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Abstract: Secure communication is essential in most applications such as battlefield and disaster management appli-

cations. Most existing protocols adopt cryptography based approach, trust based approach (reputation of nodes) and

incentive based approach to detect and prevent attacks in such applications. However, such protocols are still subjected

to drawbacks like expensive overheads, difficulty in maintaining secure key and session management, unsecured routes

against Byzantine attacks and so on. Therefore, we introduce a monitoring scheme to secure packets route in link state

routing protocol against Byzantine attacks.

1. Introduction

Secure timely delivery of packet is necessary in wireless net-

work communication, however, it is impossible to achieve such

timely delivery if the malicious action of nodes cannot be de-

tected or prevented. There have been various security protocols

proposed to secure a packet route against malicious attacks, but

none of those protocols adopt the monitoring approach to detect

various Byzantine attacks. In such attacks, a node can interrupt

route discovery, impersonate a destination node, corrupt routing

information, completely drop packets, or inject fake packets into

the network. These types of attacks can be carried out by a mali-

cious node either outside the network or within the network. Even

though these types of attacks can be easily detected in a wired net-

work, ad-hoc networks are still very vulnerable to such threats.

Most works already carried out on route security has adopted one

of three main approaches: the cryptography-based approach, the

trust-based approach, or the incentive-based approach [1].

In our research, we proposed a monitoring approach to secure

the link state routing protocol against Byzantine attacks [2]. In

this paper, we show the overheads of our monitoring scheme.

The goal of our proposed scheme is to guarantee communication

among connected benign nodes in the network. Specifically, each

node monitors the actions of neighboring nodes and compare the

optimal packet route against the route history. This allows mon-

itoring nodes in the network to track the past events of packets

sent. Our monitoring scheme adopts three main methods:

.

( 1 ) Hello message verification - used to validate the hello mes-

sages and to identify inconsistent information when a mali-

cious node tries to corrupt routing table information.

( 2 ) Packet history field monitoring - here the source node calcu-
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lates the optimal path and stores it in each packet (like Dy-

namic Source Routing), and then neighboring nodes check

whether packets are forwarded correctly according to the

stored optimal path. Also, the event history is recorded in

each packet at each intermediate node.

( 3 ) Statistical hypothesis testing - while some packets may be

dropped due to poor link quality, we need to know if a node is

intentionally dropping packets. To determine this, we adopt

a statistical measure in which monitoring nodes observe the

packet-dropping behavior of other nodes, and then calculate

the probability (P value) of an intermediate node dropping a

packet.

To detect malicious nodes, the P value is compared to a signif-

icance level value (reflecting the number of dropped packets that

can be tolerated), while packet history field monitoring is used to

identify at which node a malicious action is carried out.

The rest of this paper is organized as follows. Section 2 re-

views related work on securing routing protocols. In Section 3,

we present an overview of routing protocols and Byzantine at-

tacks. Then in Section 4, we introduce our proposed monitoring

scheme to secure the link state routing protocol against Byzantine

attacks, and in Section 5 describe our evaluation of the proposed

scheme. Section 6 concludes the whole paper.

2. Related Work

In this section, we review previous work on securing rout-

ing protocols and Byzantine attacks. Geetha et. al. [1] classi-

fied routing protocols into three distinct types: proactive, reac-

tive, and hybrid protocols. They described proactive protocols as

protocols where nodes frequently exchange network topology in-

formation and construct routing tables to send packets from the

source to the destination. Examples of such protocols include

the Optimized Link State Routing protocol, and the Destination-

Sequenced Distance-Vector protocol. Reactive protocols are de-

scribed as protocols that ensure packets are sent from the source
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to the destination only when needed. Examples include Ad-hoc

On-Demand Vector (AODV) and Dynamic Source Routing. Fi-

nally, hybrid protocols are produced by combining both proactive

and reactive protocols. Routing Protocol and Fisheye State Rout-

ing are both examples of hybrid protocols.

Harshavardhan [3] surveyed security issues in ad-hoc routing

protocols and identified ways to mitigate such security threats.

Harshavardhan first defined the properties of an ad-hoc routing

protocol as providing distributed operation, loop free, demand-

based operation, unidirectional link support, security, quality-of-

service support, multiple routes, and power conservation. Then

they used findings from related work to summarize different ad-

hoc routing protocols before analyzing various security threats

and techniques to mitigate them.

