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This paper describes a new method for reconstructing the 2D structure of an environment
using an omnidirectional image sequence. The process starts by capturing the images with
an omnidirectional camera mounted on a mobile platform that is moving on a straight path.
By exploiting the characteristics of virtual omnidirectional images generated at arbitrary
viewpoints in the environment, we are able to synthesize a 3-D visual representation of the
environment. The 2D structure, parallel to the ground plane, will emerge by analyzing the
3-D visual representation. This method directly reconstructs the 2D structure from an om-
nidirectional visual sequence without using the feature matching process needed in multiple
camera stereo. In the experimentation, we have applied this method to indoor and outdoor
environments obtaining promising results.

1. Introduction

In previous works, various researchers have
explored the use of OD (Omni-Directional)
camera systems, in the context of robotic appli-
cations, for reconstructing environments from
video imagery. By combining the measure-
ments obtained from the video imagery with
odometry measurements from the robot, Yagi
and Kawato 15), Tsuji and Ishiguro 4),5) con-
structed maps of the robot environment.

In order to retrieve the 3D information from
the environment, Kawasaki, et al. 8) proposed a
spatio-temporal analysis of omni images. They
proposed a hybrid method using the epipolar-
plane image and the model-based analysis, per-
forming a matching between video data and
models. 3D information was retrieved from
video data by using the matching results.

In contrast with their approach, this paper
describes a new method for reconstructing the
2D structure of an environment from a sequence
of OD images recorded on a rectilinear path.
Our method does not require the matching pro-
cess but it rather needs to generate many OD
images (that will be called virtual OD images
throughout this paper).

Similar approaches to ours are methods
for approximately realizing plenoptic func-
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tions 1),9), such as lumigraph 3) and light field
rendering 10). Recently, Taylor 14) presented an
approach for capturing the appearance of im-
mersive scenes by combining techniques from
structure from motion with ideas from image-
based rendering. The limitation of this ap-
proach in the context of robot navigation is that
it actually doesn’t offer information about the
structure of objects surrounding the robot.

By being able to create any view from any
position to any direction on the ground, Taka-
hashi’s work 13) is the most closely related with
ours. However, their work is to reconstruct nor-
mal views with a limited visual field. In our
work, we have improved this idea in order to
find directly the structure of the environment
from many virtual OD views.

Another related work is of J.P Mellor, et
al. 11). They built and then analyzed an epipo-
lar image in order to accumulate evidence about
the depth at each image pixel. Comparing with
our method there are three distinct differences:
(1) they used a 3D arrangement of the cameras
while we are using an epipolar-plane arrange-
ment; (2) they inspected the surface of the ob-
jects while we thoroughly analyze the environ-
ment in an immersive way; (3) they used GPS
in order to find the relative position of the cam-
eras while we precisely approximated the local
areas with straight lines (T-Net) 5), memorized
with a pair of feature points located at the end
of the path. The details are described in Section
3.

This paper is organized as follows. In Sec-
tion 2 we review two of the main epipolar con-
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straints used in stereo methods and in Section
3 we present the originality brought by our
method. In Section 4 we describe the method
for reconstructing the 2D structure from vir-
tual OD images. Section 5 presents the results
of the experiments using both indoor and out-
door scenes. Section 6 includes conclusions re-
garding this method, along with discussions of
future work.

2. Epipolar Constraint in Stereo
Methods

From the beginning of computer vision re-
search, there have been many works aimed
at recovering the three-dimensional informa-
tion (depth) from two-dimensional images. The
problem of recovering depth from a set of im-
ages is essentially the correspondence problem.

Finding potential corresponding points in
each of the other images involves matching
some image property in two or more images.
Once a correspondence is known, solving for
depth is simple a matter of geometry.

Feature matching method proposed so far,
such as template matching is not stable espe-
cially for long base lines between cameras. On
the other hand, longer baselines result in more
precise depths. This leads to a conflict: short
baselines simplify the matching process but pro-
duce imprecise results; long baselines produce
precise results but complicate the matching
process.

In order to solve the correspondence prob-
lem for several special cases of camera motion,
Bolles, et al. 2) used an epipolar constraint for
building a special image, which they called it
epipolar-plane image. But even if the com-
putational costs have been reduced, the fea-
ture matching problem could not be completely
eliminated.

Kanade-Okutomi’s multi-baseline stereo 12)

gave a better solution to the matching problem.
They have used multiple stereo pairs with dif-
ferent baselines generated by a lateral displace-
ment of cameras and performed a simple match-
ing by computing the sum of squared-difference
(SSD) values.

