
IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 85–95 (June 2008)

Regular Paper

A Fast Ray Frustum-Triangle Intersection Algorithm

with Precomputation and Early Termination

Kazuhiko Komatsu,
†1

Yoshiyuki Kaeriyama,
†1

Kenichi Suzuki,
†1

Hiroyuki Takizawa
†1

and Hiroaki Kobayashi
†1

Although ray tracing is the best approach to high-quality image synthesis,
much time is required to generate images due to its huge amount of computa-
tion. In particular, ray-primitive intersection tests still dominate the execution
time required for ray tracing, and faster ray-primitive intersection algorithms
are strongly required to interactively generate higher-quality images with more
advanced effects. This paper presents a new fast algorithm for the intersection
tests that makes a good use of ray and object coherence in ray tracing. The
proposed algorithm utilizes the features whereby the rays in a bundle share the
same origin and have massive coherence. By reducing the redundant calcula-
tions in the innermost intersection tests for the bundles by precomputation and
early termination, the proposed algorithm accelerates the intersection tests. Ex-
perimental results show that the proposed algorithm achieves 1.43 times faster
intersection tests compared with Möller’s algorithm by exploiting the features
of the bundles of rays.

1. Introduction

Recently, there has been a growing demand for high-quality images in various
fields such as entertainment, industrial designs, and environmental assessments
based on lighting simulation. In these fields, image generation methods based
on the global illumination model play an important role. One of the most basic
methods of the global illumination model is ray tracing proposed in 1980s 1)–3).
Although ray tracing can generate photo realistic images, the huge computational
cost has made an interactive image generation very difficult.

Ray tracing is accelerated by reducing the number of intersection tests using
the spatial data structure such as Bounding Volume Hierarchy (BVH) 4), Kd-

†1 Tohoku University

tree 5),6), and uniform grid 7). In order to reduce the number of intersection tests
efficiently, a complicated building process for a sophisticated data structure is
essential. The sophisticated data structure requires a so large memory that it
is difficult to deal with large scenes for ray tracing. Thus, a fast intersection
algorithm using the simple data structure is required to deal with large scenes.

To improve the speed, the ray packet approach has been proposed 8). Bundling
two or more rays into a ray packet, it exploits the coherence of adjacent rays.
Ray packets usually consist of a group of some primary rays, shadow rays, or
diffuse rays as shown in Fig. 1. A ray packet in which rays share the same
origin is especially called a ray frustum. These rays in a ray frustum have a large
coherence because most of them are very similar and need to perform similar
calculations. For instance, they tend to traverse similar spaces and intersect
with the same objects. By using the SIMD processing of modern CPUs, the
intersection tests can quickly be performed 9),10). In addition, by extra simple
operations using the feature of the ray frustums, the number of the intersection
tests between ray frustums and triangles can be reduced 6),11)–13).

However, the demand for faster intersection tests is still growing for higher-
quality images. Although ray tracing for simple visibility tests can be in-
teractively performed, ray tracing for surface light sources, multi-level reflec-

Fig. 1 Various ray packets.

85 c© 2008 Information Processing Society of Japan



86 A Fast Ray Frustum-Triangle Intersection Algorithm

tions/refractions, and indirect lighting needs a speedup of intersection tests.
Since the fast intersection test can also quicken the traversal of the spatial data
structure 14), the acceleration of the intersection test is a quite effective approach
to achieve an interactive ray tracing.

This paper proposes a new intersection algorithm for ray frustum-triangle inter-
section tests by using precomputation and an early termination. The proposed
algorithm focuses on the feature whereby the rays in a ray frustum share the
same origin. As a result, the number of intersection operations can be reduced.
In addition, by optimization to the modern processor architecture, the proposed
algorithm can achieve high-speed intersection tests.

This paper is organized as follows. Section 2 reviews related work. In Sec-
tion 3, we propose a new intersection algorithm for ray frustum-triangle intersec-
tion tests. In Section 4, we evaluate the performance of the proposed algorithm
through experiments. Section 5 presents concluding remarks and future work.

2. Related Work

Many intersection algorithms have been proposed in the field of computer
graphics. The projection algorithm 9), Möller’s algorithm 15), and Pluecker’s al-
gorithm 16) have been used for recent ray tracers.

