
Yet Another Target Software Simulator
 Rui Shao† Yukikazu Nakamoto†

 Graduate School of Applied Informatics, University of Hyogo†

1 Introduction

Our lives are surrounded by computer systems,

embedded systems, such as computer systems in

automotive, information appliances, smart phones, and

smart houses. These embedded systems become more

complex to realize richer services. Meanwhile, shorter

development period of embedded systems is required

due to market pressure. To solve the problem,

engineers develop commonly embedded software with

simulators.

There is an important problem, however, that when

engineers develop these embedded systems, they

develop the simulation program by rewriting existing

program of target machine with PC as a standard, and

naturally this process is troublesome and it would

often encounter problems of compatibility.

Therefore, this paper addresses how we solve these

problems with automotive software as a target and

addresses that we intend to design a simulator

program that could be executed on PC and it can

simulate the environment of Autosar operating system

which is used for automotive computer.

2 Purpose

This paper proposes a new approach to do the

simulations of Autosar OS[1] on PC with rewriting as

small programs as possible on top of Autosar OS

classic. That is, we design a simulator program which

can simulate the function of Autosar OS such as the

tasks and the interrupt service routines feature and this

program is able to use at both target machine (ARM

Rx650) and PC environment (x86).

We intend to design this simulator program as an

alternative to the Autosar OS when engineers want to

write control programs with their PC with C language.

During this simulation, they can also do the model in

the loop simulation (MILS[2]) by using our simulator

program with the software MATLAB/Simulink. With

using MATLAB/Simulink, engineers can simulate the

whole process as with the real plant machine. When

they finish writing the programs, they can be executed

as the real Autosar operating system do, such as the

task function, the interruption mechanism.

We implement this simulator on top of Linux. The

design and implementation are very limited function

of task and interrupt processing in Autosar classic.
Through this work, we understand functions and

behaviors of Autosar OS classic and Linux as another

purpose.

3 Related Works

In our research, we can also use the CPU simulation

to simulate the CPU with target plants with our host

machine. By using CPU simulation, the simulator

program we write can be more like the target machine

operating system which means Autosar OS. There are,

however, problems such as slow execution for target

programs. We developed V850 CPU simulator using

QEMU, a translation-based CPU simulator [3]. In this

experience, a Dhrystone MIPS is calculated as

approximately 45 MIPS with the current PC with 2.2

GHz Pentium DualCore.

Our research is to simulate that how tasks execute

on Autosar OS, and as we know Autosar is a

standardized extension of OSEK. Therefore, its API is

aligned with OSEK/VDX OS. Trampoline[4] is also a

static RTOS for small embedded systems. Its API is

aligned with OSEK/VDX OS and AUTOSAR OS 4.1

standards which means the API in Trampoline can

also be used on Autosar OS.

4 Implementing Task with Thread

The design and implementation of the OS simulator

are very limited function of task and interrupt

processing as mentioned before. We briefly

summarized functions of tasks of Autosar classic and

pthread, which are used to implement the task

functions. A task in Autosar OS is mapped to a Linux

thread[5]. TABLE 1 shows a rough mapping between

Autosar APIs and Linux pthread APIs. In this paper,

Autosar API names are based on [6].

TABLE 1 Mapping between tasks and pthread

 Autosar OS Linux

Task

creation

Configuration

pthread

_create Task start ActivateTask

Task

priority

set

Configuration

pthread_set

schedparam

Task

terminatio

n

Terminate-

Task

pthread_exit

To simulate ActivateTask and Terminate-

Task, we can write roughly a function ActiveTask

using ptherad_create and pthread_exit.