Ali et. al. [4] also surveyed security challenges in mobile ad-

hoc networks (MANETs). They introduced three important se-

curity parameters, and further divided security aspects into two

areas, which are security services and attacks. They classified

security services into five important services which are used to

protect the network before attacks happen, while attacks are the

threats to the network. In addition, they analyzed and discussed

various mitigating approaches against attacks in MANETs. Mo-

jtaba et. al. [5] also investigated routing attacks and various so-

lutions to such attacks. They highlighted security attacks that

MANET routing protocols are vulnerable to and identified mech-

anisms such as cryptography schemes, key management, and spe-

cial hardware using GPS as some possible solutions to such at-

tacks. Similarly, Kannhavong et. al. [6] surveyed routing at-

tacks in MANETs. They investigated various security issues in

MANETs and examined routing attacks, such as flooding, black-

hole, wormhole, replay, link spoofing, and colluding attacks, as

well as solutions to such attacks in MANETs. They identified the

advantages and drawbacks of the reviewed solutions, then recom-

mended improvement of the effectiveness of the security schemes

they had surveyed.

Jhaveri et. al. [2] surveyed various DoS attacks that are secu-

rity concerns in MANETs and some of the proposed solutions to

identify and prevent such attacks. They describe various routing

protocols, and DoS attacks such as a wormhole, black hole, gray

hole attacks and their operations. Zapata et. al. [8] introduced a

security mechanism to secure AODV routing information. First,

they identified integrity, authentication, confidentiality, and non-

repudiation as security goals for routing. Then they proposed two

mechanisms to secure AODV packets, hash chains and digital sig-

natures. Specifically, the hash chain is used to verify that the hop

count was not decreased by a malicious node, while the digital

signature is used to safeguard the integrity of other information

in the packets besides the hop count.

Allegedly et. al. [9] proposed a new detection scheme for

malicious nodes to detect packet faking by a malicious node.

They introduced a hash chain technique to detect the attack and

trace the malicious nodes. They compared their approach to an

acknowledgment-based mechanism and a network coding based

mechanism. Baadache et. al. [10] proposed a scheme to check

if packets are routed correctly in the network. They adopt the

acknowledgement of packets at each intermediate node which is

used to construct a Merkle tree. Packet dropping are detected if

the root of of the Merkle tree is not the same with a precalculated

value.

Papadimitratos et. al. [11] proposed a secure link state pro-

tocol (SLSP) for MANETs to secure neighbor discovery and

adopted a neighbor lookup protocol to further strengthen their

system against DoS attacks. In addition, the proposed SLSP re-

stricted the forwarding of packets within a cluster, and adopted

the use of public and private keys to validate that packets are only

forwarded within the cluster. Unlike our proposed monitoring

scheme, their protocol only focused on securing the topology dis-

covery and protected the link state update packets, but did not

secure the routing of packets. Our proposed scheme addresses

routing security using a monitoring mechanism to protect packets

and also guarantees the communication of benign nodes. Another

main difference in our work is that our proposed scheme secures

the routing protocol against colluding attacks where a group of

nodes collaborates to carry out an attack.

To secure the packet route and provide secure message trans-

mission in MANETs, Papadimitratos et. al. [12] proposed a dif-

ferent mechanism from their previous work. Their mechanism is

based on four main schemes: secure end-to-end transmission of

packets and feedback, dispersion of a packet, multi-path routing

of packets, and adaptation to topology changes. In addition, their

mechanism also introduced path rating based on feedback from

the destination node. Paths that fall below a given threshold are

discarded from the network. Their secure protocol focused on de-

tecting unsecured routes, unlike our approach in which the actual

malicious nodes in a selected route are detected and discarded

from further relaying of packets.

Although some of the proposed schemes successfully miti-

gate routing attacks, they are either too expensive for resource-

constrained networks or the solution provided is not applicable to

mitigate colluding attacks from malicious nodes. Also, it is possi-

ble for malicious nodes to drop packets and attribute the cause to

poor communication links. Therefore, we propose a mechanism

to analyze the action of all nodes in the network. Specifically,

our scheme focuses on mitigating Byzantine attacks in link state

routing protocols.

3. Overview of Routing Protocol and Byzan-

tine Attacks

3.1 Link State Routing Protocols (LSR)

Link state routing (LSR) protocols are proactive protocols in

which a node creates a topology of the network and positions it-

self at the root of the tree. LSR protocols are based on a Shortest

Path First algorithm, also known as Dijkstra’s Algorithm, to find

the best path to a destination. There is no hop count limit in LSR

protocols. Examples of LSR protocols are open shortest path first

and intermediate system to intermediate system.

