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Location Estimation for Binary Motion Sensors
in House

Nathavuth Kitbutrawat1,a) Hirozumi Yamaguchi1,b) Teruo Higashino1,c)

Abstract: Human tracking in household enables estimating the activities and location of residents including
children, parents and elderly people. It can be used in the home management system to encourage residents
to live in their home comfortable and to reduce the electric expense. Passive infra-red (PIR) motion de-
tection binary sensors are reasonable as they can be portable operated by small batteries and be attached
onto walls, shelves, floors or ceilings. However, such flexibility of sensor location causes difficulty since the
location information of each sensor should be managed and given to the tracking system by the residents.
To mitigate human errors, we propose a sensor localization method to automatically identify the location of
multiple binary motion sensors in a house from the observed sequence by binary sensors. The method finds
the movement patterns and characteristics of sojourn time of residents to identify the rooms where those
sensors are located as well as the proximity relations among sensors, in assistance with floorplan information
or room composition obtained by simple questionnaire. The experimental results show that the accuracy of
our approach is above 80% after 5 days observation.

1. Introduction

Human tracking and localization systems play an impor-

tant role for opening a way for serving human need effi-

ciently. In the family house, since there are a variety of ages

such as kids, middle-aged and elderly, the indoor human

tracking should not require users to wear devices such as

smartwatches, which are too invasive for their daily living.

Those methods that rely on passive sensors, such as mo-

tion sensors for detecting movement of human and contact

switches for detecting events when residents open a door

[1], [2], are more reasonable solutions to measure the pres-

ence and direct motion of those people. In particular, the

amount of activities are often required by home healthcare

systems for elderly because such systems need to recognize

how actively the elderly move even in their houses [3]. How-

ever, the existing activity recognition systems need the loca-

tion of binary sensors to predict the activities of residents by

analyzing sequence of events with the Bayesian inference or

hidden Markov model. Therefore, the configuration of such

passive motion sensors requires a technical labor for the rea-

son that the residents have to configure the coverage area of

each sensor, and they might misunderstand the installation

location and coverage area. For example, they may put a

sensor on the hallway, which should monitor the presence of

human in an entrance area. As a result, the system will be
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unable to recognize human location and activities correctly.

Thus the technical employee will be sent to configure the

system in customer’s home.

There are several drawbacks for sending technicians to

configure sensors at home. Firstly, a large number of tech-

nicians is needed to deploy the system to many households.

Specifically, if a technician spends a few hours to visit a

house, configure the system and come back to office, one

technician can set up a system in 4 houses per day. Further-

more, for the residents who live in rural places, she/he has

to spend longer time for transportation. Secondly, there is

always privacy concern. Many residents do not want some-

body to come into their houses and survey those places.

Therefore, it is desirable that the tracking systems have a

self-configuring function to encourage residents to install the

system by themselves.

In this technical report, we propose a method to estimate

the location of binary motion sensors installed by residents

in their houses. This method requests a resident to give

some information (e.g. floorplan) about her/his house to

the system. Then the method analyzes human detection

events from those motion sensors to find their locations. It

does not require any training procedure before operation. It

can find the sensor locations during their operation. This

approach requires only the prior knowledge on floor plan

analysis to generate an indoor map from a floor plan image.

Then we calculate “association rates” between sensors and

map them to the installation places in the indoor map. We

have conducted two experiments using up to 20 sensors in-

stalled to (i) a 2-story house with three family members and
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(ii) an apartment with a single elderly. As a result, it could

estimate the sensor locations with over 80% accuracy after

5 days operation.

Our main contributions can be summarized into three-

hold. Firstly, this is the first approach to localize binary sen-

sors at home. We focus on such labor cost and privacy issue

that are incurred by sending technicians to remote houses.

Secondly, our approach can find the sensor locations without

need of labeled data and supervised techniques. Neverthe-

less, it can deal with multi-resident environment. Finally,

the accuracy has been validated by real-home experiments.

