
The LR-dispersion problem

Toshihiro Akagii∗ Tetsuya Araki† Shin-ichi Nakano∗

1 Introduction

The facility location problem and many of its variants
have been studied[7, 8]. A typical problem is to find a
set of locations to place facilities with the designated
cost minimized. By contrast, in this paper we consider
the dispersion problem, which finds a set of locations
with the designed cost maximized.

Given a set P of n points, and the distance d for each
pair of points, and an integer k with k ≤ n, we wish
to find a subset S ⊂ P with |S| = k such that some
designated cost is maximized[1, 5, 6, 10, 11, 12, 13].

In one of typical cases the cost to be maximized
is the minimum distance between two points in S.
If P is a set of points on the plane then the prob-
lem is NP-hard[12, 13], and if P is a set of points
on the line then the problem can be solved in
O(max{n log n, kn}) time[12, 13] by dynamic program-
ming approach, and in O(n log log n) time[1] by sorted
matrix search method[4, 9].

In this paper we consider two variants of the disper-
sion problem on the line. Let P be a set of points on
the horizontal line. We wish to find a subset S ⊂ P
with |S| = k maximizing cost(S) defined as follows.

Let the cost cost(s) of s ∈ S = {s1, s2, . . . , sk}
be the sum of the distance to its left neighbor in S
and the distance to its right neighbor in S. We as-
sume s1, s2, . . . , sk are sorted from left to right. Es-
pecially the leftmost point s1 ∈ S has no left neigh-
bor, so we define the cost of s1 is d(s1, s2). Simi-
larly the cost of the rightmost point sk is d(sk−1, sk).
And the cost(S) of S is the minimum cost among the
costs cost(s1), cost(s2), . . . , cost(sk). We call the prob-
lem above the LR-dispersion problem. An O(kn2 log n)
time algorithm based on dynamic programming is
known[2].

In this paper we design an algorithm to solve the LR-
dispersion problem. Our algorithm runs in O(n log n)
time, and based on matrix search method[4, 9].

2 (λ, k)-LR-dispersion

In this section we give a linear time algorithm to solve
a decision version of the LR-dispersion problem.

∗Department of Computer Science, Gunma University
†National Institute of Informatics, Japan

Given a set P = {p1, p2, . . . , pn} of points on a hor-
izontal line, and two numbers k and λ we wish to de-
cide if there exists a subset S ⊂ P with |S| = k and
cost(S) ≥ λ. We call the problem as the (λ, k)-LR-
dispersion problem. We have the following lemma.

Lemma 1. If (λ, k)-LR-dispersion problem has a
solution S = {s1, s2, . . . , sk} ⊂ P , then S′ =
{p1, s2, s3, . . . , sk−1, pn} is also a solution of the (λ, k)-
LR-dispersion problem.

Proof. Since cost(S) ≤ cost(S′), if S is a solution
then S′ is also a solution and cost(S) = cost(S′) holds.

□
The algorithm below is a greedy algorithm to solve

the (λ, k)-LR-dispersion problem. Note that cost(si)
for i = 3, 4, . . . , k−1 is d(si−2, si). By setting a dummy
point s0 = s1, cost(s2) is also d(s2−2, s2). Also note
that cost(k) = d(sk−1, sk).

Algorithm 1 find (λ, k)-LR-dispersion (P, k, λ)

/* P = {p1, p2, . . . , pn} and p1, p2, . . . , pn are sorted
from left to right */
/* Choose s1 and sk */
s1 = p1, sk = pn
s0 = s1 /* Dummy */
/* Choose s2, s3, . . . , sk−1 */
c = 2
for i = 2 to k − 1 do
while d(si−2, pc) < λ and d(pc, pn) ≥ λ do

c++
end while
if d(pc, pn) < λ then

/* no solution since d(pc, pn) < λ */
return NO

else
/* d(si−2, pc) ≥ λ holds */
si = pc /* si is found */
c++

end if
end for
/* Output */
return S = {s1, s2, . . . , sk}

Now we prove the correctness of the algorithm. As-
sume for a contradiction that the algorithm output NO
for a given problem but it has a solution.

Let G = {g1, g2, . . . , gk′} with k′ < k be the points
chosen by the algorithm, and O = {o1, o2, . . . , ok} the

Copyright 2017 Information Processing Society of Japan.
All Rights Reserved.1-175

5A-01

情報処理学会第79回全国大会

points of a solution. By Lemma 1 we can assume o1 =
p1 and ok = pn. Note that g1 = o1 = p1 and gk′ =
ok = pn hold. We have the following two cases.
Case 1 : For all i, 1 ≤ i < k′, gi ≤ oi holds.