In LSR, each node finds out the status and the cost of their

neighbors’ links, then creates a map of the network showing how

nodes are connected to each other. This information is then

broadcast to the entire network. Using this information, each

node then calculates the best path to every possible destination.

A node then collects the best paths to each destination to form its
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routing table. When a node’s link status changes, a routing update

called a Link-State Advertisement (LSA) is exchanged between

nodes. Whenever a node receives an LSA routing update, the

link-state algorithm is used to recalculate the shortest path to the

affected destinations.

Detecting an outsider attack on the packets exchanged by

neighbors can be performed by using cryptographic schemes such

as digital signatures or hash chains. However, it is difficult

to prevent an insider attack such as falsifying routing informa-

tion, dropping packets, faking packets or other Byzantine attacks.

Such attacks are described in the following subsections.

3.2 Byzantine Attacks

Byzantine attacks can be described as attacks in which mali-

cious nodes take control of one or more network nodes and dis-

rupt the network functions [1]. The malicious nodes can either se-

lectively drop packets, corrupt routing information, or send pack-

ets on non-optimal paths. When carried out by a fully authenti-

cated node in the network, these types of attacks are difficult to

detect. Some of the Byzantine attacks are described below.

3.2.1 Corruption of Routing Table Attacks

In these attacks, the goal of a malicious node is to corrupt the

routing table, either by falsifying neighbor information, or by

capturing and modifying the neighbors’ link information broad-

cast by a benign node. Doing this can cause the routing protocols

to maintain the wrong information in the routing tables, which

now include the malicious nodes in almost all routes to destina-

tions. Figure 1a shows an example of a corruption of routing table

attack.

3.2.2 Black Hole Attacks

In this form of attack, a malicious node injects fake routing in-

formation to attract all packets to itself, and then either drops all

of the packets, modifies some packets, or selectively drops pack-

ets. To avoid detection, such malicious nodes sometimes actively

participate in routing packets to the destination in a normal way.

This makes it difficult for other nodes in the network to detect

such malicious node action. Figure 1b shows an example of a

black hole attack.

3.2.3 Sink Hole Attacks

Similar to the black hole attack is a sink hole attack, in this

attack a malicious node attracts all packets to itself by claiming

to have shortest path to all destinations in the network. Other in-

termediate nodes then relay their packets through the malicious

node. The malicious node can then either modify, fabricate, or

eavesdrop on the packets.

3.2.4 Wormhole Attacks

In this form of attack, a malicious node advertises an artifi-

cial route as the best path to the destination node, and tunnels

the packets to another malicious node, thereby causing the source

node to ignore the genuine route. Such malicious nodes can either

drop all packets, or selectively drop packets, preventing timely

delivery of packets and causes packet loss in the network.

3.2.5 Colluding Attacks

In a colluding attack [13], a group of nodes collaborates to

carry out an attack by dropping or modifying packets. One of the

nodes will advertise itself as having the shortest path to the desti-

nation. The shortest path may or may not include other collabo-

rating nodes to complete the attack. This form of attack is hard to

detect, especially when the nodes align each other as neighbors.

The first colluding scenario is when a malicious node M1 is part

of the selected packet route, but decides to forward the packets to

another colluding malicious node M2 on a non-optimal path.

The second colluding scenario, shown in Figure 1c, is when

two malicious nodes advertise the wrong link costs, e.g. 1 and 2

respectively, in order to be included in the best packet route.

These types of Byzantine attacks are difficult to detect or pre-

vented, especially when carried out by an insider attacker. There-

fore, as described in the next section, we adopt a monitoring

scheme to secure routing in the LSR protocol.

4. Proposed Secure Routing Protocol With a

Monitoring Scheme

In this section we describe our secure routing protocol using

monitoring designed to protect a network against Byzantine at-

tacks. First we explain how a valid routing table is formed, then

we describe the statistical method used to detect malicious nodes

and the monitoring scheme used to secure the LSR protocols. Fi-

nally, we explain how our proposed scheme mitigates Byzantine

attacks.

4.1 Assumptions

In this paper, we make the following assumptions.

• All benign nodes are connected in the network topology. i.e.

There is always a route only consisting of benign nodes be-

tween any pair of benign nodes in the network.

• Each node in the network maintains low mobility.

• All nodes can generate pairs of public and private keys.

• A key pair is kept secret by a benign node.

• A benign node only generates one pair of public/private key.

• Links are not stable, i.e., not all packets are received by

neighboring nodes.

