局所 Log-Polar 距離画像による複数距離画像の位置あわせ

· 増 田 健[†]

接平面上の log-polar 座標系で表された局所距離画像を特徴として利用した複数の距離画像の粗い 位置あわせ手法を提案する.符号付距離場により入力距離画像を粗く表現することにより,高速に局 所距離画像を生成する.局所 log-polar 距離画像には法線回りの回転にともなう不定性があるため, フーリエ変換を用いパワースペクトルに変換することにより不変特徴量にする.固有ベクトルを用い て次元圧縮することにより特徴ベクトルを生成し,最近傍により類似画像を検索し点の対応関係を求 める.相互相関とRANSACによって点の対応関係を検証することにより,距離画像間の対応関係を 求める.最後に,距離画像の連接関係を木構造によって表現し,全距離画像の位置関係を決定する. 以上のようにして求められた粗い位置あわせを初期値として,密な同時位置あわせ手法を適用するこ とにより,形状モデルを生成する.提案手法の有効性を実データにより検証した.

Multiple Range Image Registration by Matching Local Log-Polar Range Images

Takeshi Masuda[†]

We propose a method of coarse registration of multiple range images. We use a local range image represented by the log-polar coordinate system on the tangent plane of the object surface as the feature for establishing correspondence. The input range images are represented by the signed distance field for fast generation of the local log-polar range images. The invariant feature vectors are generated by the Fourier transform followed by the eigen decomposition, and point pair candidates are established by searching the closest feature vectors. Coherence of the point pairs is validated by the RANSAC algorithm, and the coarse registration is determined by a tree structure representing the overlap of the input range images. This coarse registration result is used as the initial state for a simultaneous fine registration algorithm for generating the object shape model. The proposed algorithm was applied on real range images for evaluating its effectiveness.

1. はじめに

三次元形状を計測するために,ステレオ,光切断法, 合焦点,ぼけ,空間符号化,光レーダなどさまざまな 原理に基づく距離センサが提案されている.三次元物 体の表面形状は二次元多様体であり,また,光学的原 理に基づく距離センサでは受光素子として画像センサ を利用していることが多く,一般に三次元形状の実測 データは各画素に三次元情報が対応する二次元パター ンである距離画像として獲得される.距離画像は CV, CG,CAD,VR,ロボットなどの分野で,対象の認 識や形状モデル生成のための重要な三次元形状のデー タ形式となっている.

距離画像では,対象物の裏側・凹部など手前の物体に

† 独立行政法人産業技術総合研究所

隠された部分のデータが欠損しており(オクルージョ ン),物体の全表面について形状モデルを生成するた めには,いろいろな方向から計測する必要がある.計 測された各距離画像はセンサ中心の座標系で表されて おり,1つの形状モデルにまとめるには,それぞれの 距離画像の位置関係を求める必要がある.この位置関 係をデータから推定するのが位置あわせである.

距離画像の位置あわせは,粗い位置あわせ(coarse registration)と細かい位置あわせ(fine registration alignment)の2つの段階に分けることができる.粗い位置あわせの段階では,まったく異なった視点から計測された距離画像間をある程度の誤差範囲内に収めるように位置あわせを行う.いったん粗く位置あわせできれば,それを初期値として細かい位置あわせを適用することができる.ICP(Iterative Closest Point)アルゴリズム^{4),31)},直接法^{16),41)},複数距離画像の同時位置あわせ手法^{27),28),40)}は細かい位置あわせ手法

National Institute of Advanced Industrial Science and Technology (AIST)

であり,粗い位置あわせによる初期値を必要とする. 本論文では粗い位置あわせ手法を提案し,それを初期 値として細かい位置あわせ手法を適用することによっ て形状モデルの生成を行う.

粗い位置あわせは,対象物にマーカを装着したり, GPS などの電磁気的ポジショニングデバイス,回転 台やロボットアームのような能動的デバイスを利用し たりして得ることもできるが,対象の貴重性・大きさ・ 材質・計測する環境によっては,このようなデバイス が使えるとは限らない.また,過去に計測されたデー タには,そのような情報が取得されているとは限らな い.GUIを用いて人手により与えることも可能であ るが,データ数が増えると作業の労力は大きく,計算 機によって補助されることが望ましい.

粗い位置あわせ手法は,対象の位置・姿勢にかかわ らず同一の部分形状を探索する必要があることから, 形状認識として行われてきた研究と深い関連がある. 代表的な手法の1つは,位置あわせで求める幾何変換 (剛体の場合はユークリッド変換)に対して不変な特 徴量を使用して対応付けを行う手法である.三次元形 状の不変特徴量は,計算する範囲によって大局的なも のと局所的なものに分類できる.大局的な特徴量とし ては,さまざまな方向からの見え^{7),9),19),26)},点間距 離の分布²⁹⁾,球面調和関数展開²¹⁾などがあり,これ らの特徴量は形状全体を利用した類似形状検索や全体 形状が既知の場合の対象認識に使用できる.しかし, 距離画像は形状の一部分でしかなく,距離画像間で位 置あわせにを行うには,データ欠損の影響を受けやす い大局的特徴量ではなく,局所的特徴量が必要になる.

曲率は微分幾何学によって数学的に定義された不変 量で,極限的に局所な領域から求められる.実際の距 離画像から曲率を計算するには,限られた範囲のデー タを用いて安定に求めるために,さまざまな工夫が提 案されてきた³⁾.離散的なデータに局所的な連続的な 関数をあてはめる手法が多いが,曲率は二次の微分量 であり,サンプリング密度の不均一性や計測誤差など の影響を受けやすく,安定に求めることが難しい.曲 率は2つの成分によって表されるが(最大/最小,ガ ウシアン/平均, curvedness/shape index)²³⁾, 対応 付けを行うには必ずしも十分な情報があるとはいえず、 多くの誤りを含む中から正しい対応付けを選択する必 要がある. Feldmar ら¹²⁾は,曲率を計算する際に求 められた主方向と法線によって構成される局所直交基 底の組に RANSAC を適用することによって,粗い位 置あわせを行っている. Higuchi ら¹⁵⁾ は単位球面上 に射影した曲率に類似した量のマッチングにより回転

成分の推定を行っている. 岡谷(清水)ら³⁸⁾は,不 変と共変の局所特徴量を利用し,組合せ最適化のアル ゴリズムによって対応付けの整合性を最大化すること による粗い位置あわせ手法を提案している.