Basically, a ray-triangle intersection test is performed in the following steps.
Suppose the intersection test between a ray R(t) = O + tD and a triangle of
vertices P0, P1, and P2 as shown in Fig. 2. Then, the intersection is tested by
calculating the point H at which the ray R intersects with the plane defined by
the vertices P0, P1, and P2. Only if the intersection point H is located within
the triangle, the ray R intersects with the triangle.

Fig. 2 A ray and a triangle.

2.1 Projection Intersection Algorithm
The projection algorithm is an optimized method of the barycentric coordi-

nates test 17),18). Since the intersection test is performed by projecting rays and
triangles into an axis-aligned plane instead of the 3D coordinate system, the
projection algorithm requires less computation than that of the barycentric test.

In the original projection algorithm, the edges of a triangle E1, E2, the normal
N , and the projected coordinate are recalculated for every intersection test. How-
ever, the calculated results are always the same when the triangle is unchanged.
By precomputing and storing these values, hence, the redundant recalculation
can be avoided. Although a larger memory capacity is required to store the pre-
computed results, the intersection tests can quickly be performed. In addition,
the exploitation of the locality of reference to the precomputed data leads to the
effective utilization of the large cache and the avoidance of expensive cache misses.
By calculating multiple rays together instead of calculating each ray individually,
the intersection tests are further accelerated by using SIMD operations.

The projection algorithm is suitable for the ray-triangle intersection test. How-
ever, it is not optimized for the ray frustum-triangle intersection test; more calcu-
lations can be avoided by the precomputation using the features of a ray frustum
as discussed later.

2.2 Möller’s Intersection Algorithm
In Möller’s algorithm 15), from a ray R and a point H(u, v) = (1− u− v)P0 +

uP1 + vP2 on a triangle, the intersection point between the ray and the triangle
is obtained by:

⎛
⎜⎝

t

u

v

⎞
⎟⎠ =

1
(D × E2) · E1

⎛
⎜⎝

(S × E1) · E2

(D × E2) · S
(S × E1) ·D

⎞
⎟⎠ , (1)

where × denotes a cross product, · denotes a standard dot product, S = O−P0,
E1 = P1 − P0, and E2 = P2 − P0. Firstly, (D × E2) · E1 is calculated and
tests whether the direction of a triangle faces the ray origin. Then, u and v are
calculated and check whether they meet 0 ≤ u, 0 ≤ v, and u + v ≤ 1. Finally,
the distance t is calculated. In this intersection algorithm, the edges and the
normal of a triangle are recalculated for every intersection test as in the case of

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 85–95 (June 2008) c© 2008 Information Processing Society of Japan



87 A Fast Ray Frustum-Triangle Intersection Algorithm

the original projection algorithm.
Möller’s algorithm has been improved by eliminating the redundant calcula-

tions 19). The scalar triple product rules and the commutative property of the
cross product are applied to Eq. (1). Equation (1) is rewritten as follows:⎛

⎜⎝
t

u

v

⎞
⎟⎠ =

1
(E2 × E1) ·D

⎛
⎜⎝

(E1 × E2) · S
(S ×D) · E2

(D × S) · E1

⎞
⎟⎠

= − 1
N ·D

⎛
⎜⎝

N · S
−(D × S) · E2

(D × S) · E1

⎞
⎟⎠ ,

(2)

where N = E1 × E2. Since the edges E1, E2, and the normal N are constant,
these values can be precomputed before intersection calculations. The improved
Möller’s algorithm can be expressed in the following manner, where u′ = −(D×
S) · E2 and v′ = (D × S) · E1:

1: function Precomputation for A Triangle (P0, P1, P2)
2: E1 ← P1 − P0

3: E2 ← P2 − P0

4: N ← E1 × E2

5: return(E1, E2, N)
6: end function
7: function Möller Intersection Test (D, O, N, P0, E1, E2)
8: f1 ← N ·D
9: if f1 ≥ 0 then

10: return(NOTHIT ) � Early Termination.
11: end if
12: S ← O − P0

13: G← D × S

14: u′ ← −G · E2

15: if u′ < 0 then
16: return(NOTHIT ) � Early Termination.
17: end if

18: v′ ← G · E1

19: if v′ < 0 then
20: return(NOTHIT ) � Early Termination.
21: end if
22: if u′ + v′ > −f1 then
23: return(NOTHIT ) � Early Termination.
24: end if
25: f2 ← N · S
26: t← −f2 / f1

27: return(HIT, u′, v′, t)
28: end function

The precomputation enables faster intersection tests than the original Möller
intersection tests. As in the case of the projection algorithm, however, it is not
optimized for the ray frustum.