2. Related Work

The previous works on activity recognition based on bi-

nary sensors analyze the stream of events from sensors to

predict the location of humans and their activities. For ex-

ample, Hoque et.al. [2] propose a method to detect activi-

ties performed during another activity. For example, it may

happen that residents suspend to watch television to walk

to the toilet and come back to the living room to resume

watching television. Thus, they divide activities into short

period activities by grouping the sensor events by the time

and location of firing sensors, and cluster the set of sen-

sor events which frequently occur together. After that Emi

and Stankovic extend the Hoque’s work to deal with the

multi-resident environment [1]. The idea is to regard the

activities occurring in different rooms at the same time as

those performed by different users. To sum up, the activity

recognition techniques based on binary sensors leverage the

location of sensors to predict the location of residents and

their activities. Therefore, the system has been configured

with the location of sensors before it is operated. To the best

of our knowledge, the technique for predicting binary sensor

locations in home environment has never been proposed.

Meanwhile, the methods for configuring and calibrat-

ing indoor localization systems based on Received Signal

Strength (RSSI) have been proposed. In the RSSI-based in-

door localization techniques, RSSI is used to measure the

distance between wireless sensor nodes and anchor nodes.

Then [4] proposes a technique to predict human location

by calculating RSSI levels received by Wi-Fi devices from

APs with well-known locations. However, for accurate RSSI-

based indoor localization, a number of APs should ubiqui-

tously be installed around the building, and the calibration

and configuration for such plenty of APs requires numerous

effort. To mitigate the cost of calibration and configuration

process, there are some researches to configure the location

of anchors by requesting a user to carry a Wi-Fi device for

collecting the RSSI signals involved in the building. For ex-

ample, the method by Chintalapudi et.al [5] asks the config-

uring people to carry a Wi-Fi device for surveying the signal

propagation. It measures the distance between devices and

Wi-Fi APs by using the signal propagation model and uses

the GPS location when the user walks near windows to cal-

culate the actual location of APs. However, those techniques

seem unsuitable to our architecture. As discussed earlier,

(a) Our prototype sensor
(b) Sensor send events when de-
tecting human

Fig. 1: PIR Sensor

we do not want to ask residents to perform calibration tasks

such as walking along a designated route in a house carry-

ing smart devices, which may cause another problem such

as device orientation.

Consequently, this work attempts to find the location of

sensors without site survey and data labeling. We will tackle

the problem using an unsupervised learning technique. We

will describe the details in Section 4.

3. System Architecture

3.1 Overview

In home activity recognition systems, several types of bi-

nary sensors are used. Some of them are passive infrared

(PIR) sensors, pressure pads and contact switches. This

work focuses on finding the location of binary motion sen-

sors (PIR binary sensors) as they are very cost-effective to

be penetrating to many households and many products have

already been in market. We assume that the motion sensors

have to be deployed on wherever residents want to monitor

the activities. Since power line supply will be an obstacle

for their location-free installation, sensors are built in wire-

less nodes with low-power communication technology such

as ZigBee and are operated by small batteries or energy

harvesting as seen in Figure 1a. Those sensor nodes form

a wireless sensor network and send events to the gateway

when they detect the presence of human shown in Figure

1b.

We attempt to find the location of sensors in multi-

resident environment in a general multi-story house. The

number of motion sensors which we assume is normally be-

tween 10 to 20, but it is not limited to this range. Basically,

more sensors will provide finer-grained mobility information,

and we will later discuss the impact of the number of sensors

to the accuracy. The typical scenario is that firstly a resident

obtains (buys or rents) a set of sensors. After the resident

deploys those sensors on their own, we request her/him to

give some information to our system discussed in Section

3.2. Then we leverage those information to find the loca-

tion of sensors by analyzing the sequence of sensor events

collected through the gateway to the cloud server, without

a need in the labeled data discussed in Section 4.