By representing the SSD functions with re-
spect to the inverse depth (1/z) and then by
simply adding, to produce the sum of SSDs,
the false matches were cancelling each other
out. The resulting function exhibited a unique
minimum at the correct matching position even
when the intensity patterns of the scenes in-

cluded ambiguities or repetitive patterns.
Recently, the algorithm of Mellor, et al. 11)

succeeded in detecting the depths of image pix-
els without employing a feature matching pro-
cess. For this analysis they defined an epipolar
image similar to an epipolar-plane image but
with one critical difference that ensured it can
be constructed for every pixel in an arbitrary
set of images.

Instead of using projections of a single epipo-
lar plane, they built the epipolar image from
the pencil of epipolar planes defined by the line
through one of the camera centers and one of
the pixels in the reference image.

The epipolar image was constructed by orga-
nizing a two-dimensional array with the epipo-
lar lines from different images as rows. The
columns of this matrix represented possible sets
of correspondences ordered by depth.

One of the limitations of this method in the
context of robotic applications is that its main
focus is represented by the detection of the
structure of the isolated objects than of the
surrounding environment. Moreover, a 3D ar-
rangement of cameras and their precise loca-
tions have to be known in order to detect the
structure of objects. The method was intended
for recovering the depth maps of built geometry
(architectural facades) employing thus only an
inspection of the objects’ surface.

3. Epipolar Constraint in Our Method

Comparing with the methods described
above, our method can be considered as an ex-
tension of their best merits. In order to increase
the number of cameras we are sampling a video
sequence from an OD camera that is moving
along a straight path while keeping its image
plane parallel with the ground plane and at a
constant height from it (Fig. 1).

By employing an epipolar constraint similar
with the one used by the epipolar-plane image
we intend to reduce the computational cost re-

Image Capturing Line

Ground Plane
OD camera

Mobile platform

START STOP

Fig. 1 Mounted on top of a mobile platform, the OD
camera is moving along a straight line capturing
an OD video sequence.
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Fig. 2 The extracted circle is corresponding to the in-
tersection of the hyperboloidal mirror and the
horizontal plane that is crossing the mirror’s fo-
cal point.

lated with the correspondence problem. There-
fore, from each of the sampled OD images we
extract the circle that is corresponding to the
intersection of the horizontal plane crossing the
focal point of the hyperboloidal mirror, and the
mirror itself (Fig. 2).

By using this constraint, the pixels from the
extracted circles will correspond to the objects
located at the same height from the ground as
the OD camera’s focal point. In this way we
obtain a direct access to the height of the struc-
tures we are processing.

4. Structure from Virtual OD Images

4.1 Synthesis of Virtual OD Images
The omnidirectional camera that we used for

image acquisition is composed of a CCD cam-
era upward looking at a hyperboloidal mirror.
For the outdoor experiments, the camera is
mounted on a support on the roof of a vehi-
cle and for the indoor experiments the camera
is mounted on a mobile platform.

After recording a video sequence along a
straight path, we apply a sampling process and
obtain a number of original OD images. From
each of the recorded images we extract the color
information found in the circle that is coplanar
with the focal point of the hyperboloidal mirror.

Virtual OD images are generated in a dense
way, immersive into the environment and copla-
nar with the original OD images, by collecting
one pixel at a time from each of the extracted
circles (Fig. 3).

Circles extracted from
the original sequence of

OD images

Camera
Path

 Synthesized
Virtual Images

 Synthesized
Virtual Images

 Viewing
Directions

Pixel from the left side of the original OD images

Pixel from the right side of the original OD images

Imaginary Circles

Fig. 3 Virtual OD images are generated coplanar with
the original OD images on both sides of the
camera line.

Camera moving line

Circles extracted from consecutive
sampled OD images

Virtual OD ImagesArbitrary Viewpoints

Fig. 4 Virtual OD images are generated on the right
side of the camera line, at arbitrary viewpoints
and immersive into the environment.

In the process, if the rays corresponding to
an original circle and an imaginary circle that
has the center in an arbitrary viewpoint are
collinear and if they have the same length and
direction (towards the same side of the robot
path), the visual information corresponding to
the pixels located at the rays’extremities is the
same.

In this way, the shape of a virtual OD image
becomes an arc of a circle with the center in an
arbitrary viewpoint.

As the location of the virtual viewpoint is
moving away from the camera path, the re-
constructable area in the virtual OD image be-
comes smaller.

