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Acquisition and Rectification of Shape Data

Obtained by a Moving Range Sensor

Atsuhiko Banno† and Katsushi Ikeuchi††

“Modeling from Reality” techniques are making great progress because of the availability
of accurate geometric data from three-dimensional digitizers. These techniques contribute to
numerous applications in many areas. Among them, one of the most important and com-
prehensive applications is modeling cultural heritage objects. For a large object, scanning
from the air is one of the most efficient methods for obtaining 3D data. We developed a
novel 3D measurement system, the Floating Laser Range Sensor (FLRS), in which a range
sensor is suspended beneath a balloon. The obtained data, however, have some distortions
due to movement of the system during the scanning process. We propose two novel methods
to rectify the shape data obtained by the moving range sensor. One method rectifies the data
by using image sequences; the other rectifies the data without images. To test these methods,
we have conducted a digital archiving project of a large-scale heritage object, in which our
algorithms are applied. The results show the effectiveness of our methods. Moreover, both
methods are applicable not only to our FLRS, but also to moving range sensors in general.

1. Introduction

1.1 Background
Many research projects on real object model-

ing are making great progress because of the
availability of accurate geometric data from
three-dimensional digitizers. The techniques of
real object modeling contribute to numerous
applications in areas such as academic investi-
gation, industrial management, and entertain-
ment.

Among them, one of the most important
and comprehensive applications is modeling
cultural heritage objects. Modeling these ob-
jects is of significance. Models lead to digi-
tal archives of the objects’ shapes. Utilizing
these archives enables us to restore the original
shapes of the objects, even if they have been
destroyed due to natural weathering, fire, dis-
asters and wars. In addition, we can provide
images of these objects through the Internet to
people in their homes or in their offices. Thus,
the techniques of real object modeling are avail-
able for many applications.

Many research groups have been conducting
projects to model large objects such as stat-
ues, historical buildings and suburban land-
scapes 8),16),23). Basically, to scan these large
objects, laser range finders are usually used
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with tripods positioned on stable locations. In
the case of scanning a large object, however,
it often happens that some part of the object
is not visible from the laser range finder on
the ground. To overcome this difficulty, re-
searchers have scanned large objects from scaf-
folds temporally constructed near the object.
However, this scaffold method requires costly,
tedious construction time. In addition, it may
be impossible to scan some parts of the ob-
ject due to the limitation of available space for
scaffold-building.

We are now conducting a project 17) to model
the Bayon Temple 35) in Cambodia. The tem-
ple’s scale is about 150 × 150 square meters
with over 40 meter height. Scanning such a
huge object from several scaffolds is unrealis-
tic. To overcome this problem, several meth-
ods have been proposed. For example, aerial
3D measurements can be obtained by using
a laser range sensor installed on a helicopter
platform 33). High frequency vibration of the
platform, however, prevents the acquisition of
highly accurate data. Also, to avoid irrevocable
destruction, the use of heavy equipment such as
a crane should be eschewed in the case of scan-
ning a cultural heritage object.

Based upon the above considerations, we
proposed a novel 3D measurement system,
a Floating (or Flying) Laser Range Sensor
(FLRS) 14),15). This system digitizes large ob-
jects from the air while suspended from the un-
derside of a balloon platform (Fig. 1). The bal-
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Fig. 1 The FLRS and the Bayon Temple.

Fig. 2 An sample snap shot and the distorted range
data obtained by the FLRS.

loon platform is certainly free from high fre-
quency vibration such as that caused by a he-
licopter engine. The obtained range data are,
however, distorted because the laser range sen-
sor itself is moving during the scanning pro-
cesses (Fig. 2).

1.2 Our Contributions
In this study, we propose two methods to rec-

tify 3D range data obtained by a moving laser
range sensor. Not only is this method limited
to the case of our FLRS, but it is also applicable
to a moving range sensors in general.

Several attempts have been made to rectify
deformed range data by a moving range sen-
sor. The following three strategies have been
considered to solve this kind of problem:
• Window matching-based method 14)

• 3D registration-based method 15),22)

• Structure from motion-based method 1)

In Ref. 14), under the assumption that trans-
lation of the sensor is very small and within
a plane parallel to the image plane without
any rotation, the shape is recovered by using
a video sequence image. Then, supposing that
the changes in sequential images are very small,
the sensor’s motion is estimated by a local win-
dow matching technique. This method is very
fast, but it restricts the sensor to a simple and
small motion.

In Refs. 15) and 22), the sensor’s motion is

parametrized by the specification of a velocity
vector that maintains a uniform linear motion
with a constant angular velocity. Then, an ex-
tended ICP algorithm is applied to align the
deformed model obtained by the moving range
sensor with the correct model obtained by an-
other range sensors located on the ground. This
method does not require image sequences, but
it assume the simple motions.

In our study, we adopt two strategies for the
rectification; one method is based on the third
strategy and another is based on the second
one.

In accordance with the third strategy, we
proposed a method based on “Structure from
Motion” using image sequences and distorted
range data obtained by the FLRS. The im-
age sequences are obtained by a video camera
mounted on the FLRS and the range data are
obtained by a moving range sensor. The motion
of the FLRS is roughly estimated only by the
obtained images. Then the more refined param-
eters are estimated based on an optimization
imposing some constraints, which include infor-
mation derived from the distorted range data
itself. Finally, using the refined camera motion
parameters, the distorted range data are recti-
fied.

In accordance with the second strategy based
on “3D registration,” we adopt a method sim-
ilar to that described in Refs. 15) and 22), but
supposing smooth and more generalized balloon
motion.

These methods are not limited to the case
of our FLRS but also applicable to a general
moving range sensor that has smooth motion.
In this study, we do not utilize physical sensor
such as gyros, INS and GPS for estimation of
position and pose. We try to solve our prob-
lems only by range sensors and video cameras
through the techniques of Computer Vision.

This article is organized as follows. We briefly
explain our FLRS system in Section 2. In Sec-
tion 3, we explain a full perspective factoriza-
tion, which is utilized as the initial value for
the camera motion. We use a weak perspec-
tive factorization iteratively for the perspective
projection camera model. In Section 4, we de-
scribe our proposed algorithm for refinement of
the parameters. Our method applies three con-
straints for the optimization, which are tacking,
smoothness and range data constraint. Apply-
ing these constraints and optimizing the cost
function, we can estimate more precise param-
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eters. In Section 5, we describe another method
for shape rectification which need not any image
sequences. Instead of using images, this method
requires range data obtained by another range
sensor fixed on the ground. In Section 6, we
evaluate our algorithms with known models.
Constructing a virtual FLRS on a PC by using
a CG model, we estimate the accuracy of our
method. In Section 7, we show several exper-
imental results of applying our algorithms for
range data processing conducted in the Bayon
Temple in Cambodia. Finally, we present our
conclusions and summarize our possible future
works in Section 8.

