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Learning Kernels from Distance Constraints

Tsuyoshi Kato,†,†† Wataru Fujibuchi†† and Kiyoshi Asai†,††

Recently there has been a surge of interest in kernel methods such as support vector machine
due to their flexibility and high performance. It is important how to define a kernel for kernel
methods. Most of kernels are defined by inner-product of feature vectors in some vector
space. In this paper we discuss an approach which constructs a kernel matrix from distances
between examples instead of feature vectors. Namely, the input data of our algorithm are the
distances among examples, not feature vectors. Dissimilar to most of conventional kernels
where kernel functions are explicitly given and the kernel matrices are determined by simple
calculations, our algorithm rather builds a kernel matrix by maximizing its entropy subject
to distance constraints. The maximization problem is convex, so we can always attain to the
optimal solution. Experiments using artificial data show the benefits of our algorithm. In
addition, we apply this method to analysis of heterogeneous microarray gene expression data,
and report the experimental results.

1. Introduction

Kernel methods such as support vector ma-
chine (SVM) 19) have proven to be extremely
powerful in many areas of machine learning.
Such a method can be applied when the kernel
between examples of interest is defined. There-
fore, lots of researchers have devised novel types
of kernels for vectorial data as well as highly
structured non-vectorial data such as biologi-
cal sequences 12),13),27), chemical compounds 8),
natural language 23) and speech processing 21).

Most of kernels for structured data are con-
structed based on extraction of feature vectors.
For example, the marginalized kernel devised
by Tsuda, et al. 27) counts each symbol gener-
ated from each state. String kernels basically
count k-mers 14). Some of kernels are instances
of a class of the convolution kernel which sums
up all inner products of components compos-
ing the object. Those kernel developments are
procreated under consideration of constructing
kernels from feature vectors, which is the pre-
sumably easiest way for preserving the neces-
sary property such that kernels must be positive
definite. However they tend to be extremely
high-dimensional and can not avoid including
many irrelevant features. Those feature-based
kernels are useful for the first development for
the fields which have not been investigated well.
However, if sufficient prior knowledge is read-
ily available, important features only should be
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incorporated into kernels and unimportant in-
formation should be excluded. Elimination of
irrelevant features from such a kernel is unfavor-
ably difficult, since all features are incorporated
systematically and developers can not explore
which features are critical via, for example, fea-
ture selection.

We also encounter the cases that complete
feature vectors are not procurable for all exam-
ples. For instance, such a case can be seen in
analysis of microarray data 15). The microar-
ray technique measures gene expression level
under a variety of conditions simultaneously.
Microarray data are usually given as a matrix:
the row and column specifies to which gene and
which cell (or experiment) a particular piece of
data corresponds (see Fig. 4). Microarray anal-
yses have been applied in lots of studies over a
wide variety of biological fields including can-
cer classification 6) and identification of the un-
known effects of a specific therapy 17). A cru-
cial issue is that microarray data include many
missing data. Nonetheless, most of the cur-
rent studies about microarray data are based on
multivariate statistical analyses or kernel meth-
ods, which have been developed without the
assumption of existence of missing data. Al-
ternatively, instead of feature vectors, the cor-
relations between cells are oftentimes used for
representing the relationship among cells, in
which only common visible (non-missing) ex-
pression values in two cells are used for com-
putation of those correlations. Namely, each
correlation is computed from a different gene
set. Hence those correlations are not positive
definite. For that reason, the range of applica-
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tions for those correlations is somewhat limited;
most of conventional multivariate analyses and
kernel methods are not capable to work on such
correlations.

In this paper we present an approach for ker-
nel construction. Our algorithm uses the dis-
tances between examples instead of building
feature vectors. Our approach is based on the
locally constrained diffusion kernel (LCDK) 26)

which provides the similarities among nodes on
a graph. LCDK assumes an embedding of each
node into a kernel Hilbert space F , and is con-
structed such that the entropy of the kernel ma-
trix is maximized as long as the distance be-
tween two images in F whose nodes are con-
nected on the graph is less than a constant
threshold. Exploiting that technique, we con-
struct a kernel matrix from the upper-bounded
distance between each pair of examples. Fur-
thermore, our algorithm has the capability for
meeting the demands that we wish some partic-
ular examples to be apart from particular exam-
ples. It is useful to incorporate the prior knowl-
edge about relationships among examples.