入力形状をセグメントに分割し,セグメント単位で 特徴量を求め,類似した特徴量を持つセグメント間で 対応付けを行う手法も多く試みられてきた.Faugeras ら¹¹⁾ は平面や二次曲面で曲面を分割し,分割された セグメント間の対応関係の仮説を検証していくことに よって位置あわせを行っている.Kehtarnavaz ら²²⁾ は曲率の符号によって分割した領域をグラフで表現 し,部分グラフマッチングにより位置あわせを行って いる.河井ら⁴²⁾ は分割したセグメントの特徴量によっ て投票を行うことにより対応関係を探索している.清 水ら³⁹⁾ は凸包の面の局所的な隣接グラフを利用して 対応付けを行っている.これらの手法はセグメンテー ション(分節)が安定に行える必要があるが,計測ノ イズやオクルージョンをともなう自由曲面は必ずしも 安定して分割できるとは限らない.

小さな領域に基づく特徴量は計算の安定性と記述 能力の問題があり,大きな領域に基づく特徴量はオク ルージョンへの頑強性の問題がある.局所的でありな がらも曲率よりも安定に求められ豊かな情報を持つ 特徴量を求めるために,線状・円盤/円環状・円筒/球 状に広がった局所領域内のパターンから特徴量を抽出 し,対応付けをパターンマッチングとしてとらえる手 法が提案されている. Krsek ら²⁴⁾ は平均曲率が0と なるような曲線のマッチングをランダムサンプリング によって行っている. Wyngaerd ら³⁶⁾ は 2 カ所で曲 面に接する直線の接点が描く bitangent curve を利用 して位置あわせを行っている. Stein ら³⁴⁾は,注目点 での法線を基準として,注目点から曲面上で一定距離 にある曲線上での法線の変化を符号化し splash という 特徴量を提案している.注目点の法線との差が最も大 きくなる位置を始点とし,天頂角と方位角の軌跡を三 次元曲線と見なし,曲率の変化を量子化したコードを 類似特徴量探索のキーとしている . Chua ら⁸⁾ は,注 目点を中心とする球面と曲面の交差曲線を求め,その 曲面にあてはめた平面を基準とした高さの変化を利用 した point signature を提案している.曲線が中心か ら最も離れる方向を始点とし,高さの最大・最小値を キーとして類似特徴量を探索している. Johnson ら²⁰⁾ は中心とする頂点において接平面に垂直な画像平面を 法線回りに回転して集積した計測点のヒストグラム画 像を spin image と称し,固有画像展開により次元圧 縮し,最近傍点探索による対応付けにより対象認識を 行う手法を提案している.Huber ら¹⁸⁾は spin image を利用し,見えに基づく検証と組み合わせることによ り,複数距離画像の自動位置あわせを行う手法を提案 している.Frome ら¹⁴⁾は,二次元画像に対して提案 された shape context¹⁾を拡張し,局所的な球内での 計測点のヒストグラムである 3D shape context を球 面調和関数によって展開したものを harmonic shape context と称し,距離画像からの対象認識に利用して いる.

特徴による対応付けを行わず,位置あわせの状態を 記述する誤差関数を直接最適化することにより解く アプローチもある.粗い位置あわせを行う場合は探索 するパラメータの空間が広いので,確率的な最適化手 法が用いられる.Blais 6⁵⁾は simulated annealing (SA)を用い,Brunnström らは最適な対応関係を genetic algorithm (GA)で探索している.Silva 6³³⁾ は複数距離画像の位置あわせを,誤差関数が最小にな るように GA で最適化することによって解いている. このような確率的最適化に基づく手法は非常に多くの 回数誤差関数を評価しなくてはならない.

本論文では,局所 log-polar 距離画像を特徴量とし て用いた複数距離画像の粗い位置あわせ手法を提案す る. 局所 log-polar 距離画像は,接平面を画像平面と して log-polar 座標系で記述された局所的な距離画像 であり(2.1節),上述した手法の中では局所パターン から求める特徴量の1つとして位置づけられる.局所 log-polar 距離画像には法線回りの回転について不定 性が残っているので, log-polar 座標系においては並 進に関して不変な特徴量を求めることにより不変量化 する必要があり,今回はパワースペクトルを利用して 実装している(2.2節).不変特徴量を固有画像で展開 することにより次元圧縮し(2.3節),特徴ベクトルを 生成する.特徴ベクトルの最近傍探索によって対応点 を検索し,検証により誤対応を除去し,距離画像間の 位置関係を決定する(3章).この位置あわせ結果を 初期値として用い,同時位置あわせ手法により形状モ デルを生成する (4章). 最後に, 実際に複数距離画 像に適用し手法の有効性を示す(5章).

2. 特徴ベクトルの生成

本章では,対象物体について計測した入力距離画像 S^{α} ($1 \leq \alpha \leq N_S$)から,局所 log-polar 距離画像を 生成し,不変量化・次元圧縮により特徴ベクトルを生 成する手法について述べる.

2.1 局所 Log-Polar 距離画像

局所 log-polar 距離画像 (LR: Local Log-Polar

図 1 符号付き距離場のサンプリング方法(2次元模式図) Fig.1 SDF sampling of the input surface (2D illustration).

Range Image) は,曲面上のある点を中心点とし,その接平面を画像平面として,中心点の周りに張ったlog-polar 座標系^{17),32),35)}上の画素に,曲面までの法線方向の高さを値として対応させた局所的な距離画像である.画像平面上の直交座標系での位置が(u, v)であるとき,log-polar 座標系での座標値は $(\xi, \theta) = (\log r, \arctan(v/u))$ となる.ここで $r = \sqrt{u^2 + v^2}$ とする.

本論文で述べる粗い位置あわせにおいては,入力距 離画像を δ の精度範囲で位置あわせすることを目指 す.入力距離画像の点群の密度は非常に高い場合があ るが,その各点において全点を使用して LR を計算す る必要はなく、 δ より微細な形状の情報は不要である。 形状を粗く記述し高速に LR を生成するために,符号 付距離場 (SDF: Signed Distance Field) による形状 記述を利用する⁴⁰⁾(図1).SDFによる形状記述では 入力距離画像を向き付き曲面ととらえ,その周囲の三 次元空間中の間隔 δ の格子点にあるサンプル点pに ついて,曲面へ最も近い点c,その点における法線n, p への符号付距離 s の組を SDF サンプルとする.法 線方向 n は c から p を向く単位ベクトルとして求 められ,微分によって法線を求める手法よりも安定し て求められる.入力距離画像は隣接画素間を接続した 三角パッチによって補間し,極端に細い三角形(最小 内角15度以下相当)は除去し最近傍点の探索を行っ ている.曲面から離れた位置での符号付き距離場は確 実ではないので,曲面からの距離が $|s| < T\delta$ である ような範囲の格子点について SDF サンプルを求める. また,三角パッチの端(欠損部分との境界)の辺上に 最近傍点が求まった場合は,最近傍点からサンプル点 へのベクトルp-cの方向が法線と見なせないので, SDF サンプルとして採用しない.