3.2 Indoor Floor Plan

The indoor map is important to provide the information

about rooms, hallways, entrance etc. in which residents are

able to install motion sensors. The digital versions of given

indoor map information can be generated by several tech-

niques. Therefore, we request the residents to take a photo
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Fig. 2: Floor Plan

of a floor plan image by using a smartphone camera and

upload the photo to our system. An example floor plan im-

age is drawn in Figure 2. We note that, some researches

provide a solution for large buildings such as office build-

ings and commercial complex to generate floor plan images

by using crowdsourcing techniques. Although the SLAM

techniques [6], [7] or PDR techniques [8], [9] to trace human

walking paths can be used to construct the floor plan images

from walking paths, the drawback is inaccuracy caused by

accumulated distance and direction errors caused by orien-

tation change of smartphones during they walk, inaccuracy

of stride length estimation and some other unexpected noise.

The given picture of floor plan has to be drawn by well-

known symbols such as walls, doors and stairs (such simple

illustration can even be hand-drawn). Then we are able

to analyze the picture by some existing floor plan analysis

technique. For example, the work by Heras et. al. [10]

provides a technique to generate the classification model

to identify wall, door and window images and to recog-

nize the rooms and space from those identified components.

After we analyze the floor plan to detect the areas from

the floor plan, we generate a set Lfloor = {l1, l2, ..., ln}
of square partitions called locations, each of which con-

tains no wall or door. Then we generate a floor plan graph

Gfloor = (Lfloor, Efloor) where (li, lj) ∈ Efloor is a walk-

through path between two locations li and lj . In particu-

lar, we create an edge between two locations if they have

a door installed between them or there is no wall between

them. We also estimate the area size of each location, and

the path distance from the center of li to the center of lj

where (li, lj) ∈ Efloor is estimated. We note that a floor

plan image is not often accurate to represent the real room

structure. For example, a line may be drawn between two lo-

cations without any wall between them since lines are some-

times used to represent logical boundaries of two spaces like

kitchen and dining spaces. In order to cope with such cases,

we tentatively set an edge between two locations if there is

some concern that lines may not represent physical walls. If

no direct transition occurs between the two locations, the

unused edge will be obsoleted in our localization process.

After analyzing the floor plan, we ask through our smart-

phone App simple questions about the room types. We do

not request to associate the sensor ID with the room, which

often causes mistakes and troubles. Our question can easily

be answered based on their knowledge about their own floor

plan. For each highlighted room, they can choose their an-

swer from the list. The listed room types are only limited

items, that is, “Common room”, “Entrance”, “Hallway”,

“Bedroom”, “Kitchen” and “None of the above” to allow

easy and quick choices. Through this assistance, we can

naturally request the residents to label the rooms.

4. Sensor localization method

We let S = {s1, s2, ..., sm} denote the set of motion sensor

IDs where m is the total number of sensors. After residents

label the locations, the system starts collecting event de-

tection data that are generated by movement of residents

at their home from those sensors. Each detection event oi

consists of an sensor ID and a timestamp, and is called ob-

servation. Hereafter, the sensor ID and timestamp of oi can

be referred to as oi.sid and oi.time, respectively. We let

O = {o1, o2, ..., ot} denotes a time sequence of observations

called observation sequence. Since the detectable area by

passive infrared sensors is usually configured to a cone shape

with up to a few meters range, each sensor detects humans

who pass or stay in a room or a hallway. So the problem

can be defined to find a matching function A : S → Lfloor

where S and Lfloor are sets of sensors IDs and locations

respectively, given (i) floor plan graph Gfloor, (ii) the loca-

tion type for each location l (denoted as Type(l)) and (ii)

observation sequence O in a certain period after the sensor

placement. As mentioned beforehand, Type(l) is obtained

through our smartphone App. We note that we allow multi-

ple sensors being placed in a single location to cover a wide

room or for some other reasons.

Our algorithm tries to pick up the best candidate in the

following two steps. The first step identifies a set of sensors

placed in each “key location” from the observation. A key

location corresponds to a typical room like bedroom, kitchen

or some others, which usually exists in most of houses. Given

observation O, we identify the typical patterns of events

that are likely to be seen in such key locations. For exam-

ple, sensors with events before midnight are probably in the

bedroom. Once the locations of those sensors are identified,

they act as anchors to identify the locations of the other

sensors in the second step. The second step is to find the

connectivity between each sensor and estimate the physical

distance between them. For this purpose, we create a sensor

graph, representing the physical connection of each pair of

sensors based on those information. Finally, we choose the

best location for each sensor by utilizing the floor plan graph

and the sensor graph.