There are similar attempts which embed ex-
amples into some vector space using distances.
Presumably the most popular attempts are the
multi-dimensional scaling 24) and the locally lin-
ear embedding 18). These two methods trans-
fer the example data into a low dimensional
Euclidean space (typically two-dimensional).
Weinberger et al. 31) have presented a method
for learning a kernel matrix so that examples
are mapped into a (typically low-dimensional)
kernel Hilbert space instead of a low dimen-
sional Euclidean space. All of them have been
developed with a common purpose which is vi-
sualization. Therefore, all the examples are
projected into a common low-dimensional space
even if they belong to different classes. Mostly
those projections are preferable for visualiza-
tion but not good for classification.

Besides our algorithm and the above men-
tioned methods, there are other methods based
on distances. For classification, the k-nearest
neighbor classifier is presumably the most well-
known method based on distances. For cluster-
ing, the single-linkage method is widely known.
The benefit of our algorithm is that kernel ma-
trices are obtained. Our algorithm thereby pro-
vides a device to combine any kernel method
with distance information. Therefore the appli-
cations are not limited to classification or clus-
tering. For example, the kernel matrix obtained

from our algorithm can selectively be integrated
with other types of data using SDP-SVM 11) or
support kernel machine 2). Supervised network
inference methods recently developed 9),29),32)

require kernel matrices among nodes. Our algo-
rithm enables the network inference methods to
perform for data consisting of distances by con-
version of them into a kernel matrix. Thus our
algorithm is a powerful way to feed distances to
kernel methods.

This paper is organized as follows: The next
section recalls some basic preliminaries for ker-
nel methods. In section 3 we describe our algo-
rithm and carry out simulations using artificial
data in section 4. In section 5, we present a
new challenging problem: analyzing mixture of
microarray data provided from different labo-
ratories, and apply our algorithm to that prob-
lem. The last section concludes our paper with
discussion.

2. Preliminaries

Kernel methods work by embedding the data
into a kernel Hilbert space F . The embedding
is performed implicitly, by defining the inner
product between each pair of examples rather
than by giving their actual values of vectors 19).
Given a set of input examples xi ∈ X , (i =
1, · · · , N) and an embedding space F , we con-
sider a mapping function Φ(·) : X → F . Given
two examples xi, xj ∈ X , the function k(·, ·)
giving the inner product between their images,
say Φ(xi) and Φ(xj) in the space F , is called a
kernel function. A kernel matrix K ∈ �N×N is
a symmetric positive definite matrix of which
elements are the values of the kernel function
for x1, · · · , xN ∈ X . Conversely, every symmet-
ric positive definite matrix is a kernel matrix.

In this paper we assume a transductive set-
ting 7) where we are given both labeled exam-
ples and test examples in advance in a learning
stage. In a transductive setting, we do not have
to know the kernel function k(·, ·) nor the im-
plicitly defined mapping function Φ, nor the ac-
tual values of the images Φ(x) ∈ F , if we have
a kernel matrix. For example, the score of j-th
example can be written as

fj =
�∑

i=1

αiyiKij + b,

where the first �(< N) examples are labeled
by yi ∈ {±1}. αi and b are the parameters
determined by the SVM learning algorithm 19).
Notice that the scores are expressed by only
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kernel values and do not explicitly include any
actual vectors in F . For a given learning task,
an important point is that of choosing a kernel,
which corresponds to choosing a kernel matrix.