SDF から LR を生成するには, SDF サンプル中の 最近傍点 c と法線 n を利用する(図2).サンプル

図2 局所 log-polar 距離画像(LR)の生成方法

Fig. 2 Generation of a local log-polar range image (LR) from SDF samples.

点 p_i について,その法線 n_i の接平面上に最近傍点 c_i を中心とした画像平面を設定する.同一入力距離画 像の異なるサンプル点 p_j の最近傍点 c_j を画像平面 に正射影し,log-polar座標系での座標値((ξ, θ) と画 像平面からの高さ $\zeta = n_i \cdot (c_j - c_i)$ を求める.最近 傍点 c_j が,画像上で半径がr < Rの円内で画像平 面からの高さが $|\zeta| < R$ の範囲内であるような円筒 状領域の近傍内にあり,法線 n_j が接平面と同じ向き ($n_i \cdot n_j > 0$)である場合に, ζ を座標値((ξ, θ) の高さ として採用する.近傍内の局所座標系では,r,R, ζ は δ を単位長として正規化している.曲面上で δ 四 方の領域あたりに1点程度の密度で局所 log-polar 距 離画像の中心点があれば十分なので,曲面からの距離 が $|s| < \delta$ であるような SDF サンプルの最近傍点を 中心点として使用する.

実際に画像を生成するには,座標値 (ξ , θ) を量子化 しなくてはならない. θ 軸のとりうる範囲 [$-\pi$, π) を $2N_{\theta}$ 画素に分割する場合,(ξ , θ) 空間の両方の軸を均 等に分割するには,i番目の ξ 座標値は $\xi_i = \log r_i =$ $(\pi/N_{\theta})i$ を満たす必要があり, ξ 軸に必要な画素数は $N_{\xi} = [(N_{\theta}/\pi)\log(R)]$ となる.中心軸からの距離が δ 以下の領域 ($\xi < 0$) は使用しない.同一 log-polar 座標の画素に射影される高さが複数ある場合は,最大 値を画素値とする.データの欠損部,または,中心付 近での SDF サンプルの密度の不足のために高さの値 が存在しない画素の値は0としている.特に中心点に おいては定義より $\zeta = 0$ なので,中心点付近の欠損 画素の値を0にすることは妥当である.

たとえば $N_{\theta} = 16$ で R = 8 の場合 $N_{\xi} = 11$ であ リ,生成される LR の大きさは $[0,10] \times [-16,15] =$ 352 画素となる.実際の距離画像から生成された局所 log-polar 距離画像の例を図 3 に示す.第 α 番距離画 像 S^{α} から生成された SDF の最近点 c_{i}^{α} における LR を LR[$\boldsymbol{c}_i^{\alpha}$]($\boldsymbol{\xi}, \boldsymbol{\theta}$) と表す.

2.2 パワースペクトルによる不変量化

Log-Polar 座標の θ を決める基準となる局所直交 座標は,主方向によって構成される基底を利用してい る²⁵⁾が,この基底には法線回りの180度の回転につ いての不定性があるうえに,臍点に近い場合は安定に 求められない.したがって,その基底のとり方に結果 が依存しないように,法線回りの回転について不変な 量に変換する.

LR は θ 軸方向に周期的なので (LR(ξ , θ) = LR(ξ , θ + 2 π)), フーリエ級数で展開することができる.フーリエ級数展開して求めた θ 軸方向のパワースペクトル

$$\mathsf{FLR}(\xi,k) = \left| \frac{1}{\pi} \int_{-\pi}^{\pi} \mathsf{LR}(\xi,\theta) e^{-ik\theta} d\theta \right|,$$

は,各サンプル点において法線回りの回転について不 変な特徴量であり, θ 方向の位相に依存しない.ここ で k は周波数である.

フーリエ級数展開は FFT を用いて高速に計算でき, 局所 log-polar 距離画像は実関数なので FLR は偶関 数となり ($FLR(\xi, k) = FLR(\xi, -k)$), FLR の大きさ は LR の半分でよい.たとえば前節で示した例の場合, FLR の大きさは $[0,10] \times [0,15] = 176$ 画素となる. FLR の画素数を D_{FLR} と表す.

2.3 固有画像による次元圧縮

FLR の情報は, ξ が大きく周波数が低い部分に偏在 している(図3). FLR の集合の固有画像を求め, 各 FLR を固有画像の線形和で近似することにより,低 い次元の空間に情報を圧縮することができる.

すべての入力距離画像について, N_{FLR} 個の FLR が生成されているとする.各 FLR を D_{FLR} 次元の ベクトルとして, すべての FLR を積み重ねることに より, $N_{FLR} \times D_{FLR}$ 行列 M_{FLR} を生成する.FLR の 共分散行列 $(M_{FLR})^T M_{FLR}$ の固有ベクトルは, M_{FLR} の特異値分解 (SVD)で求めることができる.固有 ベクトルを EFLR $[c_i^{\alpha}, l]$ とし, FLR の展開係数を CFLR $[c_i^{\alpha}](l) = \text{EFLR}[c_i^{\alpha}, l] \cdot \text{FLR}[c_i^{\alpha}]$ とするとき,大 きい方から D 個の固有値に対応する固有ベクトルを 用いて,元の FLR は次のように近似できる

 $\mathsf{FLR}[\boldsymbol{c}_{i}^{\alpha}] \approx \sum_{i=1}^{n} \mathsf{CFLR}[\boldsymbol{c}_{i}^{\alpha}](l) \cdot \mathsf{EFLR}[\boldsymbol{c}_{i}^{\alpha}, l].$

FRL の代わりに,この展開係数 CFLR[c_i^{α}](l) ($1 \le l \le D$)を, D次元の特徴ベクトルとする.

類似した画像を検索するために固有画像を利用する 場合,平均値を引いたり輝度のノルムを1にそろえた りするような正規化を適用する場合があるが²⁶⁾,局所

- 図 3 入力距離画像はまず符号付距離場(SDF)で粗くサンプリングする.表面上の各最近点を中心として局 所 log-polar 距離画像(LR)を生成する. θ 軸方向にフーリエ変換しパワースペクトルを求め(FLR), 固有画像展開により圧縮する.FLR は少数の固有画像の線形結合として近似でき,その係数を CFLR とする.図では CFLR により再構成された FLR を示している.元の FLR が近似されていることが 分かる
- Fig. 3 Each input range image is first sampled by the SDF, and a local log-polar range image (LR) is generated on each SDF sample. The Fourier power spectrum in the θ -axis is applied on each LR for generating an invariant feature (FLR), whose dimension is then compressed by the PCA. A set of limited number coefficients of eigenvectors (CFLR) is used as the invariant feature vector of LR. As shown in this figure, each FLR is approximated by its CFLR and the eigenvectors.

log-polar 距離画像に適用する場合は絶対値を無視で きないため,正規化は行わない.