2.3 Pluecker’s Intersection Algorithm
Pluecker’s algorithm 20),21) can quickly perform the intersection tests. A di-

rected line in the 3D coordinate system can be represented in the 6D Pluecker
coordinate system 22),23). Given two points A and B in the 3D coordinate system,
the line L through the two points is defined as L = [A−B, A×B]. A ray R can
be denoted by R = [D, D ×O].

The Pluecker inner product gives the positional relationship between two lines.
The inner product is defined as L0∗L1 = U0 ·V1+U1 ·V0 for two lines L0 = [U0, U1]
and L1 = [V0, V1] in the coordinate system. If the inner product equals to zero,
the two lines intersect as shown in Fig. 3 (b); if the inner product does not equal

Fig. 3 Pluecker Line-Line test.

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 85–95 (June 2008) c© 2008 Information Processing Society of Japan



88 A Fast Ray Frustum-Triangle Intersection Algorithm

to zero, the two lines do not intersect as shown in Fig. 3 (a) and Fig. 3 (c). By
taking the inner products of a ray and the three edges of a triangle, the ray-
triangle intersection can be tested. If all the inner products between the ray and
the three edges have the same sign, the ray intersects with the triangle.

Carsten has improved Pluecker’s algorithm for ray frustums 16). Using the
feature whereby all rays within a ray frustum share a common origin, the
inner product between the ray R and the triangle edge T is simplified to
R ∗ T ′ = D · ((A − O) × (B − O)) by translating the shared ray origin to the
origin of the coordinate system, where T ′ indicates the translated edge. Since
(A − O) × (B − O) is precomputable immediately after the ray origin has been
decided, the intersection tests between a ray in a frustum and a triangle can be
performed by calculating three dot products. The algorithm of the improved
Pluecker intersection test is described as follows:

1: function Precomputation for A Triangle (P0, P1, P2)
2: E1 ← P1 − P0

3: E2 ← P2 − P0

4: N ← E1 × E2

5: return(N)
6: end function
7: function Precomputation for A Ray Frustum (O, N, P0, P1, P2)
8: T0 ← (P1 −O)× (P0 −O)
9: T1 ← (P2 −O)× (P1 −O)

10: T2 ← (P0 −O)× (P2 −O)
11: f2 ← N · (O − P0)
12: return(T0, T1, T2, f2)
13: end function
14: function Pluecker Intersection Test (D, N, T0, T1, T2, f2)
15: f1 ← N ·D
16: if f1 ≥ 0 then
17: return(NOTHIT ) � Early Termination.
18: end if
19: α← D · T0

20: β ← D · T1

21: γ ← D · T2

22: if α, β, γ have not the same sign then
23: return(NOTHIT ) � Early Termination.
24: end if
25: t← −f2 / f1

26: return(HIT, t)
27: end function

Note that Pluecker’s algorithm needs four dot products in total, because it also
requires one more dot product to check the face of a triangle.

The improved Pluecker algorithm can achieve the fast ray frustum-triangle
intersection test. However, it requires a large memory capacity and the higher
cost of precomputation.

3. Novel Intersection Algorithm for Ray Frustum

We propose a new ray frustum-triangle intersection algorithm based on Möller’s
algorithm. The intersection calculation time can be further reduced by incorpo-
rating the ray frustum-triangle intersection tests into Möller’s algorithm.

By precomputing all rays in a ray frustum that are shot from the same origin
point, a large amount of calculation can be removed. In other words, N · S in
Eq. (2) is constant for every ray included in a frustum and can be calculated in
advance. In addition, more matrix elements can be precomputed by applying
the scalar triple product rules to Eq. (2) again. Eventually, Eq. (2) is rewritten
as follows:

⎛
⎜⎝

t

u

v

⎞
⎟⎠ = − 1

N ·D

⎛
⎜⎝

N · S
D · (−S × E2)
D · (S × E1)

⎞
⎟⎠ . (3)

Since N · S, −S ×E2, and S ×E1 of a triangle are constant for every ray within
a single ray-frustum, these precomputed values can be used for all intersection
tests of those rays. The proposed algorithm can be described as the following
algorithm, where u′ = D · (−S × E2) and v′ = D · (S × E1):