2. FLRS

The FLRS (Floating Laser Range Sensor)
was developed to measure large objects from
the air by using a balloon without constructing
any scaffolds (Fig. 3).

We have two types of FLRSs. Each FLRS is
composed of a scanner unit, a controller and a
personal computer (PC). These three units are
suspended beneath a balloon.

The scanner unit includes a laser range finder,
especially designed to be suspended from a bal-
loon. Figure 4 shows the interior of the scan-
ner unit. It consists of a spot laser radar unit
and two mirrors. We chose the LARA25200
and LARA53500 supplied by Zoller+Fröhlich
GmbH 37) as laser radar units because of their
high sampling rate. Each laser radar unit is
mounted each FLRS scanner unit. Two systems
equipped with Lara25200 and LARA53500 are
respectively referred to as “25m sensor” and
“50m sensor”. The specifications of two units
are shown in Table 1.

Both sensors have the similar mirror config-
urations. There are two mirrors inside each
unit to give direction to the laser beam. One is
a polygon mirror with four reflection surfaces,
which determines the azimuth of the beam. In
normal use, the polygon mirror, which rotates
rapidly, controls the horizontal direction of the
laser beam. Another is a plane mirror (swing
mirror) which determines the elevation of the
beam. The plane mirror swings slowly to con-
trols the vertical direction of the laser beam.

The laser beam emitted from the LARA is hit
on a surface of the polygon mirror at first. Then
the polygon mirror reflects the laser beam into
the plane mirror. The plane mirror also reflects
the beam into the outside of the unit (lower of
Fig. 4).

Fig. 3 The FLRS (25m sensor).

Fig. 4 The interior of scanner unit (25m sensor).

Table 1 The specifications of the 25m (LARA25200)
and 50m (LARA53500) Sensors; w.r.t. laser
source.

25m Sensor 50m Sensor
Ambiguity interval (m) 25.2 53.5

Minimum range (m) 1.0 1.0
Resolution (mm) 1.0 1.0

Sampling rate (pix/s) ≤ 625,000 ≤ 500,000
Linearity error (mm) ≤ 3 ≤ 5

Range noise at 10m (mm) ≥ 1.0 ≥ 1.5
Range noise at 25m (mm) ≥ 1.8 ≥ 2.7

output power (mW) 23 32
Laser wavelength (nm) 780 780

The combination of two mirrors demonstrates
the specifications as shown in Table 2.

3. Full Perspective Factorization

Estimations of the shape of an object or
of camera motion by using images are called
“Shape from Motion” or “Structure from Mo-
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Table 2 The specifications of the 25m sensor and
50m sensor; w.r.t. viewing field.

25m Sensor 50m Sensor
Angle Resolution

Horizontal (deg) 0.05 0.05
Vertical (deg) 0.02 0.02

Horizontal field (deg) ≤ 90 ≤ 90
Vertical field (deg) ≤ 30 ≤ 30

Scanning time/image (s) ≤ 15 ≤ 1

tion”, and have been one of the main research
fields in computer vision.

The factorization method proposed in Ref. 34)
is one of the most effective algorithms for si-
multaneously recovering the shape of the object
and the motion of the camera by using the im-
age sequence. The factorization was extended
to several perspective approximations and ap-
plications 6),7),11),12),25),28).

In Ref. 28), they presented perspective refine-
ment by using the solution under the para-
perspective factorization as the initial value. In
Ref. 12) a factorization method with a perspec-
tive camera model was proposed. Using the
weak-perspective projection model, they itera-
tively estimated the shape and the camera mo-
tion under the perspective model.

3.1 Weak-Perspective Factorization
Given a sequence of F images, in which we

have tracked P interest points over all frames,
each interest point p corresponds to a sin-
gle point �Sp on the object. In image coordi-
nates, the trajectories of each interest point
are denoted as {(ufp, vfp)|f = 1, . . . , F, p =
1, . . . , P, 2F ≥ P}.

Using the horizontal coordinates ufp, we can
define an F ×P matrix U . Each column of the
matrix contains the horizontal coordinates of a
single point in the frame order, while each row
contains the horizontal coordinates for a single
frame. Similarly, we can define an F ×P matrix
V from the vertical coordinates vfp.

The combined matrix of 2F ×P becomes the
measurement matrix as follow.

W =
(

U
V

)
. (1)

Each frame f is taken at camera position �Tf

in the world coordinates. The camera pose is
described by the orthonormal unit vectors �if ,
�jf and �kf . The vectors �if and �jf correspond
to the x and y axes of the camera coordinates,
while the vector �kf corresponds to the z axis
along the direction perpendicular to the image
plane (Fig. 5).

Fig. 5 The Coordinate System: �Tf denotes the posi-
tion of the camera at time of frame f . The
camera pose is determined by three unit basis
vectors.

Under the weak-perspective camera model, a
single point in the world coordinates �Sp is pro-
jected onto the image plane as (ufp, vfp).

ufp =
fc

zf

�if
t · ( �Sp − �Tf ), (2)

vfp =
fc

zf

�jf
t · ( �Sp − �Tf ), (3)

where zf = �kf

t · ( �C − �Tf ). (4)
The vector �C is the center of mass of all in-

teresting points; fc is the focal length. Without
loss of generality, the origin of the world coor-
dinates can be placed at the centroid, that is
�C = 0. This means that zf = − �kf

t · �Tf to sim-
plify the expansion of the following formulation.
To summarize,{

ufp = �mf
t · �Sp + xf

vfp = �nf
t · �Sp + yf ,

(5)

where

�mf =
fc

zf

�if , xf = − fc

zf

�if
t · �Tf

t
,

�nf =
fc

zf

�jf , yf = − fc

zf

�jf
t · �Tf

t
.

Assuming that the center of all interest points
is the origin,

P∑
p=1

ufp =
P∑

p=1

�mf
t · �Sp+

P∑
p=1

xf = Pxf , (6)

similarly,
P∑

p=1

vfp = Pyf . (7)

We obtain the registered measurement ma-
trix W̃ , after translation W̃ = W −
(x1 x2 . . . xF y1 . . . yF)t (1, . . . 1) as a prod-
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uct of two matrices M and S,

W̃ = M · S, (8)

where M : 2F × 3 matrix S : 3 × P matrix.
The rows of the matrix M represent the orien-

tation of the camera coordinates axes through-
out the sequence, while the columns of the ma-
trix S represent the coordinates of the interest
points in the world coordinates. Both matrices
are at most rank 3. Therefore, by using the Sin-
gular Value Decomposition (SVD), we can find
the best approximation to W̃ .

3.2 Extension to Full-Perspective Fac-
torization

The above formulation is under the weak per-
spective projection model, which is a linear ap-
proximation of the perspective model. Next,
using an iterative framework, we obtain approx-
imate solutions under the non-linear, full per-
spective projection model.