3. 対応付け

3.1 対応点の探索

すべての入力距離画像の各中心点について CFLR を生成した後,各 CFLR から異なる入力距離画像中 の最も近い CFLR を探索する.入力距離画像 S^{α} の 中心点 c_i^{α} について求められた CFLR[c_i^{α}] について, 他の入力距離画像 S^{β} ($\beta \neq \alpha$)の中心点 c_j^{β} につい て求められた CFLR[c_j^{β}] が最も近い場合,対応点の対 [$c_i^{\alpha}, c_j^{\beta}$]を対応点対リストに加える.各 CFLR につい て,必ず 1 つ,他の距離画像に属する,特徴ベクトル の空間で最も近い CFLR が対応付けられていること になる.相互に最近傍になっているような対応点対, すなわち [$c_i^{\alpha}, c_j^{\beta}$] と [$c_j^{\beta}, c_i^{\alpha}$] が両方リストに存在する 場合,そのような対応点対の組を相互最近傍対応点対 と呼ぶ.

CFLR は D 次元のベクトルなので,最近傍点の探 索には汎用のアルゴリズムを適用することができる. 今回の実装では *k*-d tree アルゴリズム²⁾を使用した.

3.2 相互相関による検証

FLR の有用な性質として,次の式で表される θ 軸 方向への位相に対する不変性がある.

 $\mathsf{LR}[\boldsymbol{c}_{i}^{\alpha}](\xi,\theta) = \mathsf{LR}[\boldsymbol{c}_{i}^{\beta}](\xi,\theta+\theta_{0})$

しかしながら,実際にはFLRには次の式で表されるような符号や方向に対する不変性もあり,これらは誤った対応付けを生じるため,望ましい性質とはいえない.

$$\begin{split} \mathsf{LR}[\boldsymbol{c}_{i}^{\alpha}](\xi,\theta) &= -\mathsf{LR}[\boldsymbol{c}_{j}^{\beta}](\xi,\theta) \\ \mathsf{LR}[\boldsymbol{c}_{i}^{\alpha}](\xi,\theta) &= \mathsf{LR}[\boldsymbol{c}_{j}^{\beta}](\xi,\theta_{0}-\theta). \end{split}$$

また, θ 軸方向のみのパワースペクトルを用いてい るので, ξ ごとに異なったずれ方をしているようなパ ターンについても不変性を持ってしまう.

このような不要な不変性による誤対応を,LRの相 互相関をとることによって検証する.方向 ± と位相 $\Delta \theta$ を変えた LR[c_j^{β}](ξ , $\pm \theta$ + $\Delta \theta$)は, log-polar座標 系の性質から,ベクトル要素のシフトや置換などの簡 易な操作で生成することができる.対応付けられてい る LR[c_i^{α}]と LR[c_j^{β}]の対について,方向と位相を変 え,次の正規化相関を計算する.

LR, FLR, CFLR の例 (a-h)

$$\begin{aligned} \mathsf{KLR}[\boldsymbol{c}_{i}^{\alpha},\boldsymbol{c}_{j}^{\beta}](\pm,\Delta\theta) \\ &= \frac{\mathsf{LR}[\boldsymbol{c}_{i}^{\alpha}](\xi,\theta)\mathsf{LR}[\boldsymbol{c}_{j}^{\beta}](\xi,\pm\theta+\Delta\theta)}{||\mathsf{LR}[\boldsymbol{c}_{i}^{\alpha}](\xi,\theta)||\cdot||\mathsf{LR}[\boldsymbol{c}_{j}^{\beta}](\xi,\theta)||} \end{aligned}$$

もしすべての $\pm c \Delta \theta$ の組合せについての最大値が 閾値(実装では $cos(\pi/4)$)より小さい場合,また最大 値になるのが逆方向(方向が'--')の場合,この点対 の対応関係は誤りであると判別する.この検証を相互 最近傍対応点対に適用し,順方向の対応関係のみ選択 する.実装では,FLR が生成された段階でLR はメ モリから消去しているので,この検証を行う際に必要 なLR のみ再生成しているが,十分高速な実行速度が 得られる(5章).

3.3 剛体性の検証

複数視点から計測された距離画像の位置あわせに必 要となる幾何変換は剛体の運動を表すユークリッド変 換である.各入力距離画像間にはユークリッド変換が 1つ対応しているはずである.

まず,3.1 節で作成した対応点対リストの要素を,それぞれの入力距離画像の対ごとに分類する.たとえば対応点対 $[c_i^{\alpha}, c_j^{\beta}]$ は入力距離画像対 $[S^{\alpha}, S^{\beta}]$ の要素として分類される.

次に,RANSAC¹³⁾ に基づき,入力距離画像間の ユークリッド変換をロバストに推定する.それぞれの 入力距離画像対に属する対応点対のうち,相互相関に よる検証で残された相互最近傍対応点対の中から少数 の対応点対をサンプリングする.サンプリングする対 応点対の数は,ユークリッド変換を決定するのに必要 最低限であればよいが,次の2通りのサンプリング方 法が考えられる.

- (1) 3 つの対応点対の座標値から,最小二乗誤差が 最小になるようなユークリッド変換を推定する 方法¹⁰⁾.
- (2) 相互相関が最大値となるような法線回りの回転

角(3.2節)を利用して,1つの対応点対の座 標値と法線方向からユークリッド変換を求める 方法.

1回のサンプリングについて決定されたユークリッ ド変換 $T = \{R,t\}$ を,同じ入力距離画像対に属す る対応点対すべてに適用し,条件 $||Tc_i^{\alpha} - c_j^{\beta}|| < \delta$, $Rn_i^{\alpha} \cdot n_j^{\beta} > \tau_n$ (実装では $\cos(\pi/8)$)を満たす点対を inlier と見なし,その数を数える.このサンプリング を多数回繰り返し,入力距離画像対 $[S^{\alpha}, S^{\beta}]$ 間で最 も多くの inlier が属するユークリッド変換を,その入 力距離画像対間のユークリッド変換 T_{α}^{β} とする.図4 に,入力距離画像 S^1 , S^2 間で求められた位置あわせ 結果と,inlier として抽出された対応点対の例を示す. 法線回りの回転によるずれに依存せずに類似した局所 log-polar 距離画像が検索されたことが分かる.

サンプリング方法(1)では,サンプリングする対象 となる対応点対の数が少ない場合はすべての組合せを 試みるが,組合せが膨大になる場合はランダムサンプ リングを行う.サンプリングした3つの対応点対の座 標値が誤差 δ の範囲で位置あわせされるようなユー クリッド変換が求められた場合のみ,他の対応点対に も適用し inlier の検出を行う.このような場合が規定 数(実装では1,000回),またはサンプリング回数が 全組合せ数に達するまでサンプリングを繰り返すよう に実装している.サンプリング方法(2)は組合せの 数も少なく主方向の不安定性もあり,実験的にもサン プリング方法(1)ほど有効とはいえなかった.