3. Method

Roughly speaking, we are now considering
the following requirements given for construc-
tion of a kernel matrix:
• The distances for a particular set of exam-

ple pairs should be small.
• The distances for a particular set of exam-

ple pairs should be large.
Speaking again, kernels must be the inner prod-
uct on a kernel Hilbert space. We wish to obtain
a kernel matrix in which the points in the kernel
Hilbert space satisfy the above requirements.
Denoting the examples by xi ∈ X (i = 1, · · · , N)
and the mapping function by Φ : X �→ F ,
we formulate these conditions using MU con-
straints for the upper-bound of squared dis-
tances dU

k and ML constraints for the lower-
bound of squared distances dL

k in F as follows:
‖Φ(xik

) − Φ(xjk
)‖2 ≤ dU

k ,

for k = 1, · · · , MU , (1)
‖ Φ(xik

) − Φ(xjk
)‖2 ≥ dL

k ,

for k = 1, · · · , ML. (2)
As described in the previous section, kernel
methods work on a kernel matrix with elements
Kij = Φ(xik

)�Φ(xjk
). Under the constraints in

Eqs. (1),(2), we wish to construct a kernel ma-
trix with least irrelevant information. Such a
kernel matrix K ∈ �N×N is obtained by max-
imization of the Von Neumann entropy 16) de-
fined by

−tr (K log K) , tr K = 1, (3)
where log takes the matrix logarithm. Using
the elements of a kernel matrix, the squared
Euclidean distance between Φ(xi) and Φ(xj) is
described as

‖Φ(xi)−Φ(xj)‖2 =Kii + Kjj − Kij − Kji.
(4)

For the sake of simple notation, we define
Uk (k = 1, · · · , MU ) and Lk (k = 1, · · · , ML)
by

Uk = Eikik
+Ejkjk

−Eikjk
−Ejkik

−dU
k I,

(5)
Lk = −Eikik

−Ejkjk
+Eikjk

+Ejkik
+dL

kI.

(6)
where Eij denotes a matrix in which (i, j) ele-
ment is one and all the others are zero. Then

the upper-bound and lower-bound constraints
can be rewritten as

tr(UkK) ≤ 0 (7)
and

tr(LkK) ≤ 0, (8)
respectively.

For keeping the optimization problem feasi-
ble, we relax the problem like soft-margin sup-
port vector machine as follows:

min tr (K log K)+CU‖ξU‖1,+CL‖ξL‖1,
subj. to trK = 1,

tr(UkK) ≤ ξU
k , k = 1, · · · , MU ,

tr(LkK) ≤ ξL
k , k = 1, · · · , ML,

ξU ≥ 0, ξL ≥ 0,

w.r.t. K, ξU = [ξU
1 , · · · , ξU

MU ]�,

ξL = [ξL
1 , · · · , ξL

ML ]�, ) (9)

where CU and CL are constant. Since the en-
tropy function is convex, the optimization func-
tion is convex. Inasmuch as all the constraints
are linear, the feasible region is a convex set.
Consequently, the optimization problem does
not have any local minima, and we can always
attain to the optimal solution.

When giving the bounds of squared distances
dU

k , dL
k , we should take account of the other con-

straint: the trace of K must be one. Due to
that constraint, the average of squared norms
‖Φ(ξ)‖2 becomes 1/N . Hence a suitable heuris-
tic is to normalize the bound of each squared
distance by dividing them by N .

Learning algorithm
A steepest descent algorithm for a general

problem with this type of the objective func-
tion and linear constraints has already been
provided 26). We employ that algorithm with
simple modification for solving our problem.
Here we describe it briefly as the following. The
learning algorithm solves the dual problem in-
stead of the primal problem given in Eq. (9).
The dual problem is described by (refer the ap-
pendix for the derivation):

max J(α, β)=− log tr (exp (−Uα−Lβ)) .
subj. to 0 ≤ α ≤ CU1, 0 ≤ β ≤ CL1

w.r.t. α=[α1, · · · , αMU ]�,
β=[β1, · · · , βML ]�, (10)

where α and β are dual variable vectors,
and the operators, U and L, perform Uα =∑MU

k=1 αkUk and Lβ =
∑ML

k=1 βkLk. 1 denotes
a column vector in which all elements are one.
For optimization, the steepest descent method
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is used. The derivatives of the dual function is
given by

∂J

∂αk
=

tr (Uk exp (−Uα−Lβ))
tr (exp (−Uα − Lβ))

,

∂J

∂βk
=

tr (Lk exp (−Uα − Lβ))
tr (exp (−Uα − Lβ))

.

