has occurred and makes cwnd smaller. If RTT values are
becoming smaller, cwnd is made larger. If RTT values are similar to previous
ones, TCP Vegas does not change cwnd.

4.2 Implementation

To mimic TCP Vegas, FoxyVegas controls a virtual network interface card
(NIC). Since cwnd is a kernel data and not visible to a VMM, FoxyVegas adjusts
the window size of a guest OS. To control the window size, FoxyVegas gives an
illusion that a receiver is loaded heavily. Tricked by this illusion, the guest OS
starts reducing the window size. If this behavior is similar enough to TCP Vegas,
we can say FoxyVegas tricks guest OSes successfully.

FoxyVegas makes use of graybox knowledge about TCP/IP. TCP/IP controls
the transmission rate by adjusting the window size. To adjust the window size,
TCP/IP uses two variables: receiver’s advertised window size (rwnd) and cwnd.
TCP/IP chooses the minimum of cwnd and rwnd as the window size. Thus, we
can adjust the window size by controlling either rwnd or cwnd. As explained
above, FoxyVegas controls rwnd since cwnd is not visible to the VMM, whereas
the value of rwnd is included in ACKs and thus visible to the VMM.

To create an illusion that a receiver is under heavy load, a virtual NIC rewrites
the rwnd included in an ACK packet (Fig.2). When a virtual NIC receives an
ACK packet, it rewrites rwnd to cwnd calculated by FoxyVegas, if and only if
the calculated cwnd is smaller than the real rwund. Then, the rewritten ACK is
delivered to the guest OS. The guest OS believes that the receiver is overloaded,
and sets the rwnd rewritten by FoxyVegas to the window size. As a result, the
guest OS starts using the value calculated by FoxyVegas as the window size.

4.3 Experiments

To demonstrate that FoxyVegas works successfully, we conducted experiments
on three machines. Each machine is 2.4 GHz Pentium 4 PC with 512 MB of RAM
and an IDE hard disk drive. These machines run as a sender, a router and a
receiver, respectively. The sender and the receiver are connected with the router
via the Gigabit Ethernet. FoxyVegas runs on the sender machine. We used Linux
kernel version 2.6.16 in both the Xen control and guest domains. The Xen control
domain is configured with 256 MB of memory and the guest domain is assigned

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

Guest OS

3. OS uses rwnd

as window size
2. FoxyVegas rewrites

Window size = 15

the receiver is heavily Io%
FoxyVegas Foxy-enabled VMM

1. VMM receives ACK. T J/ 4. VMM sends packet.

Fig.2 FoxyVegas. When a receiver’s acknowledgment packet (ACK) arrives, FoxyVegas
rewrites the advertised window size (rwnd) included in the ACK. The guest OS con-
siders the receiver is loaded heavily, and changes the window size conforming with the
rewritten rwnd.

128 MB of memory. The router and the receiver execute Linux 2.6.16.

To confirm whether FoxyVegas can trick guest OS policies, we configured the
guest Linux to use all congestion control algorithms supported by Linux: 1) Bi-
nary Increase Congestion control (bic), 2) CUBIC TCP (cubic), 3) NewReno
(newreno), 4) H-TCP (htcp), 5) High Speed TCP (highspeed), 6) TCP-Hybla
(hybla), 7) TCP Westwood+ (westwood), 8) Scalable TCP (scalable), and
9) TCP Vegas (vegas). By showing that a single FoxyVegas module can trick
various guest policies, we demonstrate that a Foxy-based module is portable
across different OSes. The sender and the receiver perform the discard commu-
nication through the router which emulates a bottleneck of 200 MB/s, delay of
10 ms, and a maximum queue size of 10,500 KB. To emulate the bottleneck, the
router used the token bucket filter 2.

The experimental results are shown in Fig. 3. The x-axis is the elapsed time,
and the y-axis is the window size. For comparison, we also showed the window
sizes of Linux TCP Vegas running on physical hardware (Native Vegas) and of
Linux TCP Vegas running in the Xen guest domain (Guest Vegas) in Fig. 3 (a).
We can see that FoxyVegas tricks all the guest OS policies, except for vegas,
into behaving like TCP Vegas. FoxyVegas does not work well for the guest OS
running TCP Vegas. Since the guest OS calculates cwnd smaller than FoxyVegas,

(© 2008 Information Processing Society of Japan

150 Introducing New Resource Management Policies Using a Virtual Machine Monitor
45 45 45 45
40 Native Vegas —— 40 w/- FoxyVegas —— 40 w/- FoxyVegas —— 40 w/- FoxyVegas ——
Guest Vegas ---- w/o FoxyVegas ---- w/o FoxyVegas ---- w/o FoxyVegas ----
35 35 35
830 K30 K30
Los Los
o o
T20 T20
315 15
10 10
0 0
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Elapsed Time [s]