3.4 View Tree の生成

各入力距離画像間で RANSAC によって inlier であ る対応点対を抽出し,ユークリッド変換を定めること ができた.入力距離画像間の inlier の数が多いほど, 推定されたユークリッド変換の信頼性も高いと考えら れる.全入力距離画像の位置関係は,必要最小限の変 換の組合せで決めることが望ましい.各入力距離画像

- 図 5 それぞれの入力距離画像対について RANSAC アルゴリズム により選び出された inlier の数の表(上)と,全体の inlier の数を最大化するような入力距離画像の spanning tree とし て生成された View Tree(下)
- Fig. 5 For each pair of input range images, a Euclid transformation and inlier point sets of the transformation is determined by the RANSAC. A spanning tree of input range images is constructed so that the total number of inliers is maximized for determining the total registration.

をノードとしてループができないように全入力距離画 像を最小の枝で接続する構造は木構造であり,全体と して inlier 数を最大化するように入力距離画像を接続 した spanning tree を View Tree と呼ぶこととする. たとえば,図5において,入力距離画像対 $[S_1, S_2]$, $[S_2, S_3]$, $[S_1, S_3]$ にはそれぞれ588,103,27対の inlie r 対応点対があるが,この3つの入力距離画像を接 続するには $[S_1, S_2]$ と $[S_2, S_3]$ で十分であり, inlier の数が少ない $[S_1, S_3]$ は使用しない.

View Tree は次のようなアルゴリズムで構成することができる.

- 空のグラフを用意し,すべての入力距離画像対を 対象とする.
- 2. 対象となる入力距離画像対の最大 inlier 数が $\tau_{\text{connection}}$ 以下になるまで以下の操作を繰り返す.

- 2.1. 最大の inlier 数の入力距離画像対をグラフに加 える.
- 2.2. 両端の距離画像がグラフに接続済みの入力距離 画像対を対象から除く.

このアルゴリズムによって,最小の inlier 数が $\tau_{\text{connection}}$ (実装では5)以上で,構成する inlier 数の総 和が最大化された spanning tree としての View Tree が構成できる(図5).

基底距離画像 S_{base} (図 5 では S_1)の変換を $T_{\text{base}} = \{I_{3\times3}, \theta_3\}$ として, View Tree の辺に対応するそれぞれの入力距離画像対のユークリッド変換 T_{α}^{β} を逐次的に適用していくことで,各入力距離画像 S^{α} の基底距離画像 S_{base} に対する相対的なユークリッド変換 T_{α} を求めることができる.

4. 全体の位置あわせとモデル生成

各入力距離画像 S^{α} のユークリッド変換 T_{α} が決ま れば,全体の大まかな形状を組み立てることができる が,View Tree の枝を介して変換を重ねていくと,離 れた位置にある入力距離画像間では位置あわせ誤差が 累積する.このような位置あわせ誤差は,全入力距離 画像の同時位置あわせアルゴリズムを適用することで 解消することができる.ここでは,増田により提案さ れたアルゴリズム⁴⁰⁾を利用した.提案手法で推定さ れた,位置あわせ精度 δ の範囲内での粗い位置あわせ 結果を,まずサンプリング間隔を δ として同時位置あ わせを行い,さらにサンプリング間隔を細かくするこ とにより精細な形状を得ることができる(図 6).

ここで使用した同時位置あわせアルゴリズムは SDF を形状の記述として使用している点で提案手法と共通 点がある.統合された形状は SDF で記述されている ので,新たな入力距離画像や他の部分を統合した SDF を提案手法の入力として利用することにより,大きな データセットを分割して処理することができる.

5.実 験

5.1 Bunny

これまでの章において,手法の説明に使用してきた 距離画像は,Stanford 3D Scanning Repository ³⁷⁾ から入手した 'Bunny' というデータセットである.全 部で 10 枚の距離画像(図5)で構成され,位置あわせ 情報も提供されているが,今回の実験では使用しない. 対象物は約 25 cm の大きさがあり, $\delta = 4$ mm のサン プリング間隔で厚さ T = 2の範囲で符号付き距離場を サンプリングし,全部で 45,518 の SDF サンプルを求 めた. $N_{\theta} = 16$,R = 8, $D_{FLR} = 11 \times 16 = 176$ の設

図 6 提案手法により $\delta = 4 \text{ mm}$ の粗さで位置あわせされた入力距離画像(左). これを初期値として,同時 位置あわせ手法によって統合した形状モデル(中). さらにその結果を初期値として,サンプリング間 隔を $\delta = 0.5 \text{ mm}$ に細かくして生成した精細な形状モデル(右)

Fig. 6 The coarse registration result with $\delta = 4 \text{ mm}$ (left) was used as the initial value for the simultaneous fine registration and shape integration method (middle), and the shape model is further refined with $\delta = 0.5 \text{ mm}$ (right).

定により, 全部で N_{FLR} = 19,156 枚の局所 log-polar 距離画像が生成された.これらの画像はD=8枚の 固有画像により圧縮され(図3),そのときの累積寄 与率は 92.9% であった. 全 19,155 点について最近点 を探索し,そのうち3.788対が相互最近傍対応点対で あり,そのうち1,125 対が相互相関による検証により 順方向と判定された.剛体性の検証により,すべての 対応点対のうち 2,086 対が inlier として残され, View Tree は 1,565 の対応点対によって構成された (図 5). View Tree を構成する全入力距離画像対について,相 互最近傍対応点対の inlier の比率は 41% から 85% の 範囲にあり、ほぼ100%の確率で少なくとも一度は正 しい3つの対応点対がサンプリングされたことにな り³⁰⁾, サンプリング回数は十分であった.計算時間は, 入力距離画像の読み込みと SDF のサンプリングに1 分,局所 log-polar 距離画像の生成に 45秒,固有画像 による次元圧縮に2分弱,最近点の探索に3秒,対応 点対の検証に 30 秒要し,全体としては4分強であっ た.計算時間は Xeon 2.8 GHz で並列化は行わずに計 測した.

同一のデータに対して,異なる設定を適用した結果 を表1に示す.Rは小さすぎると画素が少なくなる ため失敗するが,あまり大きすぎても重複していない 部分の影響で誤対応が生じる.Dは,8から64の範 囲では性能に大きな変化は見られないが,それ以上で は誤対応が生じている.次元を高くすると計測誤差や 欠損画素を0で置換したことによる特徴ベクトルの微 細な変化も表現してしまうことと,いわゆる'次元の 呪い'により高次元空間では最近傍があまり意味を持 たなくなることが原因だと考えられる.