Under the perspective projection model, the
projective equations between the object point
�Sp in 3D world and the image coordinate
(ufp, vfp) are written as

ufp = fc

�if
t · ( �Sp − �Tf )

�kf

t · ( �Sp − �Tf )
, (9)

vfp = fc

�jf
t · ( �Sp − �Tf )

�kf

t · ( �Sp − �Tf )
. (10)

Replacing zf = − �kf

t · �Tf , we obtain the follow-
ing equations.

(λfp + 1)ufp =
fc

zf

�if
t · ( �Sp − �Tf ), (11)

(λfp + 1)vfp =
fc

zf

�jf
t · ( �Sp − �Tf ), (12)

λfp =
�kf

t · �Sp

zf
. (13)

Note that the right hand sides of Eqs. (11)
and (12) are the same form under the weak-
perspective model (see Eqs. (2) and (3)). This
means that multiplying an image coordinate
(ufp, vfp) by a real number λfp maps the coor-
dinate in the full perspective model space into
the coordinate in the weak-perspective model
space. Solving for the value of λfp iteratively,
we can obtain motion parameters and coordi-
nates of interest points under the full perspec-
tive projection model in the framework of weak-
perspective factorization.

The entire algorithm of the perspective fac-

torization is as follows:
Input: An image sequence of F frames track-

ing P interest points.
Output: The 3D positions of P interest points

�Sp. The camera position �Tf and poses
�if , �jf , �kf at each frame f.

( 1 ) Given λfp = 0
( 2 ) Supposing Eqs. (11) and (12), solve for

�Sp, �Tf , �if , �jf , �kf and zf through the
weak perspective factorization.

( 3 ) Calculate λfp by Eq. (13).
( 4 ) Substitute λfp into step (2) and repeat

the above procedure.
Until: λfp’s are close to ones at the previous

iteration.
3.3 Tracking
As input material, we need P interest points

at each frame, which are tracked identified
points in the 3D world. There are several meth-
ods to derive interest points of images 24),32).
Among them, we adopt Harris operator 13) and
SIFT key 21) for derivation of interest points.
SIFT key is robust for scale, rotation and affine
transformation changes. The main reason why
we adopt the method is its stability of points
derivation and usefulness of the key, which has
128 dimensional elements and can be used for
the identification for each point.

4. Refinement

Without noise in the input data, the factor-
ization method leads to an excellent solution.
As a result, the rectified 3D shape through the
estimated camera parameters is valid. Real im-
ages, however, contain a bit of noise. Therefore,
it is not sufficient to rectify range data obtained
by the FLRS only through the factorization.
For the sake of a more refined estimation of mo-
tion parameters, we impose three constraints:
for tracking, movement, and range data. The
refined camera motion parameters can be found
through the minimization of a global functional.
To minimize the function, the solution by the
full perspective factorization is utilized as the
initial value to avoid local minimums.

4.1 Tracking Constraint
As the most fundamental constraint, any in-

terest point �Sp must be projected at the coordi-
nates (ufp, vfp) on each image plane. This con-
straint is well known as Bundle Adjustment 4).
When the structure, motion and shape have
been roughly obtained, this technique is utilized
to refine them through an image sequence. In
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our case, the constraint conducts the following
function:

FA =
F∑

f=1

P∑
p=1

((
ufp − fc

�if
t · ( �Sp − �Tf )

�kf

t · ( �Sp − �Tf )

)2

+
(
vfp − fc

�jf
t · ( �Sp − �Tf )

�kf

t · ( �Sp − �Tf )

)2
)

.

(14)

The minimization of FA leads to the correct
tracking of fixed interest points by a moving
camera. However, we can see that the pres-
ence of parameters we are trying to estimate
in the denominator makes this equation a diffi-
cult one. We have to seek the optimal solution
via some non-linear minimization techniques.
Therefore, suppose that instead we consider the
following function:

F ′
A =

F∑
f=1

P∑
p=1

((
�kf

t · ( �Sp − �Tf )ufp

− fc · �if
t · ( �Sp − �Tf )

)2
+
(
�kf

t · ( �Sp − �Tf )vfp

− fc · �jf
t · ( �Sp − �Tf )

)2)
. (15)

The term �kf

t · ( �Sp − �Tf ) means the depth,
the distance between the optical center of cam-
era f and a plane, which is parallel to the image
plane and include the point �Sp. The cost func-
tion FA is the summation of squared distances
on the image plane while the cost function F ′

A

is estimated on the plane of the point �Sp. It is
true that we can only observe the image points
on the image sequence, therefore the noise oc-
curs on these images. However it is also true
that the cost function FA does not assure that
the reconstructed points are close to the correct
ones in the real 3D world.

Based on the above consideration, we choose
to minimize the cost function F ′

A for the facility
of the differential calculation.

4.2 Smoothness Constraint
One of the most significant reasons for adopt-

ing a balloon platform is to be free from the
high frequency that occurs with a helicopter
platform 15). A balloon platform is only un-
der the influence of low frequency: the balloon
of our FLRS is held with some wires swayed
only by wind. This means that the movement
of the balloon is expected to be smooth. Cer-
tainly, the movement of the balloon is free from

rapid acceleration, rapid deceleration, or acute
course changing. Taking this fact into account,
we consider the following function:

FB =
∫ (

w1

∣∣∣ ∂2 �Tf

∂t2

∣∣∣2 +w2

∣∣∣ ∂2qf

∂t2

∣∣∣2) dt.

(16)
Here, �Tf denotes the position of the cam-

era; t is time; w1, w2 are weighted coefficients;
and qf is a unit quaternion that represents the
camera pose. The first term of the above in-
tegrand represents smoothness with respect to
the camera’s translation while the second one
represents smoothness with respect to the cam-
era’s rotation. When the motion of the camera
is smooth, the function FB takes a small value.

We implement in practice the following dis-
crete form:

F ′
B =

F−1∑
f=2

(
w1

∣∣∣ �Tf−1 − 2�Tf + �Tf+1

∣∣∣2

+ w2

∣∣∣ qf−1 − 2qf + qf+1

∣∣∣2
)

.

(17)
4.3 Range Data Constraint
Taking a broad view of range data obtained

by the FLRS, the data are distorted by the
swing of the sensor. We can find, however, that
these data contain instantaneous precise infor-
mation locally. That information is utilized for
refinement of the camera motion.

Our FLRS re-radiates laser beams in raster
scan order. This means that we can instantly
obtain the time when each pixel in the range
image is scanned because the camera and the
range sensor are calibrated (Fig. 6). If the
video camera is synchronized with the range
sensor, we can find the frame among the se-
quence when the pixel is scanned. With the
video camera calibrated with the range sensor,
we can also obtain the image coordinate of each

Fig. 6 Finding the time when each interest point in
the sequence is scanned by the range sensor.
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interest point in the 3D world with respect to
the instantaneous local coordinate.