4.1 Identifying Sensors in Key Locations

As introduced in the previous section, we recognize the

typical activities that are performed in particular loca-

tions (key locations). We use Type(Lkey ⊂ Lfloor) =

{“Kitchen”, “Bedroom”, “Entrance”} as a set of key lo-

cations in this paper. Those sensors installed in the kitchen

and bedroom can be identified by analyzing the sensor

events that occur within specific time periods, while those at
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an entrance area can be identified by detecting a “silent time

period” (time when residents are out) and focusing on the

first and last events in each period that detected the in/out

behavior from the house. Concretely, in order to estimate

the sensors in the bedroom and kitchen, we would like to

know the daily patterns of sleeping and cooking activities

over a day. The daily pattern of an activity is the proba-

bility for each small period of time in one day, where the

residents perform that activity such as cooking and sleep-

ing. Those patterns of general people can be known through

crowdsourced survey or some other techniques, and we use

the distributions of sleeping and cooking activities, which

were obtained by our past survey [11].

We consider the following location-activity pairs

{BedRoom,Sleeping} and {Kitchen,Cooking} where the

activity is expected to be performed in the location in

specific time. The activities such as sleeping and cooking

are likely to be noticeable patterns which can be recognized

by utilizing the Bayes’s theory to analyze the sensor events

and the distribution of daily life activity.

We let Pr(a|t) be a probability that people perform ac-

tivity a in a short time slot t in the daily life. We assume

that if a sensor is installed in the kitchen room, it will de-

tect more events than the others while cooking, and a sensor

in the bedroom will also do so while (or before and after)

sleeping. Therefore, we derive, for each time slot t, the

probability that sensor si is placed in a location of type

r ∈ {Bedroom,Kitchen}. This probability is denoted as

Pr(si, r|t) and defined by Equation 1 below;

Pr(si, r|t) =
Pr(si, r|a, t)Pr(a|t)

Pr(a|si, r)
(1)

where Pr(si, r|a, t) is the probability that sensor si which

detected activity a in time slot t is placed in a location of

type r. Pr(a|si, r, t) is the probability that sensor si de-

tects activity a when it is placed in a location of type r. To

compute equation Pr(si, r|a, t), we define a feature of sen-

sor related with the number of events and time, because the

number of events from one sensor varies from time to time,

and it may be unsuitable to be analyzed directly. There-

fore, we define the feature function F (s, a, t) described below

where s, a and t are sensor, activity (cooking or sleeping)

and time, respectively.

F (s, “cooking”, t) =

{
1 if NumE(s, t, 10) ≥ α1

0 otherwise
(2)

F (s, “sleeping”, t) =

{
1 if NumE(s, t, 60) > 0

0 otherwise
(3)

In the equation, NumE(s, t, d) returns the number of events

from sensor s during the last d minutes from time t, and α1

is the threshold to detect cooking activity. Empirically, the

sensor in a kitchen tends to fire the event over α1 times

in a short time, when a resident cooks a meal, while there

are a few events in a bedroom per hour on a sleeping period.

Consequently, we use d = 10 for cooking activity and d = 60

Fig. 3: Value of Feature Function with a = ”cooking”

(ID=#18)
for sleeping activity. The feature value with α1 = 10 and

a =“cooking” is shown in Figure 3. In this figure, sensors

16, 18, and 19 are placed in the living room, kitchen and

dining area, respectively.

In the multi-resident environment, it is possible that res-

idents do other activities in other rooms at the same time,

and there may be more than one sensor with F (s, a, t) = 1.

Therefore, we calculate Pr(si, r|a, t), by assigning the equal

probability to the sensor with F (si, a, t) = 1 as defined in

Equation 4.