(a) Native and guest Vegas

Elapsed Time [s]

(b) pic

Elapsed Time [s]

(c) cubic

45 45
40 w/- FoxyVegas —— { 40 w/- FoxyVegas —— 40 w/- FoxyVegas —— 40 w/- FoxyVegas ——
w/o FoxyVegas - w/o FoxyVegas ---- w/o FoxyVegas ---- w/o FoxyVegas ----
35 35 35
230 230 830
o o %)
g 25 g 25 g 25
_'E 20 _‘E 20 E 20
ERE] ERE] ERE]
10 10 10 f
5 5 5
0 0 0 0
0 1 3 4 6 7 8 0 1 3 4 6 7 8 0 1 3 4 5 6 7 8 0 1 3 4 5 6 7 8
Elapsed Time [s] Elapsed Time [s] Elapsed Time [s] Elapsed Time [s]
(e) htcp (f) highspeed (g) hybla (h) westwood
45 45
40 w/- FoxyVegas —— 40 w/- FoxyVegas ——
w/o FoxyVegas ---- w/o FoxyVegas ----
35 35
830 830
%
225
3
E 20
215
10
5 I
ol

0 1 2

3 4 5 6 7 8
Elapsed Time [s]

(i) scalable

0 1 2 3

4 5 6 7 8
Elapsed Time [s]

(j) vegas

Elapsed Time [s]

(d) newreno

Fig.3 Comparison of the window size. The figure shows the aggregate window size for various TCP congestion control
algorithms whether FoxyVegas is used or not. The experiment uses nine congestion control algorithms.

the window size is set to the smaller cwnd.

the overhead as network congestion, and reduces cwnd.

In contrast, because

Note that FoxyVegas behaves more similarly to native Vegas than guest Vegas.
Since FoxyVegas is running on physical hardware, FoxyVegas can measure RTTs
as accurately as native Vegas. Figure 4 shows the distribution of RTTs observed
by native Vegas, guest Vegas, and FoxyVegas. The distribution of guest Vegas
is much larger due to the virtualization overhead. Hence, guest Vegas regards

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

FoxyVegas can measure RTTs without the virtualization overhead, FoxyVegas
keeps a larger window size than guest Vegas. Therefore, an experiment in which
we measured throughput between the sender and the receiver shows FoxyVegas
outperforms guest Vegas (Table 1).

To demonstrate that FoxyVegas provides benefits of TCP Vegas, we measured

(© 2008 Information Processing Society of Japan

151 Introducing New Resource Management Policies Using a Virtual Machine Monitor

4000

3000

2000 <

1000

Round Trip Time [micro second]

0 10000 20000 30000
Packets

(a) Native Vegas
4000

3000 .) :
2000 !

1000

Round Trip Time [micro second]

0 10000 20000 30000
Packets

(b) Guest Vegas
4000

3000
2000 |, |y

1000 | 3

Round Trip Time [micro second]

0 10000 20000 30000
Packets

(c) FoxyVegas

Fig.4 Comparison of RTT fluctuations. These graphs show the distribution of RTTs observed
by native Vegas, guest Vegas and FoxyVegas. The tendency of the distribution of
FoxyVegas is similar to one of native Vegas. The RTTs of guest Vegas is larger than
native Vegas and FoxyVegas.

throughput under network congestion. The sender transmits 400 MB data to the
receiver. The router emulates a bottleneck of 2,000 KB/s and a delay of 10ms,
and a maximum queue size of 6,000 KB.

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

Table 1 Comparison of throughput for various configurations of TCP Vegas. The table re-
ports the aggregated throughput for various configurations of TCP Vegas. The
experiments use three Vegas. The first is Linux TCP Vegas running on the physical
machine (Native Vegas). The second is Linux TCP Vegas running on the Xen guest
domain (Guest Vegas). The last is FoxyVegas which triked Linux BIC. BIC is the
Linux default congestion control algorithm.

Benchmark | Throughput [MB/s] | Decreasing rate
Native Vegas 42.442 —
Guest Vegas 23.831 43.85%
FoxyVegas 33.692 20.62%

Table 2 shows the experimental results. The experimental results suggest that
FoxyVegas provides the benefit of TCP Vegas. We can see that throughput with
FoxyVegas is higher than without FoxyVegas except for TCP Vegas. The reason
why FoxyVegas decreases throughput for TCP Vegas is that FoxyVegas does not
work well for TCP Vegas. This reason is described in the previous experiment.