From the sequence of extracted circles, we
generate virtual OD images in arbitrary view-
points, immersive into the environment (Fig. 4)
and exploit changes that appear in each virtual
image that encounters an object.

As can be noticed, our inspection is rather
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Fig. 5 T-Net approximates local areas with straight
lines, allowing a precise control of the camera
motion.

thoroughly than superficially. By generating
virtual images in a dense manner we can in-
crease the resolution of our structure recovering
method.

What happens if we generate a virtual view
on an object? A virtual view in a free space
shows an image that should be taken at the
point. However, the virtual view on an object
shows a monotone image filled with the object’s
color. As a result, the virtual image loses its
texture. We have focused on this characteristic
of the virtual views for detecting the 2D struc-
ture of the environment.

In order to eliminate the cases of occluded
views we are taking multiple paths that are
crossing each other. These paths are obtained
by using the T-Net, which allows careful ap-
proximation of local areas with straight lines
(Fig. 5) and a precise control of the camera mo-
tion.

By using only rich visual information, our
approach is proposing an alternative stereo
method that might offer a more robust solution
for many real-world applications.

4.2 2D Structure from Virtual OD Im-
ages

For reconstructing the 2D structure of the en-
vironment, we apply a procedure that is consist-
ing of 3 consecutive steps:
( 1 ) Generating the Virtual Line Im-
ages
In the beginning, corresponding to each of the
extracted circles, we are rendering a number of
virtual lines by importing one pixel at a time

Camera
Line Virtual Lines

Extracted circles

Virtual OD Images
Virtual Line Image

WHITE

    

    

   

  

 

RGB

Fig. 6 Virtual line images are built from intermediate
virtual lines that are corresponding to pixels
that have a certain angle with the line perpen-
dicular to the camera path.

from each virtual OD image that is generated
on a direction perpendicular to the camera path
(Fig. 6). For each virtual line, the imported
pixels must have the same angle with the line
perpendicular to the camera path.
Virtual line images are obtained by gathering
all virtual lines that correspond to a certain an-
gle. For one side of the camera path we will
generate 180 virtual line images.
Generating the entire virtual OD image in or-
der to extract just one pixel that will be used
in building the virtual lines is a time consum-
ing process. In order to speed up the process
we found that there is no need to generate the
whole virtual image. That pixel can be eas-
ily recovered from the captured OD images. In
other words, in order to build virtual lines we
are using the principle of generating virtual OD
images but without actually generating them.
For each virtual line image, the process is build-
ing a Boolean matrix that will record the data
related to the presence of the color informa-
tion in the newly generated virtual line images.
Each of their location will be assigned a TRUE
or a FALSE value (Fig. 7) that will be used in
the 3rd step of the procedure.
( 2 ) Building the 3D-Visual Representa-
tion Volume (3D-VRV)
By arranging all virtual line images one on top
of the other we can build a 3-D visual represen-
tation volume (VRV) of the environment with
I, X, Y axes representing the vertical section,
distance from the camera path and the camera
movement, respectively (Fig. 8).
The projection of this 3-D VRV on the X-Y
plane will give us the 2D structure of the en-
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Fig. 7 Each location in the Boolean Matrix will record
the data related to the presence of the color
information in the newly generated virtual line
image.
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Fig. 8 For one side of the camera line, the 3-D visual
representation volume is composed of interme-
diate virtual line images.

vironment. The projection is seen as a process
of detecting the common areas where pixels ex-
hibit similar RGB values.
( 3 ) 2D Projection of the 3D-VRV onto
the Ground Plane
In order to carry-out the 2D projection of the
3D VRV, we employ an overlapping method
that is iterating an XOR process between the
pixels of two images (the VRV slices) using the
information from the corresponding Boolean
matrixes. The output of this process is an im-
age that is keeping the pixels that have similar
RGB values and is eliminating the rest of them.
The comparison of two images comes down to
the comparison of pixel’s RGB values. Our so-
lution for this problem was the use of a vecto-
rial representation (Fig. 9) where each vector
is represented as an (R, G, B) triplet.
The scalar product of two vectors correspond-

 

Fig. 9 We chose a vectorial representation for each
(R, G, B) triplet.

ing to two different pixels is given by:
�v1 �v2 = |v1||v2| cos θ;

where
|v1| = R2

1 +G2
1 +B2

1 ; |v2| = R2
2 +G2

2 +B2
2 ;

and
�v1 �v2 = R1R2 + G1G2 + B1B2.