• All benign nodes know the link states of all neighboring

nodes.

• Due to wireless channel fading during transmission between

two nodes, a packet may be dropped. We assume a benign

node can estimate the probability q of packet dropping be-

tween itself and a neighbor node.

• All packets are forwarded in First-In-First-Out order.

• There is time synchronization between benign nodes.

4.2 Routing Table Formation

In our LSR protocol, each node broadcasts hello messages to

its neighbors periodically, e.g. every 10 seconds, with a dead in-

terval of 30 seconds. The dead interval is used to confirm if a

node is still alive. If a node fails to receive hello messages from

a particular neighbor within the dead interval, then that neigh-

boring node is considered to be disconnected from the network.

In addition to the information of the standard LSR hello mes-

sage, the hello message of our protocol includes the node’s ID,

digital signature, number of packets dropped, number of packets

sent, number of packets received, number of packets forwarded,

a timestamp, and a list of neighbors. Also, each node appends
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(a) Corruption of routing table attack (b) Black hole attack (c) Colluding by delaying packets

Fig. 1: Examples of some types of Byzantine attacks.

to their own hello message information in the collected hello

messages from their neighbors which includes the neighbor’s ID,

neighbor’s link cost, timestamp, and the neighbor’s digital signa-

ture. Figure 2 shows an example of a typical information in the

hello message of an LSR protocol, which is 48 bytes when a node

is connected to one neighbor (with a 24-bytes header and a 24-

bytes hello message) and the information in our protocol which

we specifically introduced to achieve routing security with addi-

tional information of 272 bytes when RSA signature is adopted.

The size of the hello message of a node varies depending on the

number of neighbors.

Fig. 2: An example of hello message

Each node floods the link state information of its neighbor to

other nodes in the network. As part of this flooding, we use ac-

knowledgment and retransmission because links are not reliable.

Each node maintains its routing table using the neighbor informa-

tion in the hello message. Since benign nodes are connected, all

neighbor information of benign nodes reaches all benign nodes.

For each link, the quality of that link is reported twice from two

nodes. If the information from two nodes is different, we adopt

the worse one. After a node collects all topology information,

each benign node calculates the best logical path to every pos-

sible destination with the information collected from the hello

messages. Then it uses the best paths to each destination to form

its routing table.

After neighbor nodes receive a hello message, each neighbor

node responds to the hello message by sending an acknowledg-

ment to confirm receiving the hello message. Within the replies,

each neighbor node identifies itself with its node ID and digital

signature. The node that initiates a hello message can use the in-

formation from the neighbors to confirm that the hello messages

were received.

Also, each node authenticates each other with a digital signa-

ture. A node will sign its signature on the ID which can be ver-

ified by other nodes. The public and private key scheme is used

to generate a digital signature and to encrypt/decrypt the data of

a packet. A unique key pair can be safely created from random

numbers by any node. The public and private keys are unique to

each benign node and the private key is kept secret by each node.

Benign nodes create and exchange public keys beforehand. When

a node receives a new hello message from its neighbor, after au-

thenticating the neighboring node with its signature and node’s

ID, the node will then check the timestamp to confirm that an old

hello message has not been replayed. In addition, any node can

join the network without pre-registration.

4.3 Monitoring Scheme for LSR Protocol

In a LSR protocol, to send a packet from a source to a destina-

tion, the routing protocol finds the shortest path to the destination

using the information in the source node’s routing table. How-

ever, a malicious node that is included in the route to the destina-

tion may attack the route. To prevent such attacks, we introduce

a statistical method and a mutual monitoring scheme.

4.3.1 Overview of Proposed Scheme

Let’s consider a situation in which node S is sending a packet to

destinationDwith S - A - D as the shortest path to the destination.

In our method, we only ensure communication among benign

nodes. The first thing we should avoid is that packets are for-

warded along a wrong route, or dropped by malicious nodes. In

order to prevent this, first, surrounding nodes compare the opti-

mal packet route against the route history. The optimal path is

calculated at the source node and stored in each packet in our

protocol. Previous nodes and other neighbor nodes in the net-

work overhear when the packet is forwarded by each node. Then,

the nodes checks if the packet is forwarded on a wrong route or

dropped. The monitoring node checks the packet history to ver-

ify if it is correctly signed by the forwarding node. If the node

fails to correctly sign the packet, the results of the monitoring

are reported to other nodes in the network. Recording the packet

route history of packets allows other nodes to track the past events

of packets sent. In order to confirm that the packet is delivered

to the destination, the destination node sends an acknowledge-

ment packet through the reverse route. If source node does not

receive this acknowledgement packet for some time, the source

node asks the nodes along the route to show the signature from

the next node.
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In addition, it is possible that some packets may be dropped due

to poor link quality. A malicious node may also drop the packet,

and state poor link quality as the reason for the packet loss, as

a result of this we need to know if a node is intentionally drop-

ping packets. Therefore, we use a statistical method explained in

the next section to determine if a node is intentionally dropping

packets.