(11)

When the values of some dual variables violate
the constraints in (10), they are forced to be
back into the feasible region. In our simulation,
we put zero to the initial values of the dual vari-
ables. However, since the optimization problem
is convex, the optimal solution can always be
attained from any initial values. Once we get
the dual optimal, we can recover the primal op-
timal solution as follows:

K =
exp (−Uα − Lβ)

tr (exp (−Uα − Lβ))
. (12)

Let us discuss the time complexity of the learn-
ing algorithm. Uk and Lk are sparse. Denote
the number of non-zeros in each matrix by Nnz.
If we use a special data structure for sparse
matrices (e.g. Harwell-Boeing sparse matrix
storage format 5)), addition S = −Uα − Lβ ∈
�N×N takes O(Nnz(MU +ML)). Computation
of matrix exponential of S takes O(N3). The
trace of the product between Uk (or Lk) and
S′ = exp(S), say tr(UkS′) (or tr(LkS′)), re-
quires the computational time O(Nnz), because
that trace can be rewritten as the inner prod-
uct of vectors with Nnz elements. Computing
the trace of S′ also takes O(N). The number
of non-zeros of Uk (or Lk) is N + 2. Hence,
after obtaining S′, we need O(N) for compu-
tation of the gradient Eq. (11) for each element
in a dual vector. Recovery of the kernel matrix
takes O(N(MU + ML) + N3 + N). If we as-
sume MU +ML < N2, the total computational
time is therefore O(TiterN

3) where the number
of iterations is Titer.

4. Simulations

For demonstrating the performance of our
kernel, simulations are performed on an arti-
ficial dataset including N = 200 points in two-
dimensional space plotted in Fig. 1 (a). The
dataset is comprised of two whorls each of which
has 100 points: The first 100 points are in one
whorl, and the last 100 points are in the other
whorl. Since two whorls are entangled, they
cannot be divided linearly. For building the
constraints for our algorithm, we extract point
pairs (ik, jk)(k = 1, · · · , MU ) such that xik

is

(a) Problem (b) Our kernel

(c) Linear kernel (d) RBF kernel, σ = 0.610

(e) RBF kernel, σ = 5.9

Fig. 1 Classification results. The plot (a) shows a
classification problem with N = 200 points
in two-dimensional space. Therein, five points
and other five points are given positive and
negative class labels indicated by downward-
pointing and upward-pointing triangles, respec-
tively. We gave the upper-bound constraints to
the point pairs connected by solid line in (a).
Using these points as training examples, SVM
with our kernel predict class labels. The pre-
diction results are plotted in (b). The results of
SVM with linear kernel and RBF kernels with
σ = 0.610, 5.9 are also shown in (c),(d) and (e),
respectively.

one of five nearest neighbors of xjk
computed

using squared Euclidean distances dorig
ikjk

. As a
result, we obtained 565 pairs which are con-
nected in Fig. 1 (a). From them, we formed
MU = 565 upper-bound constraints such as
dk = 0.05dorig

ikjk
/N . In this simulation, we built

no lower-bound constraints. We set CU = 100.
The resulting kernel matrix is normalized.

For comparison with conventional kernels, we
use linear kernel and RBF kernels. For il-
lustrating the classification accuracy, we use
a standard SVM at regularization parameter
being C = 100 for all kernels in this simula-
tion. We give class labels to ten points. As
shown in Fig. 1 (a), class labels are indicated
by upward-pointing and downward-pointing tri-
angles; Square points denote unlabeled points.
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(a) Ideal (b) Our kernel

(c) Linear kernel (d) RBF kernel, σ = 0.610

(e) RBF kernel, σ = 5.9

Fig. 2 Kernel matrices. The matrix in (a) indicates
true class labels of all N = 200 points by
block diagonals and is called an ideal matrix.
(b),(c),(d) and (e) depict 200 × 200 matrices
of our kernel, linear kernel, RBF kernel with
σ = 0.610 and RBF kernel with σ = 5.9, re-
specitvely.