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 85–95 (June 2008) c© 2008 Information Processing Society of Japan



89 A Fast Ray Frustum-Triangle Intersection Algorithm

1: function Precomputation for A Triangle (P0, P1, P2)
2: E1 ← P1 − P0

3: E2 ← P2 − P0

4: N ← E1 × E2

5: return(E1, E2, N)
6: end function
7: function Precomputation for A Ray Frustum (O, N, P0, E1, E2)
8: S ← O − P0

9: Gu ← −S × E2

10: Gv ← S × E1

11: f2 ← N · S
12: return(Gu, Gv, f2)
13: end function
14: function Proposed Intersection Test (D, N, Gu, Gv, f2)
15: f1 ← N ·D
16: if f1 ≥ 0 then
17: return(NOTHIT ) � Early Termination.
18: end if
19: u′ ← D ·Gu

20: if u′ < 0 then
21: return(NOTHIT ) � Early Termination.
22: end if
23: v′ ← D ·Gv

24: if v′ < 0 then
25: return(NOTHIT ) � Early Termination.
26: end if
27: if u′ + v′ > −f1 then
28: return(NOTHIT ) � Early Termination.
29: end if
30: t← −f2 / f1

31: return(HIT, u′, v′, t)
32: end function

Fig. 4 Flowchart of the proposed ray frustum-triangle intersection test.

Figure 4 shows the flowchart of the proposed algorithm. The newly-introduced
precomputation process is shown as the dashed box. The intersection test be-
tween a ray in a frustum and a triangle requires only three dot products at the
maximum.

In every iteration, the proposed algorithm requires less dot products and less
cross products than the other algorithms reviewed in Section 2. Compared to
Möller’s algorithms, it can eliminate one dot product and one cross product in
each iteration.

In the case where all intersection tests of a ray are terminated by the first
conditional check at line 16, the precomputed values are never used and hence
the precomputation is redundant. In practice, however, the precomputed values
are almost always reused many times, resulting in a significant reduction in the
intersection calculation time.

Table 1 shows the number of floating-point operations of precomputation for a
ray frustum to one triangle, an intersection test between one ray and one triangle,
and intersection tests between rays in one frustum and one triangle, where F is the
number of rays in a frustum. In this table, an early termination is not considered

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 85–95 (June 2008) c© 2008 Information Processing Society of Japan



90 A Fast Ray Frustum-Triangle Intersection Algorithm

Table 1 Number of operations of the precomputation for a frustum and the intersection
test. F is the number of rays in a frustum.

Algorithm Precomp. Test Total
Möller 0 34 34F

Projection 0 22 22F
Pluecker 41 21 41+21F
Proposed 26 17 26+17F

for comparing the algorithms in terms of the maximum amounts of computation.
If F is 6 or more, the proposed algorithm needs the fewest operations for an
intersection test. The greater the number of rays becomes, the faster the proposed
algorithm can test intersections because of the precomputation.

The number of floating-point operations required by the proposed algorithm
for the precomputation is less than that required by Pluecker’s algorithm. While
Pluecker’s algorithm needs 41 floating-point operations for its precomputation,
the proposed algorithm only needs 26 operations. The number of precomputed
values used in the proposed algorithm is less than those of Möller’s algorithm
and Pluecker’s algorithm during intersection tests. In the case of using single
precision floating-point values, the data size required by each algorithm for the
intersection tests involved in a frustum is as follows. Möller’s algorithm, the pro-
jection algorithm, and Pluecker’s algorithm need 48 bytes, 40 bytes, and 52 bytes,
respectively. The proposed algorithm needs 40 bytes, which includes the x, y,
and z components of vectors S, Gu, and Gv and the scalar value f2. Thus, the
proposed algorithm requires less memory capacity than do Möller’s algorithm
and Pluecker’s algorithm.

Compared with the projection algorithm and Pluecker’s algorithm, the pro-
posed algorithm can effectively use the early termination as well as Möller’s
algorithm. If any conditional check does not succeed, a ray does not intersect
with the current triangle, and is tested for the next triangle. In the projection
algorithm and Pluecker’s algorithm, several conditional checks are performed at
the last stage of the intersection calculation. Thus, they have to perform a lot of
floating-point operations before an early termination.