When some node reports other node to be malicious, we need

to handle the cases where a malicious node is reporting a benign

node to be malicious. Our goal, that is to maintain communica-

tion among benign nodes, can be achieved by separating mali-

cious nodes from benign nodes. When some node reports one of

its neighboring node to be malicious, we can be sure that at least

one of them is malicious. Thus, we separate those two. In our

protocol, the link between two nodes is advertised to the whole

network, and it will not be used in the future.

In a situation when a malicious node decides to keep rejoin-

ing the network with a new address after being excluded from the

network, then such malicious node is not immediately included

in the routing of packets. We wait for some time after a new node

joins the network, during this period this node is not used as a part

of a route. In addition, a malicious node might intentionally delay

packets, expecting that the packet delay would be hidden by de-

lays due to transmission collisions from other nodes. Also, if one

of neighboring nodes is communicating with other nodes, that

node cannot start sending out packet. This cannot be observed

by other nodes because of the hidden/exposed terminal problem.

We introduce a signed Request to Send/Clear to Send (RTS/CTS)

mechanism (explained in 4.3.4) to detect if a node intentionally

delays packet forwarding and to solve the hidden/exposed termi-

nal problem in this case. Before sending a data packet, each node

first sends an RTS packet to the next hop node and only transmits

the data packet after a CTS packet has been received from the

next hop node. Other nodes, overhearing the RTS/CTS, refrain

from sending any packets to the node until an acknowledgment

packet is overheard. Then a node that is accused of intentionally

delaying packets can show the RTS/CTS packets as a proof of not

delaying packets.

Since our protocol allows any node to create a pair of keys, a

malicious node can pretend there are many nodes around it. Even

some of the links are advertised to be invalid, there are still many

links usable for malicious node. In order to handle cases like this,

a node retransmits its packet using a 2-hop reactive mode. Us-

ing this reactive mode, a node will create a new packet history

field indicating that the packet is being retransmitted with a re-

active mode scheme and broadcast its packet to 2-hop neighbors.

On receiving the packet, any node that is neighbor to both the

source and the 2-hop destination node can forward the packet to

the destination node. If a malicious node is trying not to forward

the packet by pretending there are many nodes around it, all these

links can be invalidated at a time. The 2-hop reactive mode is only

used when a packet has been dropped and the malicious node has

been reported to other benign nodes in the network.

4.3.2 Monitoring packet dropping

A monitoring node observes the packet dropping behavior of a

monitored node and adopts the approach of statistical hypothesis

testing to determine if the monitored node is a malicious node.

The statistical hypothesis testing approach: First, the moni-

toring node makes a hypothesis H0 that the node being monitored

is a benign node and sets the value of significance level α (as a

common practice α = 5%). Second, the monitoring node ob-

serves the monitored node for N packets and counts the number

nd of packets dropped by the monitored node. Third, the moni-

toring node calculates the P value p using the following formula

p =

N
∑

i=nd

(

N

i

)

qi
(

1 − q
)N−i
. (1)

If p ≤ α, the monitoring node rejects the hypothesis H0, mean-

ing that the monitored node is identified as a malicious node.

Otherwise, the monitoring node accepts the hypothesis H0. The

whole process is summarized in Algorithm 1.

Algorithm 1Monitoring packet dropping

Input: q : the probability of a packet being dropped

α : level of significance

N : sample size of observed packets

Variables: nd : the number of dropped packets

p : P value

j : counter

Output: Reject H0 or Accept H0

1: nd ← 0;

2: j← 1;

3: while j ≤ N do

4: The monitoring node observes how the monitored node handles a re-

ceived packet not destined for himself;

5: j← j + 1;

6: if The monitored node drops the received packet then

7: nd ← nd + 1;

8: end if

9: end while

10: Calculate p according to (1);

11: if p ≤ α then

12: return Reject H0;

13: else

14: return Accept H0;

15: end if

4.3.3 Packet History Field Monitoring

Each data packet contains a route history in the packet his-

tory field of the packet header, which records all events occur-

ring to the packet, such as packet received or packet forwarded.