Pr(si, r|a, t) =
F (si, a, t)∑

∀sj∈S F (sj , a, t)
(4)

Finally, Pr(a|si, r, t) is calculated by long period data, and

we used the time window whose size is up to 7 days in our ex-

periment. During that time window denoted as T1, we count

the number of time slots where F (si, a, t) = 1 (∀t ∈ T1) con-

sidering the prior knowledge P (a|t).
It is given as the following equation (5) where time slot t

with non-zero P (a|t) is counted.

Pr(a|si, r, t) =

∑
t∈T1

F (si, a, t) ∗ Pr(a|t)∑
t∈T1

F (si, a, t)
(5)

Then we calculate Pr(si, r) which is the average value of

Pr(si, r|t) over T , and find the maximum value of Pr(si, r),

arg max
i

Pr(si, r) to predict sensor si placed in location of

type r.

For sensors in an entrance area, we assume such a du-

ration that all residents are out from home for working or

shopping on daytime. During such a period, no events are

detected. So we can assume that such sensors installed in

entrance area detect the last event before the period, and

the first event after the period. We define the human ab-

sence vector ES = {esi} where esi element is the number of

periods that sensor si detects a leaving house event (2 hours

or longer absence) during T . Then we find the maximum

value of Pr(si, “entrance”) calculated by equation 6 with

arg max
i

Pr(si, “entrance”) to predict sensor si placed in

entrance area.

Pr(si, “entrance”) =
esi∑m

j=1 esj
(6)

For simplicity of discussion, we assume that there is only
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Fig. 4: Similarity of Two Sensor Event Patterns

one sensor for each key location, while the others may have

more than one. This is because bedrooms, kitchens and en-

trances are not so large and one sensor is usually sufficient

to cover such a room or space based on our experience of

installing sensors to real houses. However, there may be

more than one bedroom for a house, that is, more than one

location have the same type of locations (e.g. a house with

two bedrooms). For k locations of the same type r, we may

choose those sensors with the top-k probabilities, P (si1 , r),

P (si2 , r) , ..., P (sik , r) for key locations of type r.

After obtaining those highest probabilities, we are able to

generate the mapping function Akey : Skey → Lkey ⊆ A
where Skey is a set of estimated sensors in key locations and

Lkey is a set of key locations.

4.2 Sensor Graph

In this section, we estimate the physical distance between

each pair of sensor, then generate a sensor graph which rep-

resent the predicted walking path between each pair of sen-

sors, and its physical distance based on the event sequence.

In particular, if a resident is able to directly walk passing

sensor si and sj , the events from those sensors will occur

along with each other. Then a traveling time, which is spent

for walking passing from si to sj , can be estimated by the

physical distance between si and sj . In particular, there is

some similarity between two sensors which are placed closely,

as exemplified in Figure 4. These are the patterns of sensor

events seen in real environment. Sensors 16 and 17 are in-

stalled in the same area and their locations are close to the

place where sensor 18 is placed, while sensor 8 is far from

the others. The patterns of sensor events from sensors 16,

17 and 18 are similar, while the pattern from sensor 8 has

less similarity with them.

In summary, the sensors installed in the same room or

close location are likely to detect the same movement of

human. In particular, when a resident walks out from the

area, other sensors in the adjacent area can detect such a

walking activity after the previous sensors. In order to es-

timate the physical distance between each pair of sensors,

we focus on the traveling time for walking from one sensor

to another. We call a subsequence of O association event

sequence if it consists of an event sequence from different

sensors. For example, for the observation O = {o1, o2, o3}
where o1.sid = s1, o2.sid = s1 and o3.sid = s2, {o2, o3} is

an association event sequence.