On the other hand, conditional checks in the proposed algorithm and Möller’s
algorithm are performed earlier than those in the projection algorithm and those

in Pluecker’s algorithm. As a result, the proposed algorithm and Möller’s al-
gorithm can skip more floating-point operations than can the projection and
Pluecker’s algorithm. For instance, while the second check of Pluecker’s algo-
rithm is performed after four dot products, the second check of the proposed
algorithm and of Möller’s algorithm is carried out after only two dot products.
This effective early termination is an advantage of the proposed algorithm and
Möller’s algorithm over the projection algorithm and Pluecker’s algorithm.

Besides, the proposed algorithm can exploit the potential of modern CPUs
with large caches and powerful SIMD instructions. The data arrangement and
alignment of the precomputed values lead to an effective utilization of the cache
and an avoidance of expensive cache misses. Data parallel processing with SIMD
instructions can further accelerate the intersection test by calculating multiple
rays together instead of each ray individually.

4. Performance Evaluation

In order to evaluate the proposed algorithm, we did experiments on a PC
equipped with a 2GB DDR memory and an Intel Pentium 4 processor running
at 3.4 GHz. In the experiments, Intel C++ Compiler v9.1 was used. The exper-
iments were conducted by generating images from the Stanford data archives 24)

shown in Fig. 5. All these images were generated by 2×2 ray frustums of primary
rays.

Figure 6 and Table 2 show the intersection calculation times of the proposed
algorithm and the conventional algorithms. The resolution of the test images is
256× 256 pixels. All the intersection algorithms are implemented by using Intel
SSE intrinsics, which are C/C++ function-style macros. In order to evaluate
the performance of the intersection algorithm itself, no spatial data structure is
used. In the figure, the x-axis indicates the test scenes. The y-axis indicates the
speedup ratio of each algorithm against Möller’s algorithm.

This figure shows that the proposed algorithm achieves faster intersection tests
than the other algorithms. For all the test scenes, the proposed algorithm can
perform intersection tests faster than the others. Depending on the arrangement
of triangles in the scene, the speedup ratio of the proposed algorithm against
Möller’s algorithm varies from about 1.1× to 1.3×.

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 85–95 (June 2008) c© 2008 Information Processing Society of Japan



91 A Fast Ray Frustum-Triangle Intersection Algorithm

Bunny (69,451) Dragon (871,414) Happy Buddha (1,087,716)

Armadillo (345,944) Asian Dragon (7,219,045) Thai Statue (10,000,000)

Fig. 5 Test scenes (Number of triangles).

Fig. 6 Comparison of the intersection time.

Table 2 Intersection time (sec.).

Method Bunny Dragon Happy Buddha
Möller 36.8 589.9 731.4

Projection 36.7 587.2 754.2
Pluecker 35.9 532.8 673.2
Proposed 30.5 496.0 601.3
Method Armadillo Asian Dra. Thai Stat.
Möller 256.6 4,130.7 6,632.8

Projection 271.9 4,236.7 6,557.1
Pluecker 252.0 4,826.7 6,123.7
Proposed 231.1 3,191.5 5,240.8

Table 3 Breakdown of the average ratio of early termination points.

Term. Möller Projection Pluecker Proposed
1st 20.9% 29.6% 20.9% 20.9%
2nd 37.9% 34.2% N/A 37.9%
3rd 27.8% 24.3% N/A 27.8%
last 13.5% 11.9% 79.1% 13.5%

One of the reasons of the speedups is that the proposed algorithm requires less
operations than do the others because of the precomputation.

Another reason is that the early termination works effectively in the proposed
algorithm. The superiority of the proposed algorithm over Pluecker’s algorithm
is mainly due to the efficient early termination. It can skip the operations after
an early termination point, and proceed to the next intersection iteration.

Table 3 shows the breakdown of early termination points in the six test scenes,
where the percentage is the ratio of the number of early-terminated tests at each
termination point to the total number of early-terminated tests. The experimen-
tal conditions are the same as those in Fig. 6. Note that the termination points
of the projection algorithm are different from those of the other algorithms. This
table shows that 86.5% (= 20.9%+37.9%+27.8%) of intersection tests in the pro-
posed algorithm and Möller’s algorithm are early-terminated, while only 20.9%
of tests are early-terminated in Pluecker’s algorithm. As a result, Pluecker’s al-
gorithm takes a longer calculation time than the proposed algorithm and Möller’s
algorithm.