Considering this constraint, we can compen-
sate the camera motion.

At time t, suppose that the sensor position is
�T (t) and the three bases �if , �jf , �kf are described
as �i(t), �j(t), �k(t). At this moment, suppose
that the range sensor output �x(t) (in the local
coordinate) as the measurement of the point �X,
which is described in the world coordinate, the
following equation is obtained.

�X =
(
�i �j �k

) x
y
z


+ �T = R�x + �T .

(18)

When the range sensor scans interest point
�Sp, we can derive the third constraint to be
minimized as follows:

FC =
P∑

p=1

∣∣∣xfp − Rt( �Sp − �Tfp)
∣∣∣2. (19)

Here, the index fp denotes the frame number
when the range sensor scans interest point �Sp.
It is very significant to note that xfp is the 3D
coordinate values not described in the sensor-
oriented coordinate system but in the camera-
oriented one, which is rewritten based on the
range data and camera-sensor calibration. In
practice, we find sub-frame fp by using a linear
interpolating technique for the motion of inter-
est points between frames. The main purpose
of the above constraint is to adjust the absolute
scale.

As xfp = (xfp, yfp, zfp), the above function
can be rewritten as the stronger constraint:

F ′
C =

P∑
p=1

((
xfp − �ifp

t · ( �Sp − �Tfp)
)2

+
(
yfp − �jfp

t · ( �Sp − �Tfp)
)2

+
(
zfp − �kfp

t · ( �Sp − �Tfp)
)2)

.

(20)
4.4 The Global Cost Function
Based on the above considerations, it will be

found that the next cost function should be
minimized. Consequently, the weighted sum,

F = wAF ′
A + wBF ′

B + wCF ′
C , (21)

leads to the global cost function. The coeffi-
cients wA, wB and wC are determined exper-
imentally so that three terms take almost the
same magnitude. We set three coefficients as

wA : wB : wC = 1 : 107 : 106 in simulation cases
(Section 6) and wA : wB : wC = 1 : 105 : 102 in
real cases (Section 7).

To minimize this function, we employ
Fletcher–Reeves method or Polak–Ribiere
method 18),27),31), which are types of the con-
jugate gradient method. Then, we use the
golden section search to determine the mag-
nitude of gradient directions. For optimiza-
tion, Levenberg-Marquardt method 20) is gen-
erally employed to minimize a functional value.
The Levenberg-Marquardt method is very ef-
fective in estimating function’s parameters, es-
pecially to fit a certain function. However in
our function, it is not a parameter fitting prob-
lem to minimize the value of F ′

B. All we have
to do is to decrease F ′

B simply. Therefore we
adopt the conjugate gradient method.

4.5 Shape Rectification
After the refinement, we possess the vec-

tor �Tf and three bases �if , �jf and �kf at each
frame. That means we know the position and
pose of the camera at all frames. To rectify
the deformed shape data by using these extrin-
sic parameters quantized with respect to time,
these parameters have to be interpolated. To
be more precise, we have to interpolate three
components with respect to translation �Tf =
(Txf , Tyf , Tzf ), and three components with re-
spect to rotation qf = ((sf , ) uf , vf , wf ). Each
parameter’s variation with respect to time is,
therefore, approximated by a polynomials ☆.

5. Shape Rectification without Images

The method mentioned so far does not need
another range data set; the distorted range data
are rectified by using only a single range image
and an image sequence.

In actual cases, however, there should be
some available range data sets taken by another
range sensor fixed on the ground. Our FLRS is
originally devised to complement the measure-
ment for the region that is invisible from the
ground.

Some parts of a range image taken by the
FLRS are also taken by another range sensor
fixed on the ground. Based on these over-
lapping regions, we propose another algorithm
which rectifies the distorted range data ob-
tained from the FLRS. In this method, we do
not use any image sequences.

☆ In this study, we adopt 7-order polynomials.
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5.1 Basic Idea
Original ICP (Iterative Closest Point) al-

gorithm 2),5),38) was developed to align two
shapes. In a range image, coordinates of 3D
points are described in the sensor-oriented coor-
dinate system. Two range images from different
viewpoints, therefore, have different coordinate
systems. To unify two shapes, two data sets
have to be described in the unified coordinate
system. In order to do that, we apply a coor-
dinate conversion to one data set. When there
are some overlapping regions in the two data
sets, we apply a transformation of the coordi-
nate system in order to coincide them.

To simplify the transform procedure, we as-
sume that one shape is fixed and another can
move. We call the fixed shape the model shape
and the movable one the data shape. Rotat-
ing and translating the data shape aligns two
shapes. In overlapping region, a point on the
model shape has a corresponding point on the
data shape. Which point is the corresponding
point, however, is usually unknown. This cor-
respondence problem is resolved by an itera-
tive method. Initially a temporal corresponding
point is assumed. A movement is determined
so as to minimize an objective function, which
is defined by the total distances between the
corresponding points. The temporal correspon-
dences are changed after the movement. Then
a new movement is determined under the new
temporal correspondence. This procedure is re-
peated until the total distance converges. The
objective function, which should be minimized
for the alignment, is defined as

f
(
R, �T

)
=
∑

i

∣∣∣ R�xi + �T − �yi

∣∣∣2 . (22)

This objective function indicates the sum-
mation of distances between all pairs of cor-
responding points. If two shapes coincide, the
function takes a low value.

There are many variations of ICP algo-
rithms 30). For example, while we estimate the
cost function as the total distances of point-to-
point pairwise 2),38), some methods adopt the
distance between a point and its mate’s tangent
plane 5),26).

There are several methods to determine cor-
responding points. Some methods search the
corresponding point along the viewing ray 3).
In this article, we adopt the nearest neighbor
points as the corresponding points. We speed
up searches for the nearest neighbor point by

using KD-tree 9).
We use a quaternion as rotational elements

of the objective function f . By substituting
quaternion q to rotate matrix R, motion vector
�T can be found as follows:

{q, �T} = min
q,�T

f
(
q, �T

)

=
∑

i

∣∣∣ R(q)�xi + �T − �yi

∣∣∣2 . (23)

In the conventional ICP algorithm mentioned
above, it is assumed that both shapes are ob-
tained by fixed range sensors. On the other
hand, in our situation, the model shape is ob-
tained by a fixed range sensor while the data
shape is measured by a moving sensor. There-
fore we have to take account into the motion of
the range sensor.

The motion of the sensor is expected to
be smooth, as mentioned in the previous sec-
tion. It is, therefore, proper that the traces
of the motion parameters are approximated by
some polynomials with respect to time. Conse-
quently, we approximate six parameter: three
translational elements and three elements of the
quaternion, by following polynomials:

�T (t) = �T0 + t �T1 + t2 �T2 + · · · =
N∑

n=0

tn �Tn,

(24)

q(t) = q0 + tq1 + t2q2 + · · · =
N∑

n=0

tnqn,

(25)
where { �T0, �T1, · · · , �TN ,q0,q1, · · · ,qN} are the
parameters that describe the sensor motion.
Then we formulate a new cost function includ-
ing the above forms.