The time duration between the events in an association

event sequence basically represents the correlation of those

sensors. However, there will be non-confidence time where

multi-residents do activities at the same time, and those

activities may also create association event sequences be-

tween uncorrelated sensors. To deal with this issue, we as-

sume that the traveling time of the same pair of sensors,

which is seen when a single resident directly walks passing

those two sensors, is relatively constant, while the time inter-

vals caused by multi-residents are dispersed. Therefore, we

consider the temporal standard deviation of traveling time

TDIFstd(su, sv) for each pair of sensors su and sv in T2

minutes to detect time period during which a single resident

is present. Algorithm 1) show the procedure to detect such

confident time period.

Algorithm 1 isConfidence Time(O)

Require: O = (o0, o1, ..., ot) is an observation in the past T2 min-

utes.

Ensure: isSingle which represents the confidence time when it is

TRUE.

Ensure: time diff is a set of minimum traveling time between sen-

sors

1: tstart ← o0.time

2: for ∀i ∈ (1, 2, ..., t) do

3: if oi.sid 6= oi−1.sid then

4: if oi.sid > oi−1.sid then

5: su ← oi−1.sid and sv ← oi.sid

6: else

7: sv ← oi−1.sid and su ← oi.sid

8: end if

9: tdifsu,sv
← oi.time− oi−1.time

10: if tdifsu,sv
> 0 then

11: update TDIFstd(su, sv) by tdifsu,sv

12: time diffsu,sv
= min(time diffsu,sv

, tdifsu,sv
)

13: end if

14: end if

15: end for

16: for ∀ea ∈ Ea = (su, sv) ∧ u 6= v do

17: if TDIFstd(su, sv) > β1 then

18: isSingle = FALSE

19: end if

20: end for

21: return isSingle, time diff

After that, we generate a sensor graph Gsensor =

(S,Esensor). This is a fully-connected undirected graph

where Esensor ⊆ S × S is a set of edges representing

the physical connection between each pair of sensors. As

seen, Esensor basically corresponds to association event se-

quence. Therefore we will remove such an edge esensor =

(su, sv) ∈ Esensor if there is no association event sequence

between su and sv. We estimate the traveling time between

each pair of sensors by using the minimum traveling time

TDIFmin(su, sv) to represent the direct walk between each
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pair of sensor su and sv. The algorithm for generating the

sensor graph, sensor graph(O) is shown in the algorithm 2.

Algorithm 2 create sensor graph(O)

Require: O = (o0, o1, ..., ot) is an observation in the past T2 min-

utes.

Ensure: Gsensor = (S,Esensor)

1: isSingle, time dif = isConfidence Time(O)

2: create Gsensor = (S, (S × S))

3: if isSingle =TRUE then

4: for ∀su, ∀sv ∈ S (su 6= sv) do

5: update TDIFmin(su, sv) by time difsu,sv

6: if TDIFmin(su, sv) = 0 then

7: remove edge (su, sv)

8: else

9: (su, sv).interval← TDIFmin(su, sv)

10: end if

11: end for

12: end if

13: walking speed← β2

14: for e ∈ Esensor do

15: e.distance← e.interval ∗ walking speed

16: end for

In our experiment, the constant β2 is set to 1 m/s to cal-

culate the estimated physical distance between each pair of

sensors. Then we will use the sensor graph to map each sen-

sor s ∈ S into location l ∈ L leveraging the floor plan graph

and the sensor graph.

4.3 Matching

In this section, we create the mapping function A : S →
Lfloor where Lfloor is a set of room locations from the floor

plan graph, and S is a set of sensors in the sensor graph.

We leverage the room dimensions and physical distance be-

tween one room and its adjacent rooms in the floor plan

graph along with the physical distance in the sensor graph

to estimate the locations of sensors.

We introduce an sensor-room association score assocs,l
which represents the number of times where sensor s is ex-

pected to be placed in that location l. The process to in-

crease the assocs,l and select the sensor location is shown

in the following two steps.

In the first step, we start by the sensors in Skey because

the locations of those sensors are likely to be correctly es-

timated. Then we classify the rest of sensors which have

edges to those in the key locations in the sensor graph into

3 groups: “same location”, “next location” and “unknown”.