In order to clarify the effects of the precomputation and the early termination
of the proposed algorithm, Fig. 7 compares the intersection times under the

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 85–95 (June 2008) c© 2008 Information Processing Society of Japan



92 A Fast Ray Frustum-Triangle Intersection Algorithm

Fig. 7 Effects of precomputation and early termination.

three conditions; Möller’s algorithm without the early termination, the proposed
algorithm without the early termination, and the proposed algorithm with both
the precomputation and the early termination. The y-axis indicates the speedup
ratios of the intersection time to that of Möller’s algorithm without the early
termination. The other experimental conditions are the same as Fig. 6.

This figure shows that both the precomputation and the early termination
contribute to the acceleration of intersection tests. The speedup by the precom-
putation is about 7 to 23%. The speedup by both the precomputation and the
early termination is about 31 to 43%. The performance gain by the early termi-
nation varies greatly according to the test scenes, because the termination point
depends on the arrangement of triangles in the scene.

To evaluate the performance when generating images with a different magni-
tude of coherence among rays, the following experiments were conducted under
various image resolutions. A high resolution means that the rays in a frustum
concentrate into a narrow region, resulting in a higher coherence. The other
experimental conditions are the same as in Fig. 6. Figure 8 shows the speedup
ratios in generating various resolution images of each test scene. The y-axis indi-
cates the speedup ratio of the intersection time of the proposed algorithm against
that of Möller’s algorithm.

This figure shows that the speedup is basically higher when the resolution is
higher. As the resolution increases, the coherence of rays in a ray frustum also

Fig. 8 Speedup of intersection time for various resolution.

increases. This higher coherence leads to the performance improvement of the
proposed intersection test.

The speedup of Bunny does not depend on the resolution because the coherence
of the rays is high enough. It is confirmed that the breakdown of early-terminated
points for Bunny of 128 × 128, 256 × 256, and 512 × 512 pixels are almost the
same. It means that all rays in a frustum hit the same triangles even in the case
of a 128 × 128-pixel image. Thus, there is no performance difference among the
various resolution settings in Bunny.

For all the scenes, a certain speedup is achieved even if the resolution is 128×
128, where rays are the least coherent in the experiments. This implies that the
proposed algorithm is useful even for low coherence rays.

In order to evaluate the performance of the proposed algorithm with a spatial
data structure, the experiments were conducted by applying SAH-BVH (Surface
Area Heuristic-Bounding Volume Hierarchies) data structure 4) to Möller’s algo-
rithm and the proposed algorithm. SAH-BVH is one of the most widely used
data structures for the reduction of the number of intersection tests during an
image generation.

Figure 9 and Table 4 show the intersection time of Möller’s algorithm and the
proposed algorithm. The intersection time includes the traverse time of the SAH-
BVH and the intersection test time of ray frustums and triangles. In this figure,
the y-axis indicates the speedup ratio of the intersection time which includes the

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 85–95 (June 2008) c© 2008 Information Processing Society of Japan



93 A Fast Ray Frustum-Triangle Intersection Algorithm

Fig. 9 Speedup of intersection time with SAH-BVH data structure.

Table 4 Intersection time with SAH-BVH traversal time (sec.).

Method Bunny Dragon Happy Buddha
Möller 0.155 0.150 0.186

Proposed 0.150 0.146 0.180
Method Armadillo Asian Dra. Thai Stat.
Möller 0.106 5.26 33.6

Proposed 0.104 3.67 25.6

traverse time of the SAH-BVH and the intersection test time of ray frustums and
triangles. The maximum depths of the SAH-BVHs for Asian Dragon and Thai
Statue are set to 12 and 10 respectively because of the limited memory capacity.
The resolution of the test images is 256× 256 pixels. All intersection algorithms
are implemented by the standard C language without Intel SSE intrinsics and
optimized for SIMD operations by Intel C++ Compiler optimizer.

SAH-BVH selects only triangles with high intersection probabilities and allows
them to be tested by the intersection algorithms. As a result, intersection tests
for such triangles are not often terminated earlier, and the performance gain by
the early termination in Fig. 9 is less than that in Fig. 6. This means that the
precomputation becomes more significant in Fig. 9.