5. Case Study: Foxyldle

Foxyldle is a Foxy-based module for the idletime scheduling** that schedules
disk I/0 requests. The idletime scheduler regulates disk I/O requests from back-
ground jobs which should run only when computer resources are idle. Examples
of background jobs include virus checkers, disk defragmenters, and SETT@home.
If not managed properly, the background jobs impede foreground, PC user’s nor-
mal jobs. To avoid the interference between foreground and background jobs,
the idletime scheduling controls the disk I/O request from background jobs. To
the authors’ knowledge, there is no commodity OS which supports the idletime
scheduling.

5.1 Idletime Scheduling

To prevent background jobs from causing excessive preemption cost, the idle-
time scheduler introduces a time delay, called preemption interval. A preemption
interval is a time period following each serviced foreground request during which
no background request starts — the resource remains idle even when background
requests are queued (Fig. 5). The idletime scheduler begins a preemption interval
whenever an active foreground request finishes. While the preemption interval
is active, the scheduler does not start servicing any background requests. The

(© 2008 Information Processing Society of Japan

152 Introducing New Resource Management Policies Using a Virtual Machine Monitor

Table 2 Comparison of throughput in network congestion.

The table reports the improvement rate of throughput when we

used FoxyVegas. In almost cases, FoxyVegas makes guest Linux achieve higher throughput under network congestion (a
bottleneck of 2,000 KB/s, a delay of 10 ms and queue size of 6 MB).

Tricked Algorithm bic cubic | newreno htcp highspeed | hybla | westwood | scalable | vegas
w/o FoxyVegas [KB/s] 789 921 830 1,063 1,030 1,058 902 732 1,369
w/- FoxyVegas [KB/s] 1,281 1,270 1,275 1,367 1,291 1,317 1,326 1,328 1,235

Ratio 62.3% | 37.8% 53.6% | 28.6% 25.3% | 24.5% 46.9% 81.5% | —9.8%

Preemption cost Preemption interval

Active

request{ Bl F1 |

Request

queue F: Foreground job

B B: Background job

Foreground job
arrives

Preemption interval

F2 | Bi

Foreground job arrives
in a preemption interval

Background job is executed
after preepmtion interval

Time
Idletime scheduling. The figure shows the behavior of the idletime scheduling. A pre-
emption interval starts whenever a foreground request finishes. While the preemption
interval is active, the background requests are not executed. The background jobs are
started only when a preemption interval expires.

Fig.5

idletime scheduler starts background requests only when a preemption interval
expires. Even if background requests are executed, the idletime scheduler starts
serving foreground requests as soon as possible when a foreground request arrives.

The length of the preemption interval is a parameter which controls the tradeoff
between aggressive use of idle resources and impact on performance of foreground
jobs. With a longer preemption interval, foreground performance increases be-
cause the opportunity for background jobs to be executed decreases, but the
resource utilization becomes lower. With a shorter preemption interval, the uti-
lization is higher but foreground performance decreases.

5.2 Implementation

To forge the behavior of the idletime scheduling, Foxyldle controls virtual disk
drives differently from the real ones. To stall background requests, Foxyldle
pretends that the disk drive is seeking the requested data for a long time. During

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

this time, although the real disk drive is not seeking at all, the guest OS believes
that the requested data have been sought by the disk drive. Therefore, the guest
OS keeps blocking the background process; here, we make use of the graybox
knowledge that a process is kept waiting until the disk drive raises an interrupt.
By tuning this waiting time, FoxylIdle forces the guest OS to stall the background
process for a preemption interval.

To pretend that a virtual disk drive is seeking data, the virtual disk drive delays
sending an I/0 request to the real disk drive. When a virtual disk drive detects
a background request, it delays the request until a preemption interval expires.
During the preemption interval, the guest OS believes that the requested data
have been sought by the virtual disk drive. Thus, it blocks the background process
that issued the request. When the preemption interval expires, the virtual disk
drive actually sends the I/O request to the real disk drive. When the real disk
drive raises an interrupt, the virtual disk drive catches and delivers it to the guest
OS. Catching this interrupt, the guest OS naturally resumes the background
process. If a foreground request arrives at a virtual disk drive, the request is
immediately sent to the real disk drive because we do not have to delay foreground
requests. Figure 6 illustrates this behavior of Foxyldle.

When a virtual disk drive catches a disk read request, Foxyldle must be able
to discern which process issues it and determine whether it is foreground or
background. Here, we encounter a semantic gap between the OS and the VMM
because the VMM lacks the knowledge of ‘process’ and ‘foreground /background.’