Then our greedy algorithm can choose at least one
more point ok′ or more left point. A contradiction.
Case 2 : For some i, 1 ≤ i < k′, gi > oi holds.

Since g2 is chosen in a greedy manner, we can as-
sume g2 ≤ o2. Let j be the minimum such i. Since
gj−2 ≤ oj−2 and gj−1 ≤ oj−1 hold, our greedy algo-
rithm choose oi or more left point as gi. A contradic-
tion.
Theorem 1. One can solve the decision version of
the LR-dispersion problem in O(n) time.

3 LR-dispersion

One can design an O(n log n) time algorithm to solve
the LR-dispersion problem, based on the sorted matrix
search method[4, 9]. See the long version[3] for detail.
Theorem 2. One can solve the LR-dispersion prob-
lem in O(n logn) time.

4 Generalization

In this section we consider one more variant of the
dispersion problem and give an algorithm to solve the
problem, which runs in O(n log n) time. In the original
dispersion problem the cost is the minimum distance
between two points si and si+1. We generalize this to
the minimum distance between si and si+h, for given
h.

Given a set P = {p1, p2, . . . , pn} of points on a hori-
zontal line, and the distance d for each pair of points,
and two integers k, h with k, h ≤ n, we wish to find
a subset S = {s1, s2, . . . , sk} ⊂ P maximizing cost(S)
defined as follows.

Lcost(S) = min{d(s1, s2), d(s1, s2), . . . , d(s1, sh)},
Rcost(S) = min{d(sk−h+1, sk), d(sk−h+2, sk), . . . ,
d(sk−1, sk)} and Mcost(S) = min{d(s1, s1+h), d(s2,
s2+h), . . . , d(sk−h, sk)}, then cost(S) = min{Lcost(S),
Rcost(S),Mcost(S)}.

We call the problem above the h-dispersion problem.
The original dispersion problem on the line is the h-
dispersion problem with h = 1 and the LR-dispersion
problem is the h-dispersion problem with h = 2.

See the long version[3] for detail.
Theorem 3. One can solve the h-dispersion problem
in O(n log n) time.

5 Conclusion

In this paper we have presented two algorithms to solve
the LR-dispersion problem and the h-dispersion prob-
lem. The running time of the algorithms are O(n log n).

An O(n log log n) time algorithm to solve the original
dispersion problem on the line is known[1]. Can we
design an O(n log log n) time algorithm to solve the h-
dispersion problem ?

References

[1] T. Akagi and S. Nakano, Dispersion problem on
the Line, Technical Report, 2016-AL-158-4, IPSJ
(2016).

[2] T. Akagi, T. Araki and S. Nakano, Variants of the
Dispersion Problem, Technical Report, 2017-AL-
161-3, IPSJ (2017).

[3] T. Akagi and S. Nakano, The LR-dispersion
problem, Technical Report, Gunma Univ. (2017).
http://www.nakano-lab.cs.gunma-
u.ac.jp/TP/akagi201611.pdf

[4] P. Agarwal and M. Sharir, Efficient Algorithms for
Geometric Optimization, Computing Surveys, 30,
pp.412-458 (1998).

[5] C. Baur and S. P. Feketee, Approximation of Geo-
metric Dispersion Problems, Pro. of APPROX ’98,
Page 63-75 (1998).

[6] B. Chandra and M. M. Halldorsson, Approxima-
tion Algorithms for Dispersion Problems, J. of Al-
gorithms, 38, pp.438-465 (2001).

[7] Z. Drezner, Facility Location: A Survey of Appli-
cations and Methods, Springer (1995).

[8] Z. Drezner and H. W. Hamacher, Facility Loca-
tion: Applications and Theory, Springer (2004).

[9] G. Frederickson, Optimal Algorithms for Tree Par-
titioning, Proc. of SODA’91 Pages 168-177 (1991).

[10] R. Hassin, S. Rubinstein and A. Tamir, Approxi-
mation Algorithms for Maximum Dispersion, Op-
eration Research Letters, 21, pp.133-137 (1997).

[11] T. L. Lei and R. L. Church, On the unified dis-
persion problem: Efficient formulations and exact
algorithms, European Journal of Operational Re-
search, 241, pp.622-630 (2015).

[12] S. S. Ravi, D. J. Rosenkrantz and G. K. Tayi,
Heuristic and Special Case Algorithms for Disper-
sion Problems, Operations Research, 42, pp.299-
310 (1994).

[13] D. W. Wang and Y. S. Kou, A study on Two Geo-
metric Location Problems, Information Processing
Letters, 28, pp.281-286 (1988).

Copyright 2017 Information Processing Society of Japan.
All Rights Reserved.1-176

情報処理学会第79回全国大会