The speedups become more remarkable for large scenes of many triangles such
as Asian Dragon and Thai Statue. On the other hand, for small scenes, there are
small differences in performance between Möller’s algorithm and the proposed

algorithm because only a small number of triangles selected by SAH-BVH are
tested by those algorithms. In addition, as SAH-BVH is built based on the cost
of testing an intersection, the use of a faster intersection algorithm leads to a
more sophisticated data structure with less hierarchy levels. As a result, a faster
intersection test can accelerate both intersection tests and a traversal in the data
structure. Accordingly, the speedups of the proposed algorithm against Möller’s
algorithm in Fig. 9 are larger than those in Fig. 6.

5. Conclusions

In this paper, we have proposed a new fast intersection algorithm for ray
frustum-triangle intersection tests. The proposed algorithm utilizes the features
of rays with the same origin in a frustum. It eliminates redundant calculations
by the proposed precomputation and the early termination boosts the innermost
intersection test iteration.

We have implemented and evaluated the proposed algorithm. The experi-
mental results have demonstrated the performance improvement of the proposed
intersection algorithm. The proposed algorithm is up to 1.43 times faster than
Möller’s algorithm.

Our future work includes the application of the proposed algorithm not only to
primary ray packets but also to shadow ray packets and diffuse ray packets. The
proposed algorithm is expected to be useful even for those ray packets, because
they are also coherent enough if quite a number of their sampling rays sharing
the same origin are tested. In addition, the implementation of the proposed
algorithm onto the GPU will appear in our future work.

Acknowledgments The authors would like to thank the anonymous reviews
for valuable comments. The authors would like to thank Professor Emeritus
Tadao Nakamura and Professor Ryusuke Egawa of Tohoku University for their
comments for this research.

References

1) Whitted, T.: An improved illumination model for shaded display, Comm. ACM,
Vol.23, No.6, pp.343–349 (1980).

2) Cook, R.L., Porter, T. and Carpenter, L.: Distributed ray tracing, SIGGRAPH ’84:

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 85–95 (June 2008) c© 2008 Information Processing Society of Japan



94 A Fast Ray Frustum-Triangle Intersection Algorithm

Proc. 11th Annual Conference on Computer Graphics and Interactive Techniques,
pp.137–145 (1984).

3) Kajiya, J.T.: The rendering equation, SIGGRAPH ’86: Proc. 13th Annual Con-
ference on Computer Graphics and Interactive Techniques, pp.143–150 (1986).

4) Wald, I., Boulos, S. and Shirley, P.: Ray Tracing Deformable Scenes using Dynamic
Bounding Volume Hierarchies, ACM Trans. Graphics (Proc. ACM SIGGRAPH )
(2006).

5) Havran, V.: Heuristic Ray Shooting Algorithms, PhD Thesis, Czech Technical
University (2000).

6) Reshetov, A., Soupikov, A. and Hurley, J.: Multi-Level Ray Tracing Algorithm,
SIGGRAPH ’05: Proc. 32nd International Conference on Computer Graphics and
Interactive Techniques, 3, Vol.24, pp.1176–1185 (2005).

7) Wald, I., Ize, T., Kensler, A., Knoll, A. and Parker, S.G.: Ray Tracing Animated
Scenes using Coherent Grid Traversal, ACM Trans. Graphics (Proc. ACM SIG-
GRAPH ) (2006).

8) Wald, I., Slusallek, P., Benthin, C. and Wagner, M.: Interactive Rendering with
Coherent Ray Tracing, Computer Graphics Forum (Proc. Eurographics), 3, Vol.20,
pp.153–164 (2001).

9) Wald, I.: Realtime Ray Tracing and Interactive Global Illumination, PhD Thesis,
Saarland University (2004).

10) Benthin, C., Wald, I., Scherbaum, M. and Friedrich, H.: Ray Tracing on the CELL
Processor, RT ’06: IEEE Symposium on Interactive Ray Tracing (2006).

11) Dmitriev, K., Havran, V. and Seidel, H.-P.: Faster Ray Tracing with SIMD Shaft
Culling, Research report MPI-I-2004-4-006 (2004).

12) Reshetov, A.: Faster Ray Packets-Triangle Intersection through Vertex Culling,
IEEE/EG Symposium on Interactive Ray Tracing (2007).

13) Lauterbach, C., Chandak, A. and Manocha, D.: Interactive Sound Rendering in
Complex and Dynamic Scenes using Frustum Tracing, IEEE Trans. Visualization
and Computer Graphics, Vol.13, No.6 (2007).