Foxyldle uses three techniques to bridge this semantic-gap. First, it uses Ant-
farm 'Y that makes a VMM aware of ‘process’. To identify processes, Antfarm
can track virtual address spaces because they correspond to processes. Antfarm
tracks address spaces on Intel x86 by observing the value of CR3 (a processor

(© 2008 Information Processing Society of Japan

153 Introducing New Resource Management Policies Using a Virtual Machine Monitor

Background
process

O 4. OS keeps blocking
A \ background process

Guest OS

1. Process issues
file read requests.

2. OS issues disk read requests

on virtualized disk. 3. Foxyldle delays requests

to pretend to seek data

Virtual disk controller
Foxy-enabled VMM

Fig.6 Foxyldle. Foxyldle controls background disk read requests. When a background pro-
cess issues disk read requests via the guest OS, Foxyldle delays sending the requests
to the real disk drive. The guest OS considers the data is sought by the virtual disk
drive, and keeps blocking the background process.

control register). CR3 stores the physical address at which the current page table
is placed. Because the instruction to change CR3 value is privileged, the control
is transferred to the VMM whenever a guest OS performs context-switch. Hence,
Antfarm regards the value of CR3 as process ID; by checking the value of CR3,
the VMM can know which process is currently running.

Second, to associate disk read requests to processes, we employ the strategy
called context association V) that associates a read request with whatever process
is currently running. This strategy does not take potential asynchrony within the
operating system into account. For example, due to request queuing inside the
OS, a read may be issued to the VMM after the process in which it originated
has already context switched off the processor. This leads to association error,
but is accurate enough for our purpose.

Finally, to distinguish background requests from foreground requests, Foxyldle
assigns the ‘foreground’ or ‘background’ attribute to each CR3 value (recall that
Foxyldle regards CR3 value as process ID). When a background process starts
running, it notifies the Foxyldle module in the VMM that a background process is
running, by sending a UDP message to the Foxyldle module. When the Foxyldle
module receives this message, it associates the current value of CR3 with the
‘background’ attribute. Again, we use the context association strategy; when the

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

VMM catches this message, the sending process may have already switched off
the processor. To send this notification message, a background process is linked
with a library that overrides libc_main_start() in 1libc. We used the library
preload to override 1libc_main_start().

5.3 Experiments

To demonstrate that Foxyldle works well, we conducted the experiments on a
3.0 GHz Pentium D PC with 1 GB of RAM and a SATA hard disk drive. We used
Linux kernel version 2.6.16 in both the Xen control domain and guest domains.
The Xen control domain is configured with 512 MB of memory, and the guest
domain is assigned 128 MB of memory.

To find out whether Foxyldle can trick various policies in guest OSes, the guest
Linux is configured to use all disk I/O schedulers of Linux: 1) no operation
(noop), 2) anticipatory (ac), 3) deadline (d1), and 4) complete fairness queuing
(cfq). Similarly to the case of FoxyVegas, by showing a single Foxyldle module
can trick various guest policies, Foxy-based modules are expected to be portable
across different OSes. We also implemented the idletime disk scheduler into
Linux 2.6.16 to compare its behavior to one forged by Foxyldle. In the following
experiment, we used two benchmarks: sequential and random. Sequential
reads a 1GB file sequentially, and random reads a 1GB file randomly for 10
times. We measured the execution time of foreground and background jobs,
varying the length of a preemption interval.

The experimental results are shown in Figs. 7 and 8. The x-axis is the length
of a preemption interval, and the y-axis is the relative execution time to the
“standalone” execution time when each benchmark ran alone. In each figure,
(a) and (c) are the results when the idletime disk scheduler was executed on
physical hardware (Native Idle) and the Xen guest domain (Guest Idle). On
the other hand, (b) and (d) are the ones when Foxyldle ran. The leftmost
bars (labeled concurrent execution) plot the execution times when the idletime
scheduler and Foxyldle were disabled. In Fig. 7, both foreground and background
jobs are sequential. In Fig. 8, the foreground is random and the background is
sequential.

These figures indicate two things. One is that Foxyldle can produce behavior
similar to the idletime scheduling; Foxyldle preserves the performance of the fore-

(© 2008 Information Processing Society of Japan

154 Introducing New Resource Management Policies Using a Virtual Machine Monitor

o1

5
Native Linux w/o Idle zzzz
Guest Linux w/o Idle =3
4 Native Idle 1
Guest Idle E=.

w

N

I

[N

-

IS

w

N

-y

Relative execution time to standalone

0 III II

Relative execution time to standalone

O’_I—‘

Concurrent 2 4 8 10 12 14 16 18 20
execution Length of Preemption Interval [ms]

(a) Execution time of foreground sequential
on native Idle and guest Idle

0Concurre_m 2 4 6 8 10 12 14 16 18 20
executon Length of Preemption Interval [ms]
(b) Execution time of foreground sequential

on Foxyldle

(&)}

5
Native Linux w/o Idle
Guest Linux w/o Idle =3
4 Native Idle T
Guest Idle E==

w

N
=

IS

w

N

-

Relative execution time to standalone

Relative execution time to standalone

0 6

Concurrent 2 4 8 10 12 14 16 18 20
execution Length of Preemption Interval [ms]