5.2 Extended ICP Algorithm
Instead of Eq. (23), we have to set up a new

cost function. First, we will change the index
of points of the data shape, �xi. Our sensors
measure the distance to a point in the raster
scan order. Therefore, all points on the data
shape, which are measured by the moving sen-
sor, are distinguishable by time t. According to
the time factor, the corresponding points on the
model shape �yi, which are obtained by the fixed
sensor, are described as functions �y (�x(t), t).

The cost function for the extended ICP algo-
rithm is described as follows:

f
(

�T0, �T1, · · · , �TN ,q0,q1, · · · ,qN

)
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=
∑

t

∣∣∣ R (q(t))�x(t) + �T (t) − �y(�x(t), t)
∣∣∣2 .

(26)
We take a summation form with respect to

time t in spite of the continuity of time. Since it
is only necessary to pick up the moments when
the point on the data shape is actually scanned.

To minimize the above function, the param-
eters of the sensor’s motions should be esti-
mated.

{ �T0, �T1, · · · , �TN ,q0,q1, · · · ,qN}
= min f

(
�T0, �T1, · · · , �TN ,q0,q1, · · · ,qN

)
.

(27)

If we assume N -order polynomials, the num-
ber of unknown valuables is 6(N + 1). We
minimize the cost function through the steep-
est descent method and Golden section search.
Furthermore we adopt a robut estimation, M-
Estimator 10),29),36) to decrease the influence of
outliers; the cost function Eq. (26) is rewritten
as follows:

{ �T0, �T1, · · · , �TN ,q0,q1, · · · ,qN}
= min

∑
t

log
(

1 +
1

2σ2
|zt|2

)
,

(28)
where zt = R(q(t))�x(t) + �T (t) − �y(�x(t), t).

6. Evaluation

6.1 Benchmark Shapes
To evaluate our rectification algorithms quan-

titatively, the most efficient method is to check
them for given models in advance.

In order to do that, we construct a virtual
FLRS system on a PC and obtain the dis-
torted range data and the image sequences for
the known model. Motion parameters are also
known completely. Then, we rectify the dis-
torted range data through our two proposed
methods.

The rectified shape data are, eventually, com-
pared with the correct shape data, and the re-
sults are evaluated numerically.

We use CAD models as a benchmark for the
evaluation (Fig. 7). The benchmark has great
depth, which has a strong perspective effect.
For reference, the height of the pyramid is 0.6,
that of the side wall is 0.78 and the thickness of
the side wall is 0.2. The equation of the back
plane is z = 0 and that of the floor is y = 0.

Then, we map textured pictures onto the sur-

Fig. 7 The benchmark shape for the evaluation.

Fig. 8 The sensor paths for the evaluation.

faces of the benchmark shapes to detect many
interest points for tracking.

After that, we provide three sensor motions
for virtual measurements (Fig. 8).
• Case1: Pure translation along the x direc-

tion (parallel to the image plane).
• Case2: Pure translation along the −z di-

rection (perpendicular to the image plane).
• Case3: Translation (within the x − z

plane) and rotation (around the y axis).
6.2 Evaluation of the Algorithm with

Images
Case 1:
In this case, the FLRS simply moves during

the measurement process toward the horizontal
direction with respect to the camera-oriented
coordinate system. The motion path is parallel
to the image plane and the back plane of the
benchmark model.

Several example images of the sequence are
shown in Fig. 9. These images look like pic-
tures obtained by simple parallel stereo vision
since there are no rotational elements in Case
1.

The distorted shape that is obtained by the
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Fig. 9 Some sample images of the sequence Case 1.
(top left → top right → bottom left → bottom
right).

Fig. 10 The original and rectified model of Case 1.

Fig. 11 The time transient parameter (x in trans-
lation) and the ground truth in Case 1.

virtual FLRS is shown on the left of Fig. 10.
Especially, it is found that the top region of
the side wall is skewed to the right side. On
the other hand, in the right shape, which is
the rectified shape by our algorithm, the side
wall stands perpendicular to the ground. For
the time being, the shape seems to be rectified
properly by our method. The numerical evalu-
ation for the rectified shape is show at the end
of this subsection.

Figure 11 indicates the estimated x posi-
tion and the ground truth. In Case 1, we set
a uniform straightly-line motion and the result
shows it. The difference between the estimated
velocity and the ground truth is only 6.4%.

All parameters, three components of trans-
lation and three components of camera pose,
through the scanning period are shown in
Fig. 12. The left side of Fig. 12 shows that the
FLRS moved only along the x direction, which
corresponds to the ground truth. In addition,

Fig. 12 The all motion parameters in Case 1.

Fig. 13 The original and rectified model of Case 2.

Fig. 14 The time transient parameter (z in trans-
lation) and the ground truth in Case 2.

the right side Fig. 12 shows that the motion did
not have any rotational component, which also
corresponds to the ground truth.

Case 2:
In this case, the FLRS moves along the op-

tical axis, which is perpendicular to the image
plane.

The distorted shape, which is obtained by
the virtual FLRS, is shown on the left side of
Fig. 13. When the virtual FLRS scans the top
region of the scene it is located far from the
scene. Then the closer the FLRS moves, the
lower region it scans. Therefore, the obtained
shape seems as though it is skewed backward.
As with Case 1, the right side of the figure
shows the rectified shape, which looks like the
proper shape.

Figure 14 indicates the estimated z position
and the ground truth. The difference between
the estimated velocity and the ground truth is
13.4%. While the estimated error is larger than
that of Case 1, the motion of Case 2 is wider
than that of Case 1. The virtual FLRS’s speed
in Case 2 corresponds to about 3.0 m/s in terms
of the real FLRS scale. It is thought that the
our algorithm can rectified the distorted shape
in spite of the wide motion.

All motion parameters are shown in Fig. 15.
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Fig. 15 The all motion parameters in Case 2.

Fig. 16 The original and rectified model of Case 3.

The left side of the figure, which shows the
translational components, shows that the FLRS
moved only along the z direction. And the
right side of the figure shows that the FLRS
was keeping the same pose during the scanning
process. These figures indicate that the param-
eters are estimated properly.

Case 3:
In this case, the virtual FLRS motion has two

translational components, x and z. In addition,
the FLRS rotates around the y axis during the
scanning process.

The distorted shape obtained by the virtual
FLRS is shown in the left side of Fig. 16. As in
Case 1, it is found that the top region of the side
wall is skewed to the right side. The right side
of the figure shows the rectified shape, which
looks like proper shape.