To achieve this, a node creates a packet history field which is

added to the packet header. The packet history field consists of

the packet route and node signature. Intermediate nodes on the

route to the destination append their signatures to the packet his-

tory field when they receive the packet. The signature serves as

a confirmation for accepting a packet. Similarly, the destination

node appends its signature on the packet route history field and

reply the source node with an acknowledgment packet which is

used to confirm end-to-end transmission delivery.

The packet history field also contains the source node signa-

ture. Each field used for signatures of the intermediate nodes is

time stamped. This allows the neighboring nodes to determine
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the delays at each node and to prevent modifications. The fol-

lowing information are stored in the packet history: time stamp,

packet route and node signature.

4.3.4 Detecting intentionally delayed packets

When receiving a packet, a benign node will insert the packet at

the end of a packet queue that is served in First-In-First-Out man-

ner (FIFO). However, a malicious node may intentionally delay

inserting or removing the received packet into/from the queue, re-

sulting in additional packet delay at that node. Packet delay at a

node is defined to be the time interval from the time a packet is

received by the node to the time that packet is transmitted.

Nodes that overhear packets can determine the packet queue

order of their neighbors by checking the timestamp each time a

packet is forwarded by a neighboring node to another node. If the

packet is not delayed, the order of the packets will not change.

However, if a node intentionally delays a packet, the order of

packets in the queue changes. This can easily be detected by a

neighboring node that is overhearing packets. Our method also

ensures that there is time synchronization between benign nodes

and neighbors with unsynchronized time are treated as malicious.

To detect a node that is intentionally delaying packets, the

RTS/CTS mechanism is used. The RTS/CTS packets contain

information about the transmission duration of the data packet.

This is used by other nodes to determine the estimated comple-

tion time of data transmission. If a CTS packet is overheard, other

nodes wait until data packet, and ACK transmission are com-

pleted. Also, even if some links are busy and a node cannot send

out packets, it can still receive a packet from another node.

In a situation where a node deliberately holds on to a packet af-

ter indicating its availability to receive and forward the packet by

responding with a CTS packet. The previous node will not over-

hear the packet and then report such node as malicious. Hence,

transmission collisions can be avoided and malicious nodes inten-

tionally delaying packets is detected. Figure 3 shows an example

of RTS/CTS transmission.

Fig. 3: An example of RTS/CTS transmission process

In addition, if a malicious node delay responding to an RTS

packet to force the sending node to hold onto a packet, thereby

delaying transmission. The sending node after the specified time

for receiving a CTS packet will select another route to send its

packet.

4.4 Preventing Various Kinds of Attacks

In this section we explain how our monitoring scheme prevents

Byzantine attacks. Specifically, we focus on preventing corrup-

tion of the routing table, wormhole attacks, colluding attacks,

blackhole attacks, and delaying packets.

4.4.1 Corruption of Routing Table

A malicious node may try to corrupt the routing table infor-

mation by advertising the wrong link delay to its neighbor or not

adding a node as a neighbor in its hello message. In a situation

where a node advertises a link delay that is better than reality as

described in Figure 1a, where malicious nodes M advertises the

link delay to node C to be 1, while node C advertises its link delay

to the malicious nodeM as 10. Other benign nodes in the network

will get conflicting information from the nodes connected to such

a malicious node. In such a situation, nodes in the network will

adopt the worse link delay. Similarly, if a node advertises a link

delay that is worse than reality while a neighbor node to such

node advertise the real delay cost, other nodes in the network will

still adopt the worse link delay. This is not a problem, since the

link between these two nodes is a link that should be invalidated.

4.4.2 Wormhole Attack

If a node selected to take part in the routing of packets from

the source to the destination decides to carry out a wormhole at-

tack, it will do this by tunneling packets to another malicious node

in the network which eventually drops the packets or selectively

drops some packets. To prevent this, the neighboring node S over-

hears the packets, and detects the malicious action by observing

how malicious node M1 handles the received packet. Neighbor-

ing nodes such as node S also check the packet history field signed

by the malicious node M1 to determine the past activities of the

packet, and check if node M2 is part of the packet route by com-

paring the sending node address to the packet route information

stored in the packet history field (e.g. node ID or MAC address

in the packet header to the one stored in the packet history field).

If node M2 is not stored as part of the packet route information,

the neighboring node reports that node M1 is a malicious node to

other nodes in the network. So recording and checking the route

information prevents packet tunneling and wormhole attacks.