14) Komatsu, K., Kaeriyama, Y., Zaitsu, D., Suzuki, K., Ohba, N. and Nakamura,
T.: Packet-Primitive Intersection Method, RT ’06: Poster Compendium of IEEE
Symposium on Interactive Ray Tracing, p.6 (2006).

15) Möller, T. and Trumbore, B.: Fast, minimum storage ray triangle intersection,
Graphics Tools, Vol.2, No.1, pp.21–28 (1997).

16) Benthin, C.: Realtime Ray Tracing on Current CPU Architectures, PhD Thesis,
Saarland University (2006).

17) Badouel, D.: An Efficient Ray Polygon Intersection, Graphics Gems, pp.390–393
(1990).

18) Glassner, A.: An Introduction to Ray Tracing, ISBN: 0-12286-160-4, Morgan Kauf-
mann (1989).

19) Barzel, R.(ed.): Graphics Tools—the jgt editors’ choice, A K Peters, Ltd. (2005).

20) Erickson, J.: Pluecker Coordinates, Ray Tracing News (1997).
http://www.acm.org/tog/resources/RTNews/html/rtnv10n3.html#art11

21) Shoemake, K.: Pluecker Coordinate Tutorial, Ray Tracing News (1998).
http://www.acm.org/tog/resources/RTNews/html/rtnv11n1.html#art3

22) Sommerville, D.: Analytical Geometry of Three dimensions, Cambridge University
Press (1939).

23) Teller, S.J.: Computing the antipenumbra of an area light source, SIGGRAPH
Computer Graphics, Vol.26, No.2, pp.139–148 (1992).

24) Stanford Computer Graphics Laboratory: The Stanford 3D Scanning Repository.
http://www-graphics.stanford.edu/data/3Dscanrep/

(Received October 9, 2007)
(Accepted March 11, 2008)

Kazuhiko Komatsu is currently a Post-Doctoral Fellow in
Cyberscience Center, Tohoku University. His research interests
include computer graphics and parallel processing. He received
the B.E. Degree in Mechanical Engineering, and the M.S. and
Ph.D. Degrees in Information Sciences from Tohoku University in
2002, 2004, and 2008 respectively.

Yoshiyuki Kaeriyama is currently an Engineer of Nikon Cor-
poration. His research interests include computer graphics and
their hardware. He received the B.E. Degree in Mechanical En-
gineering, and the M.S. and the Ph.D. Degrees in Information
Sciences from Tohoku University in 1999, 2001, and 2007 respec-
tively. He is a member of IEEE.

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 85–95 (June 2008) c© 2008 Information Processing Society of Japan



95 A Fast Ray Frustum-Triangle Intersection Algorithm

Kenichi Suzuki received the B.E degree, Master degree on in-
formation sciences, and Ph.D. from Tohoku University in 1992,
1994, 1997, respectively. He worked for Miyagi National College
of Technology as an assistant professor from 1997 to 2003. He was
an assistant professor at Graduate School of Information Sciences,
Tohoku University from 2003 to 2008. From 2008, he is an asso-
ciate professor at Department of Information and Communication

Engineering, Tohoku Institute of Technology.

Hiroyuki Takizawa is currently a senior assistant professor
in the Graduate School of Information Sciences, Tohoku Univer-
sity. His research interests include high-performance computing
systems and their applications, such as computer graphics. He
received the bachelor’s degree in Mechanical Engineering, and the
master’s and doctor’s degrees in Information Sciences from To-
hoku University in 1995, 1997 and 1999, respectively. He is a

member of the IEEE CS, the IEICE, and the IPSJ.

Hiroaki Kobayashi is currently a Director and Professor of
Cyberscience Center and a Professor of Graduate School of In-
formation Sciences, Tohoku University. His research interests in-
clude high-performance computer architectures and their applica-
tions. He received the B.E. Degree in Communication Engineer-
ing, and the M.E. and D.E. Degrees in Information Engineering
from Tohoku University in 1983, 1985, and 1988 respectively. He

is a senior member of IEEE CS, and a member of ACM, IEICE and IPSJ.

IPSJ Transactions on Advanced Computing Systems Vol. 1 No. 1 85–95 (June 2008) c© 2008 Information Processing Society of Japan