Usage of linear kernel is equivalent to classi-
cal (non-kernelized) linear multivariate analy-
sis. RBF kernel is well-known as a kernel with
the capability of handling non-linear analysis.
RBF kernel has a parameter, σ. For deter-
mining the value σ, we find five nearest neigh-
bors for each point, and take the average of
the Euclidean distances. We set that average
to σ. In this setting, σ = 0.610. We also re-
port the result of RBF kernel with σ which
achieves the maximum accuracy for classify-
ing each point into the two whorls. For this
purpose, we perform a search over the values:
σ = 0.1, 0.2, · · · , 8.0. The value getting the
maximum accuracy was σ = 5.9.

In that setting, we obtained four kernel ma-
trices depicted in Fig. 2 (b)(c)(d)(e). As ex-
pected, linear kernel could not capture the non-
linear structure with two whorled clusters, and
the classification result are poor as shown in

Fig. 1 (c). Meanwhile, our kernel represented
two clusters successfully, and almost perfectly
classified each point into the two whorls (see
Fig. 1 (b)). RBF kernel with σ = 0.610 does
not yield good classification performance (see
Fig. 1 (d)). Every column in the kernel ma-
trix (Fig. 2 (d)) has few elements being large
enough. So many points are almost orthogo-
nal to labeled points. Empirically it has been
observed that SVMs do not perform well in this
situation 20). Even if the best σ is chosen, the
classification performance of the RBF kernel is
inferior to our kernel (see Fig. 1 (e)). A kernel
value of RBF kernel is produced from the Eu-
clidean distance of only one pair. Our kernel
can benefit from the relationships among the
whole dataset, and is especially of great advan-
tage for the dataset with clusters, as illustrated
by these experimental results.

Addition of Lower-Bound Constraints
To gain some insight into the basic proper-

ties of the lower-bound constraints, we con-
ducted another numerical experiment. Use of
lower-bound constraints is effective when we
have prior information that some of pairs are
under different rules. If the distance between
each of such pairs is large in a kernel matrix,
the subsequent prediction works well. Lower-
bound constraints can force each of those pairs
to be distant.

We now illustrate the results of a regression
problem. The problem of regression consists
in predicting a real-valued label of each test
point using training points with labels zi ∈ �.
We generated 400 points in �2 as shown in
Fig. 3 (a). While the input data in the pre-
vious simulation are divided from two clusters,
the input data in this numerical experiment do
not have such a cluster structure. We switched
the rule for generating labels according to the
distance from the origin in the two-dimensional
space (i.e. the norm of a vector in �2). If the
norm is larger than 4.5, the true label is given
by

zi = +(θ([xi]2, [xi]1) + π)/2π,
otherwise

zi = −(θ([xi]2, [xi]1) + π)/2π,
where θ : � × � �→ [−π, π] is the arc tangent
function computed by

θ(y, x) = atan2(y, x)
in ANSI C library. The resultant labels are
shown in Fig. 3 (b). We have chosen ten points
and give them the labels according to the above
rule. For regression from a kernel matrix, we
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(a) Input data (b) True labels (c) UL kernel

(d) UB kernel (e) Linear kernel (f) RBF kernel

Fig. 3 The effects of addition of the lower-bound constraints. The regression
problem is to perform prediction of real-valued labels from the input
data in (a). In (a) solid and dotted lines connect the pairs given upper-
bound and lower-bound constraints, respectively. The true real-valued
labels are shown in (b), where the vertical axis denotes the value of
labels. Triangles denote labeled points. We tested various kernels: UL
kernel, UB kernel, linear kernel and RBF kernel, shown in (c), (d),
(e), and (f), respectively. The RMSEs are 0.163, 0.300, 0.556, and
0.229, respectively. It is demonstrated that addition of lower-bound
constraints improves the prediction performance significantly.

employ the kernel ridge regression 19). Kernel
ridge regression has a regularization parameter
which has to be adjusted manually. The results
reported here are of the regularization param-
eter yielding the minimum root mean square
error (RMSE).