- 表 1 さまざまな設定による Bunny データの位置あわせ結果. '*' をつけた値を基準として変化させた設定による結果を示して いる.ここで, $D_{FLR} = N_{\theta} \times N_{\xi}$, CP%: D 次元まで使 用したときの累積寄与率, #inliers: View Tree を構成する inlier の総数であり, 右端の欄は正しく位置あわせされた入力 距離画像の組を '/'で囲んで示している. 'all'はすべての入 力距離画像が正しく位置あわせされたことを表す
- Table 1 Registration results with various settings perturbed from the base setting marked by '*'. In this table, $D_{\mathsf{FLR}} = N_{\theta} \times N_{\xi}$, CP%: cumulative proportion, #inliers: total number of inlier point pairs of the view tree, and the registered input range images are shown in the last column.

N_{θ}	R	N_{ξ}	D_{FLR}	D	CP%:	#inliers 位置あわせ結果
16	2	4	64	8	90.6	0/1/2/3/4/5/6/7/8/9/10/
16	4	8	128	8	93.8	1028 all
16	*8	11	176	8	92.9	1565 all
16	16	15	240	8	89.3	1310/1,2,6/4,8,9/
16	8	11	176	2	73.5	132/1,2,3/
16	8	11	176	4	86.9	540/1,2,3,6,10/
16	8	11	176	*8	92.9	1565 all
16	8	11	176	16	96.1	2299 all
16	8	11	176	32	97.9	2552 all
16	8	11	176	64	99.1	2609 all
16	8	11	176	128	99.8	$2599/1,\!2,\!3,\!5,\!6,\!7,\!10/4,\!8,\!9/$
3	8	2	6	6	99.8	903 all
4	8	3	12	8	99.0	1800 all
8	8	6	48	8	94.4	1772 all
*16	8	11	176	8	92.9	1565 all
24	8	22	384	8	92.4	$1270/1,\!2,\!3,\!5,\!6,\!7,\!10/4,\!8,\!9/$

 N_{θ} は 4 から 16 の範囲で良い結果が得られている が,それ以上大きくしても悪化する.平面についての 符号付き距離場から計算される局所 log-polar 距離画 像の画像平面 (ξ, θ) 上の画素 (i, j) に射影される SDF サンプルの個数は次の式で表される. Vol. 47 No. SIG 10(CVIM 15)

図 7 提案手法により粗く位置あわせした結果(左)を同時位置あわせすることにより,統合形状モデル(中) が得られる.サンプリング間隔を細かくすることにより,より精細な統合形状モデル(右)を生成する ことができる

Fig. 7 The coarse registration result of 71 input range images of Dragon (left) with δ =4 mm, the result of simultaneous fine registration and shape integration (middle), and the refined shape model with δ =1 mm.

$$\frac{\pi}{N_{\theta}}T(e^{\frac{2\pi}{N_{\theta}}(i+1)} - e^{\frac{2\pi}{N_{\theta}}i})$$

ここで,SDF サンプルの厚さを 2*T* としている.画素 あたりの SDF サンプル数が 1 以上であれば,その画 素に対して値が求められている可能性が高い.今回の 実装と同様に *T* = 2 としたとき,画素あたりの SDF サンプル数が 1 以上になる最小の *i* は, N_{θ} = 4,8, 16,24 のときそれぞれ 0,1,5,10 となり,*R* = 8 としたときの N_{ξ} はそれぞれ 2,5,10,15 である. したがって N_{θ} を大きくしても値が欠落した画素が相 対的に増えることになるので,あまり大きくする必要 はない.

現在の実装では R = 4, D = 8, $N_{\theta} = 4$ 程度が最 低限の設定で, R は入力距離画像間の重複幅を大きく 超えない程度, N_{θ} は 16 程度まで, D は 16 程度まで という設定が実用的で妥当な範囲である. N_{θ} と D を 大きくするとそれぞれ特異値分解と最近傍探索の計算 時間が増えるだけでなく, メモリが多く必要になる.

5.2 Dragon

提案手法を,同じく Stanford 3D Scanning Repository ³⁷⁾ から取得した 'Dragon' データセットに適用した.このデータセットは71枚の距離画像で構成されている.対象物の大きさは約 25 cm であり, $\delta = 4$ mm, $N_{\theta} = 4$, R = 8, D = 8 と設定した.100,198枚の局所 log-polar 距離画像が生成され,最終的に 8,547の対応点対による View Tree が構成され,全入力距離画像の位置あわせを行うことができた(図7左).計算時間は,入力距離画像の読み込みと SDF サンプリングに 6 分半,局所 log-polar 距離画像の生成に 3 分,固有画像による次元圧縮に 3 秒,最近点の探索に 36秒,対応点対の検証に 2 分,全体としては 12 分半であった.

粗い位置あわせ結果を初期値として,同じ $\delta = 4 \text{ mm}$ で同時位置あわせアルゴリズムを適用することにより, 統合形状が生成された(図7中).さらにその結果を もとにサンプリング間隔を $\delta = 1 \text{ mm}$ まで細分化す ることによって,全距離画像を用いた詳細な形状モデ ルを生成することができた(図7右).

6. ま と め

局所 log-polar 距離画像を特徴として用い, 複数の 距離画像の粗い位置あわせを行う手法を提案した.入 力距離画像を符号付距離場によって粗くサンプリン グすることにより,局所 log-polar 距離画像を高速に 生成した.局所 log-polar 距離画像をフーリエ変換に よって圧縮し,さらに固有画像によって次元圧縮し, 最近傍探索によって対応点対を生成する.検証によっ て誤対応を取り除き,各入力距離画像間のユークリッ ド変換をランダムサンプリングによって推定し,その 変換に属する inlier が最大になるような木構造として View Tree を構築することにより,入力距離画像の粗 い位置あわせが行われる.粗い位置あわせ結果を,同 時位置あわせ手法の初期状態として使用することによ り,統合形状を生成することができる.