In particular, sensor si will be placed in the same location

(room) with sensor skey ∈ Skey if a physical distance from

si to skey is lower than that room dimensions. Sensor si

is estimated to be placed in location li which is next to lo-

cation lkey of sensor skey if a physical distance from si to

skey is lower than the summation of the distance between

li and lj and that room li dimensions. Otherwise sensor si

is classified into the “unknown” category. Then we increase

assocsi,lkey
and assocsi,li by 1 when sensor si is labeled as

“same location” and “next location”, respectively.

In the second step, we find ∀s ∈ S; arg maxl assocs,l.

This means the location with the highest score is regarded

as the location of s. Then we will update the mapping func-

tion A by appending “A(s) = l”. After that our algorithm

repeats the step one until the algorithm is unable to find the

maximum score in scores,l shown in algorithm 3.

Algorithm 3 matching(Gfloor, Gsensor,Akey)

Require: Gfloor = (Lfloor, Efloor) is a floor plan graph. E ⊆
Lfloor ×Lfloor contains some attributes such as physical dis-

tance between two locations.

Require: Gsensor = (S,Esensor) is a sensor graph. Esensor ⊆
S × S contains some attributes such as physical distance be-

tween two sensors.

Ensure: A : S → Lfloor

1: satisfy = FALSE

2: while ¬satify do

3: for ∀e = (si, sj) ∈ Esensor where si ∈ Skey do

4: l = A(si)

5: roomsize = min(l.width, l.heigh)

6: if e.distance ≤ roomsize then

7: assocsj,l = assocsj,l + 1

8: else

9: Nl as set of neighbor locations of l in Gfloor

10: for ∀e′ = (l, l′) ∈ Efloor where l′ ∈ Nl do

11: if e′.distance ≤ e′.distance + roomsize then

12: assocsj,l′ = assocsj,l′ + 1

13: end if

14: end for

15: end if

16: end for

17: satify =TRUE

18: for ∀s ∈ S ∧ s /∈ Skey do

19: Llist = arg maxl assocs,l

20: if |Llist| == 1 then

21: Akey(s) = head(Llist)

22: satify =FALSE

23: end if

24: end for

25: end while

26: return Akey

5. Experiment

5.1 Dataset and Scenario

We conducted the experiments in two real houses. Firstly,

sensors were installed in a real two-story house with three

family members. The first dataset called DT1 was collected

from 19 motion sensors in this two-story house (approxi-

mately 120 square meters) in mid of 2016 (shown in Figure

5a). The second dataset called DT2 was collected from 18

motion sensors in the same house in early 2015. Next, we in-

stalled 18 motion sensors to the single story house (approx-

imately 40 square meters) where a single resident (elderly

person) lives. The last dataset called DT3 was collected

from the house in February 2017 (shown in Figure 5c and

Figure 6). We assume that the floor plans of these houses

have already been identified before location estimation.

After our system collected events for one week, we created
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(a) Sensor Location in DT1 (b) Sensor Graph in DT1-C1 (c) Sensor Location in DT3 (d) Sensor Graph in DT3-C1

Fig. 5: Floor Plan with Sensor Locations

Fig. 6: Snapshot from Experiment Site

3 scenarios from each dataset. The first scenario C1 is to

use the original data in the dataset. The second scenario

C2 is to use only one sensor per one area, where the sensor

events from some sensors installed in the same area are re-

moved. The last scenario C3 considers the privacy concerns

where the event data from sensors in bedrooms are hidden.

We generated Gsensor seen in Figures 5b and 5d from DT1-

C1 and DT3-C3 scenarios, respectively. The evaluation was

done using our python program built for this purpose.

5.2 Definition of Feasible Solutions

In the evaluation, we have introduced some acceptable

cases when we verify our result since there are some possible

solutions of matching in symmetric structure. Although our

system uses only the motion sensors detecting the movement

of residents, we are unable to identify locations depending

on the symmetry as seen in Figure 7.