However, task creation in AutoSar is done at

configuration time while pthread is created in

Copyright 2017 Information Processing Society of Japan.
All Rights Reserved.1-115

6G-04

情報処理学会第79回全国大会

execution time. Moreover, setting a priority of tasks

are set on task creation time while a priority of a

thread can be done after thread creation. We use a

real-time pthread with FIFO parameter to continue the

thread execution by its end. pthread for task have

lower priorities because higher priority are reserved

for interrupt processing as mention below. So we

design the task creation at start-up time when creating

thread, setting priority are done and thread are locked

with mutex to make a task pool. We name this API

ConfigCreateTask(). In ConfigCreate-

Task, a thread is create and waited while a thread

priority is set with mutex. ActivateTask picks up

a task from the task pool by pthread_mutex_

nlock(). TerminateTask pushes back a task to

the task pool by pthread_mutex_lock(). Thus,

we designed this program that we use pthread function

to simulate the task feature in Autosar OS. To localize

difference between

5 Implementing interrupt processing
with signal

A type is an interrupt is restricted to “C2ISR” in this

simulator because C2ISR is managed by the OS. An

interrupt and interrupt processing in Autosar OS is

mapped to a Linux signal and thread, respectively.

TABLE 2 shows a rough mapping between these

relations.

TABLE 2 Mapping between interrupts and signal

 Autosar OS Linux

Interrupt Interrupt signal

Interrupt

processing

C2ISR thread

Interrupt

masking

and

unmaskign

SuspendOS-

Interrupts

ResumeOS-

Interrupt

sigprocmask

An interrupt processing routine is implemented by a

thread. In this simulation, both of priority of tasks and

interrupt processing are implemented with pthread

priority. Higher priorities in pthread are assigned to

the interrupt processing and lower priorities are

assigned to the task. We use a real-time signal because

the number of user-define signal is limited in an

ordinal signal. We create a thread corresponding to an

interrupt handler ahead and assign a thread priority

with an interrupt priority to make an interrupt handler

pool like a task pool in an interrupt configuration. We

name this API ConfigISR(). When an interrupt

comes in, the thread corresponding to the interrupt is

unlocked. Nested execution of an interrupt handler is

available. Masking and unmasking of interrupt, which

are SuspendOSInterrupts and ResumeOS-

Interrupt in AutosarOS, can also be implemented

by sigprocmask. As we knew these method, we

designed this program that we use signal,

param.sched_priority and mutex function to simulate

the interruption feature in Autosar OS.

6 Conclusions and Future Work

We presented the concept that how we design this

simulator program to simulate the Autosar operating

system with Linux. We presented how we solve the

problem with a new way that we wrote a simulator

program which can simulate the target operating

system without rewriting the target program and we

present the difference of tasks and interruption feature

between Autosar OS and Linux.

In our research, there is still another problem that

the host simulator just simulate the work in Autosar

OS That is a execution time difference between the

host OS and AutosarOS that is the calculation speed

of CPUs are different. We intend to insert a delay

function into the end of the simulator that to make

program execution time of the host machine as same

as that in target machine.

Acknowledgement
This work is partly supported by JSPS KAKENHI

Grant Numbers 16H02800 and Fujitsu Ten Limited.

Reference
[1] S. Furst, et al., “AUTOSAR - A Worldwide

Standard is on the Road,” Proc. 14th International

VDI Congress Electronic Systems for Vehicles,

2009.

[2] G. Jain, “Memory Models for Embedded Multicore

Architecture” in Real World Multicore Embedded
Systems: Chapter 4. Newnes, 2013.

[3] Y. Nakamoto, et al., "Proposing A Hybrid

Software Execution Environment for Distributed

Embedded Systems", Proc. 13th IEEE

International Symposium on Object-Oriented Real-

Time Distributed Computing Workshops, pp.176-

183, 2010.

[4] Main Page of Trampoline. "https://github.com/

TrampolineRTOS/trampoline".

[5] Robert Love, “Linux Kernel Development”, 3rd ed,

Addison Wesley, 2011.

[6] Center for Embedded Computing Systems

Graduate School of Information Science, Nagoya

Univ.,“RTOS External Specification for Next

Generation Automotive Systems”, 2014. (in

Japanese).

Copyright 2017 Information Processing Society of Japan.
All Rights Reserved.1-116

情報処理学会第79回全国大会