First let us see the results of the case where
only the upper-bound constraints are used. The
upper-bound constraints are given in the same
fashion as the previous simulation. The pre-
dicted values are shown in Fig. 3 (d). We also
tested the linear kernel and the RBF kernel
and the predictions are depicted in Fig. 3 (e),(f),
where the parameter of RBF kernel, σ, is cho-
sen by exhaustive search such that the mini-
mum RMSE is obtained. Ridge regression us-
ing linear kernel yields a linear function, so it
can not approximate the non-linear structure
well (RMSE of 0.556). If our kernel with only
upper-bound constraints (UB kernel) or RBF
kernel is used, the prediction errors are still
large. The RMSEs of the UB kernel and RBF
kernel are 0.300 and 0.229, respectively. Those
results implied that it is difficult to solve this re-

gression problem from only the feature vectors
in �2 whichever kernel is used.

We next assume that additional informa-
tion is available. Suppose we know the labels
of some pairs of points are generated accord-
ing to different rules even if the actual labels
are unknown. In this experiment, we postu-
late that such information is available for the
pairs of which both points with index divisi-
ble by four. We exploit the additional infor-
mation by adding the lower-bound constraints
for the following pairs (ik, jk): ik(mod 4) =
0, jk(mod 4) = 0, (‖xik

‖ − 4.5)(‖xjk
‖ −

4.5) < 0 and ‖xik
− xjk

‖2 < 2. We put
dL

k = 1/N for all these pairs. The upper-bound
constraints are same as UB kernel. We set
CL = 1000 and CU = 100. We refer the kernel
from upper-bound and lower-bound constraints
to UL kernel. There exists no embedding sat-
isfying all the distance constraints with ξU = 0
and ξL = 0 and the triangle inequality simulta-
neously. Nonetheless, our algorithm is capable
of working well due to the soft margin tech-
nique. In Fig. 3 (a), the pairs given the upper-
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bound and the lower-bound constraints are con-
nected by solid lines and dotted lines, respec-
tively. The prediction results are depicted in
Fig. 3 (c). UL kernel achieves RMSE of 0.163.
Addition of the upper-bound constraints has
led to significant improvement.

Actually UL kernel can be applied for cases
where a number of heterogeneous data are
blindly mixed and are difficult to discriminate
each other. For example, in the cancer prog-
nosis prediction 28), patients should be catego-
rized into cancer subtypes such as kidney or
lung cancers before the regression. However, it
is often impossible to perfectly classify patients
into distinct groups due to the complex cancer
diagnoses considering many aspects of patients
such as malignancy or metastasis levels of the
cancer. In our algorithm, we can exploit the
prior knowledge that some patients are distinct
from other patients in prediction. Our algo-
rithm using the lower-bound constraints may
effectively incorporate the prior knowledge into
a kernel matrix and simultaneously predict dis-
tinct data.

5. Application to Microarray Data

It is relatively easy to analyze microar-
ray data provided from one laboratory since
one might apply some automatic normalization
method to them to remove biases. Most of
studies have tackled such data so far. How-
ever, to our knowledge, no one has been ana-
lyzing a mixture of microarray data from mul-
tiple laboratories using multivariate statistical
analyses or kernel methods. The reason might
be that each of microarray data registered in
public database 3) has a different type of sys-
tematic biases. Furthermore, some are pre-
normalized and others are not, but we often
meet microarray data with no document de-
scribing whether it is pre-normalized or not.
In addition, microarray data have missing val-
ues as described in Section 1. There are var-
ious methods 4),25),30) for imputation of miss-
ing values in microarray data. However all of
those have been developed without taking ac-
count of heterogeneous microarray data. Those
facts considerably make analysis difficult. Here-
inafter we refer a mixture of microarray data
from different laboratories to heterogeneous mi-
croarray data, whereas we refer microarray data
from single laboratory to homogeneous microar-
ray data.

To alleviate such heterogeneous biases and

Fig. 4 Heterogeneous microarray data with 30% miss-
ing values. Each column is normalized by z-
score. ‘x’ denotes a missing element.

missing problem, Spearman rank correlation
(SRC) 10) is often used for representing relation-
ships among cells. The SRC between two cells,
say xi and xj , is defined by

SRC(xi, xj)

=1− 6
d(d2−1)

d∑

h=1

(rh(xi)−rh(xj))2(13)

where rh(x) is the rank of h-th gene in x. When
data include missing values, the SRC is com-
puted from common visible data between cells.
The SRC obtained by that computation is not
positive definite. Hence, it can not directly be
fed to kernel methods, but our algorithm can
transform the SRC to a kernel matrix.