Figure 17 indicates the estimated parame-
ters and the ground truths. In Fig. 17, three
parameters, x position (a), z position (b) and
rotational component around y axis (c) are
shown. The difference between the estimated
velocity and the ground truth is 13.8% with re-
spect to x and 15.0% with respect to z. The
difference with respect to the rotational angle
is within 5.6%.

All motion parameters are shown in Fig. 18.
These figures show that our algorithm works
well on a case with several motion components.

Finally, Table 3 shows the errors in all cases.
These values are mean errors by point-to-patch
distance. The errors in the “Before Rectifica-
tion” row are the mean errors between the dis-
torted shapes and the ground truth, which are
aligned by ICP algorithm 2),5). On the other
hand, the values in the “After Rectification”

Fig. 17 The time transient parameters and the ground
truths in Case 3. (a) x and (b) z in translation;
(c) Rotational angle (radian) around y axis.

Fig. 18 The all motion parameters in Case 3.

Table 3 The mean errors of the method with images.

Case1 Case2 Case3
Before Rectification 0.01342 0.06632 0.03103
After Rectification 0.004990 0.006379 0.004268

row are the mean errors between the rectified
shapes and the ground truth. It is found that
our method could decrease the errors in all
cases. In the case of the real 25 m FLRS, the
maximum distance for scan is at most 25 me-
ters, while the distance to the backplane in the
benchmark shapes is about 3.5 ☆ in the CAD
model scale. Therefore, multiplying the values
of Table 3 by at most 7 gives the estimated
errors in the practical measurement scale. In
most data sets in the Bayon Temple project,
we measure objects at a distance of 15 ∼ 18
meters. For example, the estimated accuracy
in Case 2 will be about 3 cm in practice.

6.3 Evaluation of the Algorithm with-
out Images

Next, we evaluate the method mentioned in
Section 5, which uses correct shapes obtained
by other fixed laser sensors without any image
sequences. In this section, the data sets are

☆ In the CAD model, there is no unit with respect to
length.
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Fig. 19 The ground truth and rectified model of Case
1.

Fig. 20 The all motion parameters in Case 1.

the same as in the previous sub section. Be-
sides these, Case 4 is added, in which the mo-
tion of the sensor contains only rotation with-
out any translational components. In fact, a
motion without translational components is a
critical motion for the method described in Sec-
tion 3 and 4 since no disparities could be de-
tected in images. In order to rectify distorted
range datasets by using image sequences, dif-
ferent methods should be applied.

Case 1:
In Case1, the sensor simply moves toward the

horizontal direction.
Figure 19 shows the rectified model and the

ground truth.
The following figure, Fig. 20, shows all mo-

tion parameters. All translational parameters
change in time although the ground truth set-
ting moves the sensor only along the x axis.
In addition, the estimated velocity is not con-
stant. Comparing it to Fig. 12, it is found that
the graphs, especially on the left side of the fig-
ure, differ from those using the method with
images. In spite of these graphs, we can safely
state that our method is effective. This method
places more emphasis on the minimization of
the geometrical error and less on the proper
estimation of sensor’s motion. For example,
when the FLRS scans a simple plane, many
patterns of motion can be proper. Therefore,
we consider that our method could rectify the
deformed shape properly.

The table of errors in all cases is also shown
at the end of this sub section.

Fig. 21 The all motion parameters in Case 2.

Fig. 22 The all motion parameters in Case 3.

Fig. 23 The ground truth and rectified model of Case
4.

Case 2:
In this case, the sensor moves along the opti-

cal axis at a fast speed.
Figure 21 shows the all motion parame-

ters. Under the ground truth configuration,
only the x translational parameter is supposed
to change. In Fig. 21, it is easily found that
almost all parameters fluctuate.

Case 3:
In this case, the sensor moves within a plane

parallel to y = 0 and rotates around the y axis.
Figure 22 shows the all motion parame-

ters. Comparing it to Fig. 18, the graphs in
Fig. 22 have similar properties. The transla-
tional graphs are, however, curved and the y
component, which is supposed to be fixed, is
moving.

Additional Case (Case 4):
In this case, while the position of the sensor

does not change, it rotates around the y axis.
As previously noted, the method with images
can not rectify the distorted model because it
is impossible to reconstruct the 3D model from
images without disparity.

The left side of the figure in Fig. 23 is a
comparison between the ground truth and the
original distorted model while the right side of
the figure is a comparison between the ground
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truth and the rectified model. It is found that
the method without images can properly rectify
distorted models that are obtained from a sen-
sor only with rotation. Thus, this is the strong
advantage for this method.

Figure 24 indicates the estimated rotational
angle and the ground truth. The difference
between the estimated angular speed and the
ground truth is 15.4%.

Figure 25 shows the all parameters. It is
found that the estimated position is moving,
especially with respect to the x component,
although all parameters are not supposed to
change.

Table 4 shows the errors by the method
without images in all cases. These values are
also mean errors by point-to-patch distance.
Overall, the method with images is superior to
the method without images in accuracy. This
table shows the worst result is obtained in Case
2, which has a rapid sensor motion, and the ac-
curacy in the practical case is about 10 cm. On
the other hand, the accuracy of other test case
results, especially in Case 1 and 4, are the same
in number as those when the method with im-
ages is used. This means that the method with-
out images is effective in the case of the sensor
motion only with rotation.

We have used the complete model as the
ground truth in this section. On the other hand,

Fig. 24 The time transient parameter (rotational
angle) and the ground truth in Case 4.

Fig. 25 The all motion parameters in Case 4.

Table 4 The mean errors of the method without
images.

Case1 Case2 Case3 Case4
Before 0.01342 0.06632 0.03103 0.04583
After 0.005561 0.01428 0.008894 0.005084

in practical cases, it is expected that a correct
shape will have many missing parts and that
we have to rectify the distorted shape based
on an incomplete reference. We are going to
demonstrate such cases in the following section
by using real data sets.

7. Experiments

We have been conducting the “Digital Bayon
Project”, in which the geometric and photomet-
ric information related to the Bayon Temple is
preserved in digital form. With respect to the
acquisition of the geometric data, large parts of
the temple visible from the ground are scanned
by range sensors placed on the ground. On
the other hand, some parts invisible from the
ground, for example, roofs and tops of towers,
are scanned by our FLRS system.

7.1 Shape Rectification with Images
Figure 26 shows a sample image of the se-

quence obtained by the FLRS.
Figure 27 shows a photo picture of the

scanned area. On the right side of Fig. 27, the
dense fine model is the correct shape obtained
by a range sensor, the Cyrax-2500 19) fixed on
the ground.

The result of the rectifications is shown in
Fig. 28. The upper shape in Fig. 28 is the
original one obtained from the FLRS. It is
found that the shape is widely deformed. In
the middle of Fig. 28, the rectified shape by
full-perspective factorization is shown. With
respect to motion parameters, the ambiguity in
scale is removed manually. At a glance, the fac-
torization seems to rectify the shape properly.