In Figure 7a, let us suppose sensor k is in a key location,

and sensors 2 and 4 in the top-side rooms are possible to

Table 1: Matching Accuracy
Running Days

Scenario 1 2 3 4 5 6
DT1-C1(19 sensors) 0.16 0.58 0.68 0.68 0.89 0.89
DT1-C2(12 sensors) 0.17 0.75 0.83 0.67 0.83 0.83
DT1-C3(17 sensors) 0.18 0.53 0.53 0.41 0.59 0.65
DT2-C1(18 sensors) 0.29 0.35 0.59 0.71 0.82 0.88
DT2-C2(11 sensors) 0.27 0.27 0.73 0.82 0.82 0.82
DT2-C3(16 sensors) 0.20 0.33 0.33 0.47 0.67 0.70
DT3-C1(18 sensors) 0.33 0.47 0.67 0.67 0.73 0.75
DT3-C2(7 sensors) 0.57 0.71 0.71 0.71 0.71 0.86
DT3-C3(17 sensors) 0.36 0.50 0.43 0.57 0.64 0.64

switch the positions with sensors 1 and 3 in the bottom-

side rooms (and similarly, there is left-right case; (1,2) and

(3,4)). Therefore, we define 2 rules that regard both cases as

feasible solutions; (i) inner-room switching (the top-bottom

example) and (ii) inter-room switching (left-right example).

Figures 7b and 7c show more clearly the acceptable and un-

acceptable cases.

5.3 Matching Performance

We run the matching algorithm one time when we have

collected for a day, because some daily life activities are

usually done only one time in one day period. Especially,

everyone sleeps once a day in normal situation. Then we

found the accuracy of results in 4 scenarios increases to over

80% within 5 days as seen in Table 1.

In the result, we found the good accuracy of location es-

timation in scenarios DT1-C1, DT1-C2, DT2-C1, DT2-C2

and DT3-C2, because the sufficient number of sensors are

used in those scenarios. Especially, the result in scenario

DT3-C2 had a good accuracy after collecting data for 2 days,

because there is only a single resident living in the house

and our algorithm can identify the physical connection be-

tween each pair of sensors easily. Meanwhile, the accuracy

in the scenario DT3-C1 is low despite there are many sen-

sors deployed. The reason is when the abundant sensors are

deployed, most of them may monitor the same regions, and

make the structure of sensor graph complex. This causes

some difficulty in identifying their locations correctly. We

note that we found the invalid prediction for sensors in key

locations when data have been collected only for 1 day or 2
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(a) Example: sensors in symmetric structure (b) Acceptable result (c) Unacceptable result

Fig. 7: Symmetric Structure

days. The lowest accuracy is the case of scenario DT1-C3,

DT2-C3 and DT3-C3. In those cases, we lost key location

information (about bedroom; remember C3 is such a sce-

nario) and the bedroom looked like outside (since no sensor

was there). But finally, it is recognized, based on the pat-

terns P (a|t), the sensor in front of the bedroom was regarded

as non-entrance and finally the accuracy was improved as

time passed. In any case, after 7 days’ data collection, the

accuracy was over 70%.

6. Discussion

In this paper, we show our algorithm can estimate the

sensor locations, which is a room-level localization of sen-

sors. We found that there are two main obstacles which

hinder the increase of accuracy in the localization. Firstly,

the symmetric structure in the real house hinders our tech-

niques to estimate the location of sensors correctly. The

second obstacle is it is sometimes difficult to estimate the

appropriate number of sensors that is enough for estimating

their locations with high accuracy. Although the more we

deploy sensors in a house, the more the accuracy in activity

recognition will increase. This has been proved in the C3

scenario. We will conduct more experiments to observe how

the algorithm works in different situations.

7. Conclusion

This paper proposed a method to find the location of mo-

tion sensors that are used to detect the daily life activities

in home environment. Our technique requires only on some

prior knowledge such as floor plan, and it is able to find the

mapping function between sensors and locations over 80%

accuracy after 5 days data collection without annotation.

Our future works includes more experiments in real and sim-

ulated environments, assuming a variety of house types in

terms of area sizes, the number of rooms, the number of

residents and the characteristics of residents (age, gender,

family composition etc).
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