We use the microarray dataset containing
close but two different cell types called AML
and ALL 6). To collect this dataset, bone
marrow or blood samples were taken from
72 patients including 47 with acute myeloid
leukemia (AML) and 25 with acute lymphoblas-
tic leukemia (ALL). We extract 100 genes from
the dataset by the software RankGene 22). To
simulate the dataset with heterogeneous biases,
we randomly chose cells and log-transformed
them. To create missing values, we removed
various percentages of the data (see Fig. 4).
Then we compute the SRC, find ten nearest
neighbors for each cell, and give the upper-
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(a) Ideal (b) Our kernel (c) Linear

Fig. 5 Kernel matrices for heterogeneous microarray data with 30% missing values.

(a) Heterogeneous data (b) Homogeneous data

Fig. 6 Classification results on microarray data.

bounded distance dU
k = (1−SRC(xik

, xjk
))/2N

to those pairs. No lower-bound constraints were
given in this simulation. Independently we gave
class labels (AML or ALL) to ten cells which
were randomly chosen and classified 62 unla-
beled cells via SVM with the kernel matrix gen-
erated by our algorithm. We repeated this pro-
cedure 20 times and evaluate the performance
by average accuracy.

We also tested SVM with linear kernel and
RBF kernel. Since linear kernel requires com-
plete feature vectors without any missing ele-
ments, missing values are imputed by the av-
erage of the corresponding rows. We tried var-
ious values of the regularization parameter C
for SVM and the various parameters of RBF
kernel, and report the best accuracies.

Figure 5 depicts the kernel matrices built by
our algorithm and the linear kernel computed
from heterogeneous data with 30% missing val-
ues. Our kernel matrix clearly separated the
two classes, whereas the linear kernel matrix
seems to include much of irrelevant information.

Figure 6 (a) compares classification perfor-
mance of the three kernels. Our kernel achieved
highly accurate classification until 40% missing
ratio without decreasing its accuracy. Accura-
cies of both methods converged to about 60%

accuracy which is roughly equal to the ratio of
the number of cells between ALL and AML. If
the data are homogeneous (i.e. no data are log-
transformed.), linear and RBF kernel work to a
certain degree, but the accuracies are monoton-
ically decreased (see Fig. 6 (b)). On the other
hand, our kernel using SRC got the same accu-
racies as the heterogeneous data, since SRC is
invariant to log-transformation prosperously.

6. Conclusion and Discussion

In this paper we discuss a methodology for
building a kernel matrix from distances among
examples instead of feature vectors. A notable
contribution might rather be to have presented
a new problem: Analysis of microarray data
taken from various systematic biases due to dif-
ferent experimental methods. So far the SRC
between non-missing data has been a common
measure for representing relationship, but it
suffers from a drawback: it is not directly appli-
cable to a class of promising data analyzers, ker-
nel methods. Our simulations suggest that our
algorithm can be an effective bridge between
kernel methods and non-positive definite simi-
larities.

RBF kernel has a common property to our
kernel. The RBF kernel is also computed us-
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ing distances among examples instead of fea-
ture vectors. However RBF kernel suffers from
two shortcomings:
(i) Distances of all pairs are required.
(ii) The negative of the distance function must
be conditionally positive definite 19).
Especially, the latter drawback is rather ob-
structive for incorporation of prior knowledge.
If the second state (ii) is violated, the result-
ing kernel is no longer positive definite, which
breaks down whole the theory about kernel ma-
chines and yields local minima in SVM learn-
ing. Designing a conditionally positive definite
function is not an easy task. Using the fact
that the negative squared Euclidean distance
function is conditionally positive definite, one
might extract feature vectors and compute their
Euclidean distances. However, it is impossible
when features include missing values as men-
tioned in Section 1.