Fig. 26 A sample shot of the image sequence.

Fig. 27 A scene for this experiment.
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Fig. 28 The upper figure shows the original distorted
shape obtained by the FLRS. The middle
one shows the rectified shape by the full-
perspective factorization without ambiguity in
scale. The lower shows the rectified shape by
our method.

In detail, however, the distortion in S shape still
remains. Especially, the shape of the entrance
is skewed. On the other hand, the lower shape
is rectified correctly by our method. It is clear
that the distortion in S shape is removed and
the shape of the entrance is correctly recovered
into a rectangle.

To evaluate the accuracy of our shape rec-
tification algorithm, we compare the rectified
shape with other data, which are obtained
by the Cyrax-2500, positioned on the ground.
Aligning two data sets by using the conven-
tional ICP algorithm 2),5), we analyze the over-
lapping area.

Figure 29 indicates the point-to-point dis-
tances in the ICP algorithm. The region where
the distances between them are less than 6.0 cm
is colored light gray ☆. The area where the dis-
tances are further than 6.0 cm is displayed in
dark gray. The upper figure shows the compar-
☆ In the previous section, we have approximated the

accuracy in the practical case as 3.0 cm. Therefore,
we set the threshold as 6.0 cm, twice of the estimated
error.

Fig. 29 The upper figure shows the comparison be-
tween the correct shape and the original dis-
torted one obtained by the FLRS. The light
gray region indicates where the distance of
two shapes is less than 6.0 cm. The mid-
dle one shows the rectified shape by the full-
perspective factorization without ambiguity in
scale. The lower shows the rectified shape by
our method.

ison between the correct shape and the original
distorted shape obtained by the FLRS. The
middle figure shows the rectified shape by the
full-perspective factorization without ambigu-
ity in scale. The lower figure shows the rectified
shape by our method.

At a glance, the light gray region is clearly
expanded by our rectification algorithm. Some
parts of the rectified shape are colored dark
gray because of the lack of corresponding
points. Taking account of the fact the cor-
rect shape could not measure the parts invisible
from the ground, the proposed method could
rectify the 3D shape correctly.

Figure 30 shows several samples of the
method with images.

7.2 Shape Rectification without Im-
ages

We also applied the method without images
to the real data set. As the reference shape, we
also utilize the shape obtained by the Cyrax-
2500. There are some blank parts in the ref-
erence shape because there are no data set on
the part that is invisible from the ground. Fig-
ure 31 shows the sample snap in this experi-
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Fig. 30 The original distorted data sets (left) and the
rectified sets (right).

Fig. 31 A sample shot in this case.

Fig. 32 The original distorted shape (left) and the
rectified shape (right).

mental case.
In Fig. 32, the left figure shows the original

shape obtained by the FLRS while the right one
shows the rectified shape by our method.

The upper figure of Fig. 33 shows the origi-
nal distorted shape by the FLRS (sparse model)
and the reference shape (dense model). The
lower figure of Fig. 33 shows the rectified shape
and the reference one. It is found that the rec-
tified 3D shape is well-fitted onto the reference
one, particularly the area of ellipses in the up-

Fig. 33 Range data before and after the rectifica-
tion method without images: the upper fig-
ure shows the original distorted shape by the
FLRS (sparse) and the reference shape ob-
tained by the Cyrax-2500 fixed on the ground
(dense). The lower figure shows the recovered
shape fitted onto the correct one.

Fig. 34 The original distorted data sets (left) and the
rectified sets (right).

per figure, in spite of the blanks on the reference
shape.

Finally, Fig. 34 shows several results of the
method without images.
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8. Conclusions

In this article, we have described FLRS sys-
tem and two proposed methods to rectify 3D
range data obtained by a moving laser range
sensor.

We described how an outstanding measure-
ment system FLRS was built to scan large ob-
jects from the air. This system allowed us to
measure large cultural heritage objects by using
a balloon. To rectify the distorted shapes ob-
tained from the FLRS, we proposed two meth-
ods
• The rectification method based on the

“Structure from Motion” techniques by us-
ing image sequences

• The rectification method based on the ex-
tended ICP algorithm by using another
range data sets

In the first method, we described a method
based on “Structure from Motion”. We uti-
lized distorted range data obtained by a moving
range sensor and image sequences obtained by
a video camera mounted on the FLRS. First,
the motion of the FLRS was estimated through
full perspective factorization only by the ob-
tained image sequences. Then the more refined
parameters were estimated based on an opti-
mization imposing three constraints: the track-
ing, smoothness and range data constraints. Fi-
nally, by using refined camera motion parame-
ters, the distorted range data are rectified.

In the second method, we proposed an ex-
tended ICP algorithm without using any im-
ages. Assuming that the motions of the sen-
sor are smooth, we applied them to polynomi-
als. Then, we rectified the distorted range data
based on the correct model obtained by other
range sensors fixed on the ground.

The results by both methods have shown
proper performance and practical utilities.
These methods can be generally applied to a
framework in which a range sensor moves dur-
ing the scanning process, and is not limited to
our FLRS.

There are a lot of works to do in the future.
First, we have to improve the accuracy of rec-
tified shapes by our algorithm. The burning
issue is the improvement of the accuracy of the
method without images. We want to boost it
to the same level as that of using the method
with images.

Besides accuracy, there are a few challenging
problems in the rectification algorithm without

images. Currently, we use a single distorted
shape and a single correct shape. As the next
step, we are trying to rectify several distorted
shapes at the same time by using a single cor-
rect shape. Moreover, we plan to rectify and
register multi-distorted shapes simultaneously
without any correct shapes. We envision a rec-
tification method that utilizes both images and
the correct models.

Acknowledgments This work was sup-
ported in part by Ministry of Education, Cul-
ture, Sports, Science and Technology, under the
program, “Development of High Fidelity Digi-
tization Software for Large-Scale and Intangi-
ble Cultural Assets” and Research Fellowships
of Japan Society for the Promotion of Science
(JSPS).

References

1) Banno, A. and Ikeuchi, K.: Shape Recovery
of 3D Data Obtained from a Moving Range
Sensor by using Image Sequences, Proc. In-
ternational Conference on Computer Vision
(ICCV2005 ), Vol.1, pp.792–799 (2005).

2) Besl, P.J. and McKay, N.D.: A method for
registration of 3-D shapes, IEEE Transactions
on Pattern Analysis and Machine Intelligence,
Vol.14, pp.239–256 (1992).

3) Blais, G. and Levine, M.D.: Registering multi-
view range data to crate 3D computer objects,
IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol.17, No.8, pp.820–824
(1995).

4) Brown, D.: The bundle adjustment —
progress and prospect, XIII Congress of the IS-
PRS, Helsinki (1976).