提案手法は,point signature⁸⁾,splush³⁴⁾,spin image^{18),20)}, 3D/harmonic shape context¹⁴⁾ など の特徴量と関連が深い.これらの特徴量はいずれも, 注目点の近傍の局所領域内のパターンから不変特徴量 を生成する点が共通しているが,局所領域の形状・使 用するパターン・不変量化の方法・符号化の方法がそ れぞれ異なる.Point signature と splush は,いずれ も円周上での高さや法線方向をパターンとして利用し ているが,中心から最も離れた点を始点とすることに より不変量にしている.この不変量化の方法は不安定

であるとともに,二次元以上のパターンに直接適用す ることは不可能である.Spin image²⁰⁾の場合は,接 平面に垂直な断面を画像平面とし,法線を軸として回 転することにより曲面上の計測点を集積したヒストグ ラム画像を不変特徴量として利用する. すべての spin image から固有画像を求め,固有画像展開により次元 圧縮した特徴量の空間で最近傍探索を行うことで対 応点を求めている. 3D shape context では,対数的 に量子化された半径の球殻を緯度経度に分割した三 次元のセルで計測点のヒストグラムをとるが,法線回 りのすべての回転について特徴量を生成することで不 定性を解消しており,それを球面調和関数で展開した harmonic shape context では低周波成分だけ用いる ことにより次元圧縮を行っている14).このような計測 点のヒストグラムに基づく手法は,計測点が曲面上に 均一に分布していることを仮定しており,密な距離画 像を用いたり三角パッチなどで補間したり正規化した りする必要がある.

Spin image は,法線に沿った平面による曲面の断 面を集積しており,一般に原点から扇状に広がる画像 が得られる. 3D/harmonic shape contexts では,球 殻による曲面の断面を利用していることに相当する. これらの手法に対して,局所 log-polar 距離画像では, 断面ではなく接平面に射影された局所的な距離画像を 直接利用している.log-polar 座標系を利用すること により,法線を軸とした回転によるパターンの相違は 回転軸方向の平行移動で表されるので,今回提案した 手法では,回転軸方向のパワースペクトルをとること により不変量化している.局所 log-polar 距離画像は, spin image や 3D/harmonic shape context と比べて 密なパターンが生成されており,フーリエ変換や相互 相関などの画像処理の手法を適用しやすい. 平行移動 について不変な画像特徴量であればパワースペクトル 以外の特徴量を用いることも可能である.

法線回りでの回転が平行移動で表すことができるの が log-polar 座標系を使用する利点であるが,もう 1 つの利点は,原点からの距離を対数圧縮している点で ある.原点から遠い部分は粗くサンプリングされ,1 画素に射影される領域が増えることにより欠損部に よる影響を少なくすることができる.また,log-polar 画像の半径方向の画素を増やすことによる被覆半径の 増加は指数的なので,距離画像全体を含むような logpolar 距離画像も比較的少ない画素数で生成すること ができる.

今回の実装では局所 log-polar 距離画像を高速に生成するために,符号付き距離場を利用した.別の局所

log-polar 距離画像の生成方法としては,たとえば,事 前に抽出した特徴点について入力距離画像から直接生 成することも可能である.また,符号付き距離場その ものがボクセルに格納された三次元パターンなので, 何らかの方法で不変量化できればそのまま利用するこ とも可能である.しかし,符号付き距離場は曲面の近 傍では法線方向にはほぼ線形に変化するだけであり, 曲面から離れると欠損している部分の影響をうけて信 頼性に乏しい.さらに,計算時間と記憶容量の節約の ため符号付き距離場は曲面付近でしか求められていな い.これらを考慮して,符号付き距離場をそのまま使 用するのではなく,局所的な距離画像に射影して用い ることにした.局所的な距離画像は微分幾何学におけ る Monge patch²³⁾ そのものであり,距離画像処理で 使用するには自然な表現である.

局所 log-polar 距離画像を位置あわせに適用する場合,その被覆が入力距離画像間の重なり幅より小さいことが必要となる.現在,符号付き距離のサンプリング間隔 δ は対象物の 1/64 程度の大きさにしているが,これは実用的な時間で局所 log-polar 距離画像が生成され対応点対が探索できることから経験的に使用している設定である.たとえばR = 4 とした場合には,大まかには距離画像の 1/8 程度の幅は重なっていることが必要になる.

提案手法は形状が複雑で重複部分が広いほど安定し た結果が得られる.一方,形状が非常に単純な場合や 対称性が高い場合には,局所的に類似した形状が多す ぎて最近点として正しく対応点対が求められる確率が 減り,正解が得られることが困難なことがある.今回 の実装ではフーリエ変換を用いて不変量化したが不要 な不変性も含んでおり,今後他の不変特徴量との比較 検討も行っていく.前述したように距離画像の位置あ わせは対象認識と深い関係があり,局所 log-polar 距 離画像は形状モデリングのための位置あわせだけでは なく対象認識・類似形状検索・トラッキングにも応用 可能であると考えている.

参考文献

- Belongie, S., Malik, J. and Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts, *IEEE Trans. Pattern Analysis* and Machine Intelligence, Vol.24, pp.509–522 (2002).
- Bentley, J.L.: Multidimensional Binary Search Trees Used for Associative Searching, *Comm. ACM*, Vol.18, No.9, pp.509–517 (1975).
- 3) Besl, P.J. and Jain, R.C.: Invariant Surface

Characteristics for 3D Object Recognition in Range Images, *Computer Vision, Graphics and Image Processing*, Vol.33, pp.33–80 (1986).

- Besl, P.J. and McKay, N.D.: A Method for Registration of 3-D Shapes, *IEEE Trans. Pattern Analysis and Machine Intelligence*, Vol.14, No.2, pp.239–256 (1992).
- Blais, G. and Levine, M.D.: Registering Multiview Range Data to Create 3D Computer Objects, *IEEE Trans. Pattern Analysis and Machine Intelligence*, Vol.17, No.8, pp.820–824 (1995).
- 6) Brunnström, K. and Stoddart, A.: Genetic Algorithms for Free-form Surface Matching, *Proc. 13th International Conference on Pattern Recognition*, Vol.4, pp.689–693 (1996).
- Chen, D.-Y., Tian, X.-P., Shen, Y.-T. and Ouhyoung, M.: On Visual Similarity Based 3D Model Retrieval, *Proc. Eurographics* (2003).
- 8) Chua, C. and Jarvis, R.: 3-D Free-form Surface Registration and Object Recognition, *International Journal of Computer Vision*, Vol.17, No.1, pp.77–99 (1996).
- Cyr, C.M. and Kimia, B.B.: 3D Object Recognition Using Shape Similiarity-Based Aspect Graph, Proc. 8th International Conference on Computer Vision (2001).
- Eggert, D.W., Lorusse, A. and Fisher, R.B.: Estimating 3-D Rigid Body Transformations: A Comparison of Four Major Algorithms, *Machine Vision and Applications*, Vol.9, pp.272– 290 (1997).
- Faugeras, O.D. and Hebert, M.: The Representation, Recognition, and Locating of 3-D Objects, *The International Journal of Robotics Research*, Vol.5, No.3, pp.27–52 (1986).
- 12) Feldmar, J. and Ayache, N.: Rigid, Affine and Locally Affine Rewgistration of Free-Form Surfaces, *International Journal of Computer Vi*sion, Vol.18, No.2, pp.99–119 (1996).
- 13) Fischler, M. and Bolles, R.: Random sample consensus: A paradigm for modelfitting with application to image analysis and automated car tography, *Comm. ACM*, Vol.24, No.6, pp.381–395 (1981).
- 14) Frome, A., Huber, D., Kolluri, R., Bülow, T. and Malik, J.: Recognizing Objects in Range Data Using Regional Point Descriptors, *Proc.* 8th European Conference on Computer Vision, Lecture Notes in Computer Science 3023, Vol.III, Springer (2004).
- 15) Higuchi, K., Hebert, M. and Ikeuchi, K.: Building 3-D Models from Unregistered Range Images, *Graphical Models and Image Process*-

ing, Vol.57, No.4, pp.315–333 (1995).