We can also consider another practical sit-
uation. Suppose one has a software yielding
a measure of relationship between examples.
For example, in order to represent the rela-
tionships between biological sequences by align-
ment scores, one might use alignment software
such as Blast 1). However, such a score is not
conditionally positive definite generally. Mean-
time, our kernel tolerates any dissimilarity mea-
sures as distances even if the measures violate
the triangle inequality.

Analysis of heterogeneous microarray data is
a suitable application for our kernel as shown in
this paper. We also expect that there are lots
of other cases applicable to our kernel. Our
future work is to investigate the performance
of our kernel on many other problems.
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Appendix

A.1 Derivation of Dual Problem
Let

γ =
[
α� β�]�

(14)

ξ =
[
(ξU)� (ξL)�

]�
(15)

c =
[
CU1�

ML CL1�
MU

]�
(16)

M = MU + ML (17)
and define an operator A by

Aγ = Uα + Lβ. (18)
The convex problem given in Eq. (9) can be
put in the following min-max problem using La-
grangean multipliers,

min
K,ξ

max
γ,δ,ζ

tr (K log K)

+tr (KAγ)
+ζ(trK−1)+(c−γ−δ)�ξ

(19)
where γ, δ, ξ ∈ �M

+ , ζ ∈ �, K ∈ SN
+ . Therein,

SN
+ is the positive semidefinite cone. Eliminat-

ing the dummy variables, we readily rewrite the
problem as

max
γ,ζ

min
K

tr (K log K) + tr (KAγ)

+ζ(trK − 1),
subj. to 0M ≤ γ ≤ c,

γ ∈ �M
+ , ζ ∈ �, K ∈ SN

+ ,

(20)



Vol. 47 No. SIG 10(CVIM 15) Learning Kernels from Distance Constraints 11

For solving the minimization problem inside, we
set the derivative with respect to K to zero.
Then we have

tr (KAγ) = −tr (K log K) − (1 + ζ) tr (K)
trK = exp(−ζ − 1) tr (exp(−Aγ)) .

After putting them back into the objective func-
tion, we get the dual function

exp(−ζ − 1) tr (exp(−Aγ)) − ζ (21)
Vanishing the derivative with respect to ζ, we
obtain the problem given in Eq. (10).

(Received September 20, 2005)
(Accepted March 20, 2006)

(Editor in Charge: Ei Banno)

Tsuyoshi Kato received the
B.E., M.E., and Ph.D. degree
from Tohoku University, Sendai,
Japan, respectively, in 1998,
2000, and 2003. From 2003 to
2005, he was with the National
Institute of Advanced Industrial

Science Technology (AIST) as a postdoctoral
fellow in Computational Biology Research Cen-
ter (CBRC) at Tokyo. Since 2005, he has
been an assistant professor at Graduate School
of Frontier Sciences, the University of Tokyo,
and he is also a collaborative research fellow of
CBRC. His current scientific interests include
bioinformatics and statistical pattern recogni-
tion. He is a member of IEICEJ.

Wataru Fujibuchi received
his Ph.D. degree at the depart-
ment of biophysics from Kyoto
University in 1998. From 1999–
2002 he worked as an invited
researcher at the NCBI, USA.
Now he is hired as a Research

Scientist of National Institute of Advanced In-
dustrial Science and has a current position of
Visiting Associate Professor, at the Research
Institute of IT-Bio, Waseda University. He is
an author of Cell Montage database. Research
interests: sequence analysis of promoter func-
tions, microarray data analysis, prediction of
genetic networks from microarray, integrative
analysis of cell features.

Kiyoshi Asai received B.S.,
M.S. and Ph.D. degrees in Math-
ematical Engineering from the
University of Tokyo, in 1983,
1985 and 1995. He worked
in Electrotechnical Labolatory
(ETL) from 1985 to 2001, and

has been working in Computatinal Biology Re-
search Center (CBRC/AIST) since 2001. His
contributions are mainly on hidden Markov
models (HMMs) and the other stochastic mod-
els and on their applications to biological se-
quences. His current primary position is Pro-
fessor in Department of Computational Biology,
Graduate School of Frontier Science, the Uni-
versity of Tokyo since 2003.