(c) Execution time of background sequential
on native Idle and guest Idle

-y

OConcurre_nt 2 4 6 8 10 12 14 16 18 20
executon Length of Preemption Interval [ms]

(d) Execution time of background sequential
on Foxyldle

Fig. 7 Difference of execution time between the foreground (sequential) and the background (sequential). In each graph, the
leftmost bars (labeled concurrent execution) plot the execution times when the idletime scheduler is disabled.

ground jobs gradually by lengthening a preemption interval. The other is that
Foxyldle works well regardless of guest OS policies. In the idletime scheduling,
the execution time of the foreground gets smaller and closer to that of “stan-
dalone” when the preemption interval is set larger. In fact, Fig. 7 (a) and Fig. 8 (a)
reveal that native Idle and guest Idle make the relative execution times of the
foregrounds close to 1 when a preemption interval is larger than 14 ms. On Foxyl-

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

dle, the relative execution times similarly become about 1 with larger preemption
intervals, as shown in Fig. 7 (b) and Fig.8 (b). Figure 7 (c) exhibits that native
Idle and guest Idle make the relative execution times of the backgrounds close to
2 when the preemption intervals become larger. In addition, the relative times
get close to 2 on Foxyldle, as shown in Fig. 7 (d). When the foreground is random,
the relative execution times of the backgrounds get close to 3 on native Idle with

(© 2008 Information Processing Society of Japan

155 Introducing New Resource Management Policies Using a Virtual Machine Monitor

w

N

| E— -

-

5 5
Native Linux w/o Idle zzz noop A
Guest Linux w/o Idle =3 ac EEI
4 Native Idle T 4 dl 3
Guest Idle = cfq mmmm

Relative execution time to standalone

0 I II III

Relative execution time to standalone

|,
|

0’_.—‘

Concurrent 4 8 10 12 14 16 18 20
execution Length of Preemption Interval [ms]

(a) Execution time of foreground random
on native Idle and guest Idle

w

N

-y

Oonc 4 6 8 10 12 14 16 18 20

executon Length of Preemption Interval [ms]

(b) Execution time of foreground random
on Foxyldle

w

5 5
Native Linux w/o Idle noop
Guest Linux w/o Idle =3 [ac EEI
4 Native Idle T 4 dl —
Guest Idle E== cfq mmm

N

-

Relative execution time to standalone

Relative execution time to standalone

Jé

Concurrent 2 4 6 8 10 12 14 16 18 20
execution Length of Preemption Interval [ms]

(c) Execution time of background sequential
on native Idle and guest Idle

w

N

-y

7 7

7!
| i
U U
U ’
é N
7 7
7 7
D /
D D
’ |
| |
? é
’ 7

Concurent 2 4 6 8 10 12 14 16 18 20
executon Length of Preemption Interval [ms]

(d) Execution time of background sequential
on Foxyldle

Fig. 8 Difference of execution time between the foreground (random) and the background (sequential).

the preemption intervals larger. On the other hand, Foxyldle gradually makes
the relative times less than 3 when the preemption intervals are larger, similarly
to guest Idle (see Fig.8 (c) and (d)).

These experimental results also reveal that guest Idle preserves the perfor-
mance of the foregrounds with smaller preemption intervals than native Idle. In
Fig. 7 (a), for example, the relative execution time is 1.29 on guest Idle while it is

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

1.96 on native Idle when the preemption interval is set to 4 ms. This is because
the timer which guest Idle uses to stall background requests is not accurate due
to the virtualization overhead. Figure 9 shows the absolute values of the errors
between the calculated interval and the actual interval with the box and whiskers
plot, when the preemption interval is 4ms. The calculated interval is an inter-
val which the idletime scheduler or Foxyldle calculated for stopping background

(© 2008 Information Processing Society of Japan

156 Introducing New Resource Management Policies Using a Virtual Machine Monitor

Table 3 Comparison of execution times of grep and updatedb. The table reports execution times of grep (foreground) and
updatedb (background) with Foxyldle. Both jobs access totally about 260 MB of files and directories.