If the angle between vectors is equal with 0 and
if the vectors have the same length, they are
corresponding to the same color. By varying
the angle and by imposing certain lengths to
the vectors we can impose accuracy thresholds
in order to compare different colors.
Looking from the point of view of 2D structure
recovery, if the color variance is smaller than
a certain threshold, then the output is valid,
meaning that there is an object. Otherwise,
the result is invalid (no object).
After getting the result of comparison between
two initial images, the overlapping process con-
tinues with the comparison of the result with
the next slice from the STV. This process is it-
erative and it ends when there is no more slice
to compare with.
By the simple projection, we can get a 2D image
that represents environmental structure along
the camera path. Note that this process for
acquiring the 2D environmental map does not
require a feature matching process.

5. Experimental Results

The indoor experiment has been done using
a static environment from our laboratory. Fig-
ure 10 shows the sequence of the original im-
ages that were recorded with a frequency of
one image/0.30 cm. The thick, gray lines from
Fig. 11 represent the walls of the cubicles. By
rendering the left side of the camera path we
obtain a sequence of 180 virtual line images
(Fig. 12).

The structure on the left side of the path
emerges from overlapping the corresponding
180 slices (Fig. 13). The meanings of the ob-
jects encircled and numbered are: (1) the cor-
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STOP

START

Camera Line

Fig. 10 Indoor environment — omni images along
the path.

ner of the wall; (2) the chair; (3) the standing
person and the chair; (4) the corner of the wall.

By following the same procedure we deter-
mined the structure on the right side of the path
(Fig. 14). The meanings of the encircled areas
are as follows: (1) represents the upper half of
the wall; (2) represents the lower part; and (3)
is the edge of the desk. They resulted separated
because in the original images they had an edge
of a different color between them.

We have to mention that even with a low ac-
curacy the results proved the right location of
the objects in the surrounding environment.

Next are the results for an outdoor scene, lo-
cated in our university campus. The camera
was mounted on top of a vehicle that was mov-

Fig. 11 Indoor environment — simplified
representation.

60 90300 120 150 180

Fig. 12 Virtual line images on the left side of the
camera line.

ing on a public road, along a 50 meters long
straight path, while recording a sequence of OD
images (Fig. 15) with a frequency of one image
per 25 cm. We drove smoothly in order to avoid
tilt variations of the camera. The buildings lo-
cated on each side of the road represented the
structures we wanted to detect (Fig. 16).

The structures detected on the left side of
the camera line are shown in Fig. 17. The two
encircled objects (1 and 2) correspond to the
front part of building 1 that includes two pil-
lars of similar color separated by a balcony of a
darker color.

Because of the limitation of this method in
dealing with concave shapes, in the case of
building 2, the inner part area (black shaded
zone from Fig. 16) is assimilated into the build-
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Fig. 13 Left side structure: overlapped results and
reality.

Fig. 14 Right side structure: overlapped results and
reality.

ing’s shape (Fig. 18).
Because unavoidable shakes of the camera

could not be avoided, the outdoor experiments
were done using images that had a negligible tilt
variation. In the case of stronger shakes that
could be clearly noticed, the entire sequence of
recorded images was discarded and the record-
ings were done again.

As proved by the results, one application for
our method might be the recovery of the en-
vironment’s coarse structure. Comparing with
the indoor environments, where the flat floor

STOP

START

Camera Line

Fig. 15 Outdoors environment: OD images along the
path.

Building 1

Building 2

Camera Path

Fig. 16 Outdoors environment: structure.

Fig. 17 Structure on left side of the road.
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Fig. 18 Structure on right side of the road.

constraint is satisfied for the entire camera
path, the results for outdoors scenes are more li-
able of being affected by errors due to camera’s
tilt variations. However, in the case of struc-
tures of big sizes (like buildings or cars) located
in the near vicinity of the camera’s path, small
variations of camera’s tilt are not significant for
the overall result.

6. Conclusion

This paper described a new method for re-
constructing the 2D structure of the surround-
ing environment from image sequences taken
by an OD camera. We generate virtual omni-
mages on both sides of the path and exploit
the changes that appear in each virtual image
that encounter with an object. The original-
ity brought by this method is that it uses only
the rich visual information in order to solve the
correspondence problem.

The strength of our method is that it re-
quires a single omni-camera and the processing
is done in real time being well suited for real-
world applications. A weak point is represented
by the low accuracy in detecting the objects
shape. Future work will focus on overcoming
this limitation and on extending our method to
3D structure.
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