When this occurs, Node S will report that node M1 is malicious

to other benign nodes in the network, and the link between node S

and malicious node M1 will be excluded. Again, afterwards node

S will select another path and retransmit its packets using the two

hop reactive mode.

In addition, if a node decides to drop or ignore packets, thereby

carrying out a black hole attack. In this case, source node S and

node A will not overhear the packet. After a predetermined time

interval without node S and node A overhearing the packet, the

statistical method described earlier detects that node M is mali-

cious. Then the links between node S and node A to node M are

excluded from the network, and the nodes report that node M is

malicious to other nodes in the network. Afterwards, source node

S selects another path for its packets and retransmits its packets

using the two hop reactive mode.

Suppose node S selected a route S - A - M1 - M2 - D which in-

cludes two malicious nodes M1 and M2 and the packet is dropped

at node M2 but node M1 fails to report such malicious action. Af-
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ter a predefined time for receiving the ACK from the destination

node D by node S has passed and the ACK is not received, node

S request from node A the overheard packet which includes the

signed packet history field that confirms that node S packet is for-

warded to the next hop by node M1. In this situation, if node M1

fails to show the overheard packet from node M2, then node M1

is reported as malicious and the link between node A and node

M1 will be excluded from the network.

4.4.3 Preventing Intentional Packet Delay Attacks

In this situation, a malicious node M deliberately delays pack-

ets in the network, e.g. using the network in Figure 1b. When

this happens, source node S will overhear the packet, and check

the order of packets in the packet queue for node M. Node S

also checks whether he has previously overheard RTS/CTS pack-

ets from node M. if the queue order of the packets has changed

and node M has not been sending and receiving RTS/CTS pack-

ets, then node S determines that node M is maliciously delaying

packets. Node S reports node M as a malicious node to other

nodes in the network.

5. Evaluation

In this section, we evaluate our proposed monitoring scheme

for securing Link State Routing against Byzantine attacks, in

terms of packet overhead it adds.

5.1 Communication Overhead

In this section we discuss the overhead cost introduced by our

monitoring scheme using the speed benchmark for cryptographic

algorithm: River Shamir Adelman (RSA) with 1024 bit key size

and ECDSA 192 bit key size digital signature algorithm [14], run

on an Intel Core 2 1.83 GHz processor under Windows Vista in

32-bit mode x86/MMX/SSE2.

The packet overhead of our scheme is divided into three parts:

the first is the packet history field size required to send a packet

from a source node to a destination node. The second is the hello

message size a node exchanged with its neighbor nodes and the

last part is the computational cost of signing and verifying the

digital signature of intermediate nodes by the monitoring nodes.

5.1.1 Packet History Fields Size

In our proposed scheme, for a node to transmit a packet to a

destination, the node needs to create packet history fields which

are used for monitoring if the packet is forwarded on the right

route. Each intermediate node appends its signature on the packet

history field, therefore, we need to calculate the additional over-

head introduced by our monitoring scheme to transmit a packet

from a source node to a destination node. First, we find the num-

ber of signatures appended to the packet history field between the

source node to the destination node (NS ), then, the size of the

signature appended by the intermediate node (s).

In addition, each source node stored the optimal path for

sending its packet to the destination node in the packet route

fields of the packet history. We also calculate the overhead

introduced by this route specification (RS ) in our protocol. The

size of each next hop ID stored in the packet route fields from

the source node to the destination node is 1 byte. Therefore, the

total overhead cost needed to route a packet to destination in our

scheme is calculated as:

Toverhead = (NS × s) + RS

For example, using the scenario where S - M - C - E - D is the

selected route to send a packet from a source to a destination.

The packet is signed 5 times with the signature of each node

from the source to the destination. Hence, using 1024 bit key

size, the size of the packet history field is calculated as:

NS = 5

RS = 4 × 1

With RSA With ECDSA

s = 128bytes s = 24bytes

Toverhead = (5 × 128) + 4 Toverhead = (5 × 24) + 4

The total size of the packet history field needed to store each

node signature and the packet route when sending a packet from

source node S to destination node D is 644 bytes with RSA and

124 bytes with ECDSA. This is proportional to the number of

nodes in the selected packet route.