Native Idle Guest Idle Foxyldle

Preemption intervals | Grep (sec) | updatedb (sec) | Grep (sec) | updatedb (sec) | Grep (sec) | updatedb (sec)

5ms 9.72 101.13 24.34 113.44 24.92 113.74

10 ms 9.86 101.91 17.50 109.07 16.40 107.94

15ms 9.25 101.17 15.40 107.59 15.50 107.60

20 ms 8.72 103.46 14.63 107.30 15.41 107.46

Concurrent execution 10.14 102.02 82.94 123.31 82.94 123.31

Standalone 8.67 92.04 14.34 87.62 14.34 87.62
12 the source and document files of the same Linux kernel. The total file size is
10 -1 1 about 260 MB. In this experiment, the foreground was grep and the background
Zs was updatedb. We measured the execution time of both benchmarks, varying
% 6 a preemption interval. The guest policy used here is anticipatory scheduling,
£ the default Linux disk scheduling policy. To discern the effect of the idletime
2 scheduling, these benchmarks are configured to access separate copies of the
0 Linux files. By doing so, these benchmarks do not share the file cache, and thus

Native Idle Guest Idle Foxyldle

Fig.9 Timer Errors of the idletime schedulers. The figure shows the absolute values of the
errors between the calculated interval and the actual interval. The calculated interval is
an interval which the idletime scheduler or Foxyldle calculated for stopping background
requests. The actual interval is an interval for which background requests were actually
stopped.

requests. The actual interval is an interval for which background requests were
actually stopped. Since the timer functionality in Linux is basically unsophisti-
cated, the median timer error is 1.16 ms even on native Idle. On guest Idle, the
median is higher than native Idle and Foxyldle, 6.83 ms. As a result, guest Idle
excessively stalls background requests and thus the foregrounds are more easily
able to make progress. Although the timer errors on Foxyldle are also higher
than native Idle, Foxyldle does not restrict the execution of the backgrounds as
excessively as guest Idle because the timer on Foxyldle is more accurate than
that on guest Idle (see Fig.9).

To confirm Foxyldle is effective in a more realistic situation, we prepared other
benchmarks: grep and updatedb. Grep searches for lines containing ‘submit_bio’
in the source code and documents of Linux kernel 2.6.16. Updatedb indexes

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

generate as many disk read requests as possible.

Table 3 lists the results. In all the cases with Foxyldle, the execution times
of both benchmarks are shorter than in the case of concurrent execution, simi-
larly to native Idle and guest Idle. This is because Foxyldle enables both jobs to
run with less disk contention than concurrent execution (Fig.10). The experi-
mental results suggest that Foxyldle can forge the idletime scheduling behavior
sufficiently to obtain its benefits in a realistic situation.

6. Related Work

Antfarm 'V and Geiger ' bridge OS-VMM semantic gaps. Antfarm and Geiger
enable a VMM to infer the ‘process’ and the buffer cache state of the guest OS,
and allow some resource management policies to be incorporated into the VMM
layer. FoxyTechnique addresses the interference between VMM-level and guest
OS policies, and tricks guest OS policies by making use of this interference.
For example, FoxyVegas makes use of the common features of TCP /TP protocol
stacks to implement TCP Vegas. Antfarm and Geiger do not explicitly make use
of the interference between VMM layer and the guest OS.

(© 2008 Information Processing Society of Japan

157 Introducing New Resource Management Policies Using a Virtual Machine Monitor

Grep reads files of Linux kernel Grep reads files

from disk drive. again.
Grep

Grep searches string
of 'submit bio'.

Updatech N 4

Useof CPU []
Disk access I:l

Disk access with contention [

time

(a) Concurrent Execution

Updatedb reads files and directories of Linux kernel to construct the database. =~ | “Pddtedb iead
Updatedb|ll

Grep reads files of Linux kernel
from disk drive. Grep reads files again.

Grep [|| [J

Grep searches string Grep searches string again
of 'submit bio".

Updatedb reads files and directories of Linux kernel to construct the database.

Useof CPU []
Disk access

Disk access with contention [

]
L

Preemption interval

(b) Execution with Foxyldle

Fig. 10 Difference between the concurrent execution and the Foxyldle execution. The figure shows grep and updatedb behavior
whether Foxyldle is used or not. In concurrent execution, both jobs make progress with disk contention. In contrast,
Foxyldle allows both benchmarks to run with less disk contention.

The balloon driver ' regulates an amount of memory assigned to guest OSes.
A balloon driver is loaded into a guest OS and tricks the guest OS into believing
a region of memory is used. The balloon process?? controls CPU schedulers
on multiprocessor VMs when each virtualized processor has different processing
power. Although these approaches trick guest OS policies for resource manage-
ment, they do not address the problem of introducing a new policy into guest
OSes. In addition, the portability is slightly reduced because a new driver must
be developed.

Introvirt ?» enables us to change the OS behavior without changing the source
of its kernel. The goal of Introvirt is to apply OS patches without directly chang-
ing the kernel source, and uses breakpoints to get the control from the guest
OS. Introvirt is a powerful tool for changing the OS behavior, but requires the
source code of guest OSes. Hence, it is almost impossible to apply Introvirt to
proprietary OSes.