- 16) Horn, B.K.P. and Harris, J.G.: Rigid Body Motion from Range Image Sequences, *CVGIP: Image Understanding*, Vol.53, No.1, pp.1–13 (1991).
- 17) Hotta, K., Mishima, T. and Kurita, T.: Scale Invariant Face Detection and Classification Method Using Shift Invariant Features Extracted from Log-Polar Image, *Trans. IEICE*, Vol.E84-D, pp. 867–878 (2001).
- 18) Huber, D. and Hebert, M.: Fully Automatic Registration of Multiple 3D Data Sets, *Image* and Vision Computing, Vol.21, No.7, pp.637– 650 (2003).
- 19) Ikeuchi, K. and Kanade, T.: Modeling Sensors: Toward Automatic Generation of Object Recognition Program, *Computer Vision*, *Graphics and Image Processing*, Vol.48, pp.50– 79 (1989).
- 20) Johnson, A.E. and Hebert, M.: Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes, *IEEE Trans. Pattern Anal*ysis and Machine Intelligence, Vol.21, No.5, pp.433–449 (1999).
- 21) Kazhdan, M., Funkhouser, T. and Rusinkiewicz, S.: Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors, *Eurographics Symposium on Geome*try Processing, pp.167–175 (2003).
- 22) Kehtarnavaz, N. and Mohan, S.: A Framework for Estimation of Motion Parameters from Range Images, *Computer Vision, Graphics and Image Processing*, Vol.45, No.1, pp. 88– 105 (1989).
- 23) Koenderink, J.J.: Solid Shapes, The MIT Press (1990).
- 24) Krsek, P., Pajdla, T. and Hlavac, V.: Differential Invariants as the Base of Triangulated Surface Registration, *Computer Vision and Image Understanding*, Vol.87, pp.27–38 (2002).
- 25) Masuda, T.: Surface Curvature Estimation from the Signed Distance Field, Proc. 4th International Conference on 3-D Digital Imaging and Modeling, pp.361–368 (2003).
- 26) Murase, H. and Nayer, S.: Visual Learning and Recognition of 3-D Objects from Appearance, *International Journal of Computer Vi*sion, Vol.14, pp.5–24 (1995).
- 27) Neugebauer, P.J.: Reconstruction of Real-World Objects via Simultaneous Registration and Robust Combination of Multiple Range Images, *International Journal of Shape Modeling*, Vol.3, No.1&2, pp.71–90 (1997).
- 28) Nishino, K. and Ikeuchi, K.: Robust Simulta-

neous Registration of Multiple Range Images, Proc. 5th Asian Conference on Computer Vision, pp.454–461 (2002).

- 29) Osada, R., Funkhouser, T., Chazel, B. and Dobkin, D.: Matching 3D Models with Shape Distributions, *Shape Modeling International* (2001).
- Rousseeuw, P.J. and Leroy, A.M.: Robust Regression and Outlier Detection, Wiley (1987).
- 31) Rusinkiewicz, S. and Levoy, M.: Efficient Variants of the ICP Algorithm, Proc. 3rd International Conference on 3-D Digital Imaging and Modeling, pp.145–152 (2001).
- 32) Sandini, G. and Tagliasco, V.: An Anthropomorphic Retina-like Structure for Scene Analysis, Computer Vision, Graphics and Image Processing, Vol.14, pp.365–372 (1980).
- 33) Silva, L., Bellon, O.R. and Boyer, K.L.: Enhanced, Robust Genetic Algorithms for Multiview Range Image Registration, Proc. 4th International Conference on 3-D Digital Imaging and Modeling (2003).
- 34) Stein, F. and Medioni, G.: Structural Indexing: Efficient 3-D Object Recognition, *IEEE Trans. Pattern Analysis and Machine Intelli*gence, Vol.14, No.2, pp.125–145 (1992).
- 35) Wolberg, G. and Zokai, S.: Robust Image Registration Using Log-polar Transform, Proc. IEEE International Conference on Image Processing (ICIP2000) (2000).
- 36) Wyngaerd, J.V. and van Gool, L.: Automatic Crude Patch Registration: Toward Automatic 3D Model Building, *Computer Vision and Im*age Understanding, Vol.87, pp.8–26 (2002).
- 37) The Stanford 3D Scanning Repository. http:// graphics.stanford.edu/data/3Dscanrep/.

- 38) 岡谷(清水)郁子,Šara, R.,杉本晃宏:グラフ カーネルアルゴリズムを用いた大域的最適性を保 証する距離画像の位置合わせ,画像の認識・理解 シンポジウム(MIRU2005)論文集,pp.312-319 (2005).
- 39)清水郁子,出口光一郎:計測誤差を考慮した距離 画像からの精密な姿勢推定,電子情報通信学会論文 誌, Vol.J82-D-II, No.12, pp.2298-2306 (1999).
- 40) 増田 健:符号付距離場の一致による複数距離 画像からの形状モデル生成,情報処理学会論文 誌:コンピュータビジョンとイメージメディア, Vol.44, No.SIG5 (CVIM6), pp.30-40 (2003).
- 41) 山本正信, Boulanger, P., Beraldin, J.-A., Rioux, M.: 距離動画像を用いた非剛体運動パ ラメータの直接的推定法,情報処理学会論文誌, Vol.32, No.9, pp.1129–1141 (1991).
- 42)河井良浩,吉見隆,植芝俊夫,大島正毅:多視 点レンジデータからの3次元形状復元,電子情報通 信学会論文誌,Vol.J75-D-II,No.4,pp.737-748 (1992).

(平成 17 年 9 月 16 日受付)(平成 18 年 3 月 20 日採録)

(担当編集委員 杉本 晃宏)

增田 健(正会員)

1966 年生.1989 年東京大学工学 部計数工学科卒業.同年電子技術総 合研究所入所.1994 年から 1995 年 にかけてカナダ National Research Council 客員研究員.2001 年より産

業技術総合研究所に改組.距離画像処理,形状モデリング,画像認識の研究に従事.情報処理学会平成15年 度論文賞受賞.電子情報通信学会,IEEE-CS 各会員.