

An interactive environment to teach programming based on chain learning

Nikolai Shumilin Ian Piumarta Ryo Nishide Hideyuki Takada

Ritsumeikan University

1. Introduction

To learn programming requires several skills, such as

knowledge of syntax and the ability to construct algorithms.
In many cases this is a big problem, since in most reference

training programs are a set of commands and their descrip-

tion, but no description of how and in which cases they should
be used. Another method for learning is the use of special

guides. The main problem in this case is that if a version of

the programming environment changes some parts of the
guide become obsolete. The next way is to use a sandbox for

programming. But this way again requires the use of a the
guide or presence of a teacher. Since all of the elements in the

sandbox are available to the new user who does not under-

stand how to use them, newbie programmers may be con-
fused.

Our environment addresses these problems by using a

chain learning structure to teach programming where syntax
is not introduced until necessary. It can be used to teach chil-

dren (beginner levels are designed for children), and it works
everywhere (written in JavaScript for the browser).

2. Related work

There are several tools for teaching programming [1].

Some of them are big sandboxes, which can be programmed
for a variety of activities. These are the environments such as

Scratch [2], LOGO, and Robomind. There are also highly
specialized software environments for a particular language

that teach programming in only one language using a partic-

ular syntax. These are the environments such as Javarush and
Сodeacademy for specific programming languages.

In order to learn how to program in a big sandbox, you

need to find a guide for programming or a teacher. When us-
ing these environments for the first time, the user does not

immediately understand what he needs and what he should
learn. When a user is provided many functions at once, there

is a possibility that he tries the basic functions, but cannot un-

derstand more complex functions.
With highly specialized environments, learning complex

syntax is another problem. The user solves a sequence of

problems, with the help of which the user learns program-
ming, from the simplest concepts such as loops and variables

to complex high-level programming. But even the simplest of
these problems can be solved only with a specific syntax, and

complex syntax causes problems in the education of children.

3. Method

Our goal is to create a software environment where pro-
gramming will be learned with the help of certain tasks, but

independently of the program syntax. For realization, it was

decided to use a chain learning structure. The chain learning

structure is a sequence of rules and skills that build incremen-
tally upon those learned earlier.

This structure helps to explain to the user the basics with

the help of which he will continue to solve more complex
problems [3]. This structure involves more than the user in

the programming process, as tasks gradually become more

complicated, but the user can solve each of them easily thanks
to previous skills learned [4].

In our environment, each link in the chain is a single pro-
gramming section (Figure 1) composed of several tasks. As

an example, in our environment in the first level, the user

learns simply how to move an object. In the next level, he
moves the object in a specific way to solve a more complex

task. Then, the user learns cycles, and in the corresponding

task uses cycles to control the movement of the object. Every
learning step builds upon the previous ones. The problems

gradually become more complex, and in our environment
they correspond to various levels of training.

The first level is the level of a beginner. At this level, us-

ers are offered the simplest problem to solve, such as moving
an object to a finish line by using navigation buttons. We cre-

ate a button for each specific program action. When you click
on a button the corresponding program command appears in

the console. This button interface is useful for those users

who do not initially understand what commands must be en-
tered. Thus, the user will remember the commands and on

these levels will only see them in the console, and the user

will feel comfortable. For those who cannot solve this prob-
lem, the screen displays a hint button. With this button, the

user can see the a little hint to solve the task. Levels are con-
structed with the condition that the user must understand only

one additional concept to achieve the goal. For example, the

first level will be a challenge for navigation. To solve it, the
user understands that it is necessary to press one button to

move and reach the goal. The next level has more action but-

tons, so that the user can himself determine how to achieve a
more complex goal. That is, each level is built on the basis of

the previous level’s knowledge.
 The second level is the intermediate level. At Intermedi-

ate level, users are offered more challenges than at the begin-

ner level (tasks becomes more complex, and actions can be
selected both from buttons or written explicitly using a simple

syntax familiar from the beginner level). The third level is ad-

vanced level. At advanced level, users are offered complex
problems whose solutions require the skills of the previous

levels. (All the actions are written in the user console, using
the familiar syntax). All these levels are necessary in order to

separate the possible knowledge levels of users. To allow

them to start at an appropriate level otherwise users who
know programming will be bored if required to start at the

lowest levels designed for beginners.

Copyright 2017 Information Processing Society of Japan.
All Rights Reserved.4-645

2ZC-02

情報処理学会第79回全国大会

Figure 1: Stages of Chain learning structure in the environment.

Figure 2: Environment interface

4. Implementation

To create a software environment, scripting lan-

guage JavaScript was used. The program is written in
this programming language to run on any device, so

that users do not need to have a special device. Another
advantage of this programming language is that using

this language you can create absolutely any program-

ming constructs. When creating a software interface
(Figure 2) we take into account features such as ease

of use and comprehension. Since beginners should un-

derstand what they need to do, the main task is to de-
sign the levels so that the user does not feel bored. This

will make the learning process more effective

Early prototype will comprise three stages with var-

ious mechanic in each section (beginners, intermediate,

advanced). This is necessary to show how the chain
learning works in this environment. These levels will

be used on the basis of which the chain learning can be

to conduct an experiment to evaluate the efficiency of
the training compared to normal training.

Conclusions

In this environment, programming is presented in a
simplified form as a sequence of tasks. Each new task

will be more complicated than the previous. Clearly,

beginners need to feel that they can make gradual and
continual progress in learning to program by solving

simple tasks. However, difficult tasks are not the only

reason people hesitate to learn programing; compli-

cated syntax/environments or too many concepts pre-
sented in an illogical order can also prevent successful

learning.
Performing simple tasks, step by step, can teach the

user basic programming skills without knowledge of

syntax. The same chain learning method can be applied
to more complex programming tasks, thereby creating

interesting challenges, not only for beginners but also

for experienced programmers.

References

[1] Caitlin Kelleher and Randy Pausch, Lowering the

Barriers to Programming: A Taxonomy of Program-
ming Environments and Languages for Novice Pro-

grammers, ACM CSUR 37(2), 2005.

[2] John Maloney, Mitchel Resnik, Natalie Rusk, Brian
Silverman, and Evelyn Eastmond, The Scratch Pro-

gramming Language and Environment, ACM TOCE

10(4), 2010.
[3] Aliza Aufrichtig, The Prerequisites and Privilege of

Autodidacticism: What you already need to know to
teach yourself, ACM XRDS 20(4), 2014.

[4] Lara-Porras, A.M. Lozano-White, L. Interactive

Teach-Yourself Resource, International Conference on
Education and Management Technology, 2010.

Copyright 2017 Information Processing Society of Japan.
All Rights Reserved.4-646

情報処理学会第79回全国大会