5) Chen, Y. and Medioni, G.: Object modeling
by registration of multiple range images, Image
and Vision Computing, Vol.10, No.3, pp.145–
155 (1992).

6) Christy, S. and Horaud, R.: Euclidean shape
and motion from multiple perspective views by
affine iterations, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, Vol.18,
No.11, pp.1098–1104 (1996).

7) Costeira, J. and Kanade, T.: A multi-body
factorization method for motion analysis, Proc.
International Conference on Computer Vision
(ICCV1995 ), pp.1071–1076 (1995).

8) The Digital Michelangelo Project:
http://graphics.stanford.edu/projects/mich/.

9) Friedman, J.H., Bentley, J.L. and Finkel,
R.A.: An algorithm for finding best-matches
in logarithmic time, ACM Transactions on
Mathematical Software, Vol.3, No.3, pp.209–
226 (1977).



Vol. 48 No. SIG 9(CVIM 18) Acquisition and Rectification of Shape Data 37

10) Gill, P., Murray, W. and Wright, M.: Practical
Optimization, Academic Press, London (1981).

11) Gruber, A. and Weiss, Y.: Multibody fac-
torization with uncertainty and missing data
using the EM algorithm, Proc. Conference
on Computer Vision and Pattern Recognition
(CVPR2004 ), Vol.1, pp.707–714 (2004).

12) Han, M. and Kanade, T.: Perspective fac-
torization methods for euclidean reconstruc-
tion, Technical Report: CMU–RI–TR–99–22,
Robotics Institute, Carnegie Mellon University
(1999).

13) Harris, C. and Stephens, M.: A combined cor-
ner and edge detector, Proc. Alvey Vision Con-
ference, pp.147–152 (1988).

14) Hasegawa, K., Hirota, Y., Ogawara, K.,
Kurazume, R. and Ikeuchi, K.: Laser range sen-
sor suspended beneath balloon: FLRS (flying
laser range sensor), The IEICE Transactions
on Information and Systems, PT.2 (Japanese
Edition), Vol.J88-D-II, No.8, pp.1499–1507
(2005). (in Japanese)

15) Hirota, Y., Masuda, T., Kurazume, R.,
Ogawara, K., Hasegawa, K. and Ikeuchi, K.:
Designing a laser range finder which is sus-
pended beneath a balloon, Proc. 6th Asian
conference on Computer Vision (ACCV2004 ),
Vol.2, pp.658–663 (2004).

16) Ikeuchi, K., Nakazawa A., Hasegawa, K. and
Ohishi, T.: The Great Buddha Project: Model-
ing Cultural Heritage for VR Systems through
Observation, Proc. 2nd IEEE and ACM Inter-
national Symposium on Mixed and Augmented
Reality (ISMAR2003 ) (2003).

17) Ikeuchi, K., Hasegawa, K., Nakazawa, A.,
Takamatsu, J., Oishi, T. and Masuda, T.:
Bayon digital archival project, Proc. Interna-
tional Conference on Visual Systems and Mul-
timedia (VSMM2004 ), pp.334–343 (2004).

18) Jacobs, D.A.: The State of the Art in Numer-
ical Analysis, Academic Press, London (1977).

19) Leica Geosystems.:
http://www.leica-geosystems.com/.

20) Marquardt, D.W.: An algorithm for least-
squares estimation of nonlinear parameters,
Journal of the Society for Industrial and Ap-
plied Mathematics, Vol.11, pp.431–441 (1963).

21) Lowe, D.G.: Distinctive image features from
scale-invariant keypoints, International Jour-
nal of Computer Vision, Vol.60, No.2, pp.91–
110 (2004).

22) Masuda, T., Hirota, Y., Nishino, K. and
Ikeuchi, K.: Simultaneous determination of reg-
istration and deformation parameters among
3D range images, Proc. 5th International Con-
ference on 3-D Digital Imaging and Modeling
(3DIM2005 ), pp.369–376 (2005).

23) Miyazaki, D., Oishi, T., Nishikawa, T.,
Sagawa, R., Nishino, K., Tomomatsu, T.,
Yakase, Y. and Ikeuchi, K.: The great buddha
project: Modelling cultural heritage through
observation, Proc. 6th International Confer-
ence on Virtual Systems and Multimedia
(VSMM2000 ), pp.138–145 (2000).

24) Moravec, H.P.: Towards automatic visual ob-
stacle avoidance, Proc. 5th International Joint
Conference on Artificial Intelligence, p.584
(1977).

25) Morita, T. and Kanade, T.: A sequential fac-
torization method for recovering shape and mo-
tion from image streams, IEEE Transactions
on Pattern Analysis and Machine Intelligence,
Vol.19, No.8, pp.858–867 (1997).

26) Neugebauer, P.: Geometrical cloning of 3D ob-
jects via simultaneous registration of multiple
range images, Proc. International Conference
on Shape Modeling and Application, pp.130–
139 (1997).

27) Polak, E.: Computational Methods in Opti-
mization, Academic Press, New York (1971).

28) Poelmann, C. and Kanade, T.: A paraperspec-
tive factorization method for shape and motion
recovery, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, Vol.19, No.3,
pp.206–218 (1997).

29) Press, W.H., Flannery, B.P., Teukolsky, S.A.
and Vetterling, W.T.: Numerical Recipes in C,
Cambridge University Press (1988).

30) Rusinkiewicz, S. and Levoy, M.: Efficient vari-
ant of the ICP algorithm, Proc. 3rd Interna-
tional Conference on 3-D Digital Imaging and
Modeling (3DIM2001 ), pp.145–152 (2001).

31) Stoer, J. and Bulirsh, R.: Introduction to Nu-
merical Analysis, Springer-Verlag, New York
(1980).

32) Smith, S.M and Brady, M.: SUSAN — A new
approach to low level image processing, Inter-
national Journal of Computer Vision, Vol.23,
No.1, pp.45–78 (1997).

33) Thrun, S., Diel, M. and Haehnel, D.: Scan
alignment and 3-D surface modeling with a he-
licopter platform, Proc. 4th International Con-
ference on Field and Service Robotics (2003).

34) Tomasi, C. and Kanade, T.: Shape and mo-
tion from image streams under orthography:
A factorization method, International Journal
of Computer Vision, Vol.9, No.2, pp.137–154
(1992).

35) Visnovcova, J., Zhang, L. and Gruen, A.: Gen-
erating a 3D model of a bayon tower using non-
metric imagery, Proc. International Workshop
Recreating the Past —Visualization and Ani-
mation of Cultural Heritage (2001).

36) Walter, E. and Prontazo, L.: Identification of



38 IPSJ Transactions on Computer Vision and Image Media June 2007

Parametric Models from Experimental Data,
Springer (1997).

37) Zoller+Fröhlich GmbH.:
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