To improve the performance of virtual machines, some VMMs manage physical
resources transparently to guest OSes. Disco ?* and Potemkin ?* apply the copy-
on-write technique to enhance the memory usage. They do not address the
problem of incorporating a new policy into a guest OS, and the interference
between VMM layer and a guest OS.

The technologies for inserting a new resource management policy into an OS

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

kernel have been investigated over the past decades. To enable a new policy to be
incorporated into an existing OS, the OS researchers have proposed the concept of

4976 Newhouse and Pasquale® developed user-level schedulers

extensible OSes
for CPU intensive jobs. Graybox technique? enables us to infer internal states
of an OS at the user-level. Based on this inference, we can build various resource
management policies at the user-level. FoxyTechnique borrows the concept of
the graybox technique to guess the internal states of guest OSes. Infokernel ™
exposes the internal states of and algorithms employed by an OS to facilitate the
development of user-level resource managers. OS profilers such as Debox 2% and

Dtrace 2" can be used to get the OS internal states.
7. Conclusion

It is difficult to integrate a new resource management policy into an existing
OS despite many proposals of sophisticated, innovative policies. This is because
modern operating systems are too complex and large to modify their kernel code.
In this paper, we presented FoxyTechnique, a technique of enabling us to in-
corporate new policies into existing OSes without any changes to their kernel.
FoxyTechnique virtualizes physical devices differently from real ones, and tricks
the guest OS policy into producing behavior similar to a desired policy. To em-
body the concept of FoxyTechnique, we conducted two case studies, FoxyVegas

(© 2008 Information Processing Society of Japan

158 Introducing New Resource Management Policies Using a Virtual Machine Monitor

and Foxyldle, on the Xen virtual machine monitor. The targets of these case
studies are different; FoxyVegas targets TCP/IP congestion control and Foxyldle
targets disk I/O scheduling. Through these case studies, we have demonstrated
that FoxyTechnique can trick various guest OS policies into producing a behavior
similar to a desired policy.

References

1) Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A. and
Young, M.: Mach: A new kernel foundation for UNIX Development, Proc. Summer
USENIX Conference, pp.93-112 (1986).

2) Hé&rtig, H., Hohmuth, M., Liedtke, J., Schénberg, S. and Wolter, J.: The Per-
formance of p-Kernel-Based Systems, Proc. 16th ACM Symposium on Operating
Systems Principles (SOSP ’97), pp.66-77 (1997).

3) Rashid, R.F. and Robertson, G.G.: Accent: A communication oriented network op-
erating system kernel, Proc. 8th ACM Symposium on Operating Systems Principles
(SOSP '81), pp.64-75 (1981).

4) Bershad, B.N., Savage, S., Pardyak, P., Sirer, E.G., Fiuczynski, M.E., Becker, D.,
Chambers, C. and Eggers, S.: Extensibility, Safety and Performance in the SPIN
Operating System, Proc. 15th ACM Symposium on Operating Systems Principles
(SOSP ’95), pp.267-283 (1995).

5) Engler, D.R., Kaashoek, M.F. and O’Toole, J.: Exokernel: An Operating System
Architecture for Application-Level Resource Management, Proc. 15th ACM Sym-
posium on Operating Systems Principles (SOSP’95), pp.251-266 (1995).

6) Seltzer, M.I., Endo, Y., Small, C. and Smith, K.A.: Dealing With Disaster: Sur-
viving Misbehaved Kernel Extensions, Proc. 2nd Symposium on Operating Systems
Design and Implementation (OSDI ’96), pp.213-227 (1996).

7) Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., Burnett, N.C., Denehy, T.E., Engle,
T.J., Gunawi, H.S., Nugent, J. and Popovici, F.I.: Transforming Policies into Mech-
anisms with Infokernel, Proc. 19th ACM Symposium on Operating Systems Princi-
ples (SOSP ’03), pp.90-105 (2003).

8) Newhouse, T. and Pasquale, J.: ALPS: An Application-Level Proportional-Share
Scheduler, Proc. 15th IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC' ’06), pp.279-290 (2006).

9) Arpaci-Dusseau, A.C. and Arpaci-Dusseau, R.H.: Information and Control in
Gray-Box Systems, Proc. 18th ACM Symposium on Operating Systems Principles
(SOSP ’01), pp.43-56 (2001).

10) Goldberg., R.P.: Survey of Virtual Machine Research, IEEE Computer Magazine,
Vol.7, No.6, pp.34-45 (1974).
11) Jomes, S.T., Arpaci-Dusseau, A.C. and Arpaci-Dusseau, R.H.: Antfarm: Tracking

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008)

Processes in a Virtual Machine Environment, Proc. USENIX Annual Technical
Conference (USENIX ’06) (2006).