5.1.2 Hello Message Size

In our protocol, each node exchanges hello messages with its

neighbor nodes and appends to its hello message the information

from its neighbor hello message such as neighbor ID, link cost,

neighbor signature and timestamp of the hello message. There-

fore, we evaluate the size of the hello messages in our protocol as

compared to a typical hello message size of LSR protocol. The

size of the hello message depends on the number of nodes in the

network, each node distance, the number of hello message broad-

cast by neighbor nodes and their link status.

Suppose we have a network with 10 nodes (e.g. node A -

J) and the average number of neighbors connected to by each

node is 3. To determine the size of the hello message at each

node we use the following, LSRHelloS ize: standard LSR hello

message size, helloin f o: the size of other information in the LSR

hello message without the neighbor list (since the size of the

neighbor list depends on the number neighbors of each node),

NeighborListsize: size of each neighbor in the neighbor list and

number of neighbors: n. The standard LSR Hello message size

is calculated as follows:

LSRHelloS ize = helloin f o + (NeighborListsize × n)

LSRHelloS ize = 44 + (4 × 3) = 56bytes

In addition to the standard LSR hello message size which is 48

bytes if a node is connected to just one neighbor, we introduced

additional information to achieve routing security. The additional

information using RSA and ECDSA signatures are S Nodein f o:

sending node signature (RSA: 128 bytes, ECDSA: 24 bytes) and

timestamp (7 bytes), Nadded: each neighbor’s link cost (2 bytes),

signature (RSA: 128 bytes, ECDSA: 24 bytes) and timestamp of

their hello messages (7 bytes).

With RSA With ECDSA
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S Nodein f = 128 + 7 = 135 S Nodein f = 24 + 7 = 31

Nadded = 2 + 128 + 7 = 137 Nadded = 2 + 24 + 7 = 33

Hence the size of hello message in our protocol:

PHelloS ize = LSRHelloS ize + S Nodein f o + (Nadded × n)

PHelloS ize(ECDS A) = 56 + 31 + (33 × 3) = 186bytes

PHelloS ize(RS A) = 56 + 135 + (137 × 3) = 602bytes

Table 1 shows the comparison of a typical standard hello mes-

sage size for LSR and our proposed protocols when the number

of neighbors is 3 using the size stated in Figure 2.

Table 1: Comparison of a typical hello message size of LSR and

our monitoring scheme

Protocol Key Type Hello size (bytes)

Standard LSR - 56

Proposed monitoring

scheme

192 bit ECDSA key 186

1024 bits RSA key 602

In addition, there are four additional packets (i.e. database de-

scriptor, link state request, link state update and link state ac-

knowledgment) in LSR protocol, that use a common 24-bytes

header as the hello message. We adopt the implicit acknowledg-

ment where a neighbor that received a packet makes a duplicate

and encode it to its ACK, then send the ACK back to the send-

ing node. Multiple neighbors can be acknowledged in a single

multicast ACK packet.

5.1.3 Computation Overhead

To measure the computational overhead of our scheme, we

used the speed benchmark for cryptographic algorithm for RSA

1024 bit key size. Each node on the selected route generates its

signature, which is appended to the packet history field and ver-

ified by monitoring nodes in the network. The computation time

for generating a signature by each node on the route is 0.002 sec-

onds while the verification time by monitoring nodes that over-

hears the packet is less than 0.0001 seconds.

The total processing time used for generating signatures by

each node on the route is 0.01 seconds while a total verification

time used by nodes to verify the packet history field is 0.0003

seconds. Hence, the computational overhead of our scheme is

adequately low.

5.2 Current Open Issues of Interest

In this paper, we described how our proposed monitoring

scheme prevents Byzantine attacks. However, we did not con-

sider DoS attacks such as too much traffic or jamming signals.

In jamming signal attacks, a malicious node disrupts the commu-

nication of benign nodes by blocking the transmission of radio

signals in the network. A jamming signal attack is an active at-

tack, which can be carried out by an outside attacker. There is no

way to prevent this kind of attacks.

6. Conclusion

In this paper, we proposed a monitoring scheme to secure link

state routing against Byzantine attacks. The goal of our proposed

scheme is to guarantee communication among connected benign

nodes in the network. Our monitoring scheme adopts three main

methods: (i) Hello message verification - to verify the validity

of hello messages and to identify inconsistent information when

a malicious node tries to corrupt routing table information, (ii)

Packet history field monitoring - for neighboring nodes to check

whether packets are forwarded correctly according to the stored

optimal path and (iii) Statistical hypothesis testing - to know if

a node is intentionally dropping packets. Also, our monitoring

scheme uses RTS/CTS to identify when a node is intentionally

delaying packets in the network.
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