12) Jones, S.T., Arpaci-Dusseau, A.C. and Arpaci-Dusseau, R.H.: Geiger: Monitoring
the Buffer Cache in a Virtual Machine Environment, Proc. 12th ACM Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’06) (2006).

13) Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I. and Warfield, A.: Xen and Art of Virtualization, Proc. 19th ACM
Symposium on Operating Systems Principles (SOSP ’03), pp.164-177 (2003).

14) Eggert, L. and Touch, J.D.: Idletime Scheduling with Preemption Intervals, Proc.
20th ACM Symposium on Operating Systems Principles (SOSP ’05), pp.249-262
(2005).

15) Chen, P.M. and Noble, B.D.: When Virtual is Better than Real., Proc. Workshop
on Hot Topics in Operating Systems (HotOS ’01), pp.133-138 (2001).

16) Bovet, D.P. and Cesati, M.: Understanding the LINUX KERNEL (3rd Edition),
O’Reilly Media, Inc. (2006).

17) Whitaker, A., Shaw, M. and Gribble, S.D.: Scale and Performance in the Denali
Isolation Kernel, Proc. 5th USENIX Symposium on Operating System Design and
Implementation (OSDI ’02), pp.195-209 (2002).

18) Sugerman, J., Venkitachalam, G. and Lim, B.-H.: Virtualizing I/O Devices on
VMware Workstation’s Hosted Virtual Machine Monitor, Proc. USENIX 2001 An-
nual Technical Conference (USENIX °01), pp.1-14 (2001).

19) Waldspurger, C.A.: Memory Resource Management in VMware ESX Server, Proc.
5th USENIX Symposium on Operating System Design and Implementation (OSDI
02), pp.181-194 (2002).

20) Brakmo, L.S., O’Malley, S.W. and Peterson, L.L.: TCP Vegas: New Techniques for
Congestion Detection and Avoidance, Proc. ACM SIGCOMM ’94, pp.24-35 (1994).

21) Shenker, S. and Wroclawski, J.: RFC2216: Network Element Service Specification
Template (1997). http://rfc.net/rfc2216.html

22) Uhlig, V., LeVasseur, J., Skoglund, E. and Dannowski, U.: Towards Scalable Mul-
tiprocessor Virtual Machines, Proc. 8rd USENIX Virtual Machine Research and
Technology Symposium (VM ’04), pp.43-56 (2004).

23) Joshi, A., King, S.T., Dunlap, G.W. and Chen, P.M.: Detecting Past and Present
Intrusions through Vulnerability-Specific Predicates, Proc. 20th ACM Symposium
on Operating Systems Principles (SOSP ’05), pp.91-104 (2005).

24) Bugnion, E., Devine, S. and Rosenblum, M.: Disco: Running Commodity Operat-
ing Systems on Scalable Multiprocessors, Proc. 16th ACM Symposium on Operating
Systems Principles (SOSP ’97), pp.143-156 (1997).

25) Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A., Voelker,
G. and Savage, S.: Scalability, Fidelity, and Containment in the Potemkin Virtual
Honeyfarm, Proc. 20th ACM Symposium on Operating Systems Principles (SOSP
'05), pp.148-162 (2005).

(© 2008 Information Processing Society of Japan

159 Introducing New Resource Management Policies Using a Virtual Machine Monitor

Kenji Kono received the B.Sc. degree in 1993, M.Sc. degree in
1995, and Ph.D. degree in 2000, all in computer science from the
University of Tokyo. He is an associate professor of the Depart-
ment of Information and Computer Science at Keio University.
His research interests include operating systems, system software,
(Received October 9, 2007) and Internet security. He is a member of the IEEE/CS, ACM and

(Accepted March 15, 2008) USENIX.

26) Ruan, Y. and Pai, V.: Making the “Box” Transparent: System Call Performance as
a First-class Result, Proc. USENIX 2004 Annual Technical Conference (USENIX
'04), pp.1-14 (2004).

27) Cantrill, B., Shapiro, M.W. and Leventhal, A.H.: Dynamic Instrumentation of
Production Systems, Proc. USENIX 2004 Annual Technical Conference (USENIX
'04), pp.15-28 (2004).

Hiroshi Yamada was born in 1981. He received his B.E. and
M.E. degrees from the University of Electro-communications in
2004 and 2006, respectively. He is currently a Ph.D. candidate in
School of Science for Open and Environmental Systems at Keio
University, since 2006. His research interests include virtual ma-
chine technology, operating systems, and system software. He is
a member of IPSJ, ACM, USENIX and IEEE/CS.

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 144-159 (June 2008) (© 2008 Information Processing Society of Japan

