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Regular Paper

Registration and Deformation of 3D Shape Data

through Parameterized Formulation

Tomohito Masuda† and Katsushi Ikeuchi†

In this paper, we investigate conventional registration implementation, consisting of rotation
and translation, to design the most precise registration so as to accurately restore the 3D shape
of an object. To achieve the most accurate registration, our registration implementation needs
robustness against data noise, or initial pose and position of data. To verify the accuracy of
our implemented registration, we compare the registration behavior with the registration
behavior of conventional methods, and evaluate the numerical accuracy of transformation
parameter obtained by our registration. However, registration by rigid-body transformation
is not enough for modeling and shape comparison: registration with deformation is needed. In
this paper, we extend our robust registration to simultaneously estimate the shape parameter
as well as the rigid-body transformation parameter. This extension method assumes that
the deformation is formulated strictly from the deformation mechanism. We additionally
introduce the applications of our extension method.

1. Introduction

Recently, progress has been made in restor-
ing the accurate 3D shapes of objects in the
real world using computer graphics. In this re-
search, a laser range sensor is usually used to
capture the 3D shape data of an object. How-
ever, the shape data is just partial because of
the view limitation of the sensor at one scan-
ning. In order to reconstruct the whole shape
of the object, therefore, it is necessary to restore
the neighboring status of partial data that can
compose the whole shape of the object. This
restoration process involves registration among
3D data.

Registration among 3D data is usually
achieved by rigid-body transformation consist-
ing of translation and rotation. This is im-
plemented by the iterative minimization frame-
work of the squared sum of the distance be-
tween closest points among overlapping 3D data
of point cloud (Iterative Closest Point, ICP).
There are various kinds of implementation ac-
cording to the purpose of the procedure.

In this paper, we investigate conventional reg-
istration implementation to design the most
precise registration so as to accurately restore
the 3D shape of an object. In our design of reg-
istration implementation, the top priority is its
accuracy, even if its computation cost could be
expensive as far as the computation complexity
is within the limit of the current computer plat-
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form. To achieve this, our registration imple-
mentation needs robustness against data noise,
or initial pose and position of data. To verify
the accuracy of our implemented registration,
we compare the registration behavior with the
behavior of conventional registrations, and eval-
uate the numerical accuracy of transformation
parameter obtained by our registration.

However, registration by rigid-body transfor-
mation is not enough for modeling and shape
comparison: registration when deformation is
needed. In this paper, we extend our ro-
bust registration to simultaneously estimate the
shape parameter as well as the rigid-body trans-
formation parameter. This extension method
assumes that the deformation is formulated
strictly from the deformation mechanism. Us-
ing this extension framework, we implement a
deformation registration to estimate the shape
parameter from the shape measurement data of
a mathematical plaster model made at the end
of the 19th century.

The proposed deformation registration pays
attention to the significance of estimated pa-
rameter as well as the convergent registration
result. To remove the distortion of data ob-
tained by the sensor suspended beneath the bal-
loon (Floating Laser Range Sensor, FLRS), we
exploit our deformation registration for the dis-
tortion rectification, regarding the movement of
FLRS during scanning as shape parameter. In
each implementation, we evaluate the accuracy
of the estimation of the shape parameter.
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2. Related Works

2.1 Iterative Closest Point Algorithm
Automatic registration we consider here

needs to give the initial pose and position re-
sulting in the optimal registration. This ac-
quisition of initial pose and position can be
achieved by a user through Graphic User In-
terface (GUI).

However, initial registration through GUI is,
at most, the result that the user subjectively
and visually regards as the optimal one, so the
closest points in this stage might not be the
closest points in the optimal registration result.
In the ICP algorithm framework, therefore, the
point correspondence in between neighbor data
sets is taken as the closest point temporally in
the current registration status, and then the
registration is gradually improved. These two
steps, the point correspondence and registra-
tion improvement, are iteratively repeated until
the optimal registration is reached 1).

Assuming that multiple neighbor data sets
are considered in the registration, the straight-
forward quantative function, which we call “ob-
jective function” here, is defined as follows:

f(ti,Ri) =
∑
j �=i

∑
k

||Rixk+ti−yjk||2, (1)

where ti translation vector,
Ri rotation matrix,
xk kth point in the transformed

data set,
yjk the corresponding point

(closest point) of xk in the
j th neighbor data set.

The registration problem is to find the param-
eter vector ti and Ri in this function.

After obtaining their parameter set at each
iterative step, xk can be updated to x′k as fol-
lows:

x′k = Rixk + ti. (2)

2.2 Registration Strategies
The above ICP algorithm was proposed by

Besl and McKay 1), and became the most fun-
damental framework for 3D data registration.
This algorithm framework reduces registration
to the minimization problem of the distance
sum between the corresponding data by the it-
erative calculation. The function minimization
with respect to the transformation parameter
leads the optimal one which represents the plau-
sible transformation between the aligning data

sets, for example, three translation and three
rotation parameters in the case of the rigid-
body transformation. This framework assumed
that two data sets were roughly aligned, and
that the shape of a transformed data set was
the partial one of the neighbor data set. Cur-
rently it is extended in various way in order to
handle multiple data sets and to pursue the ro-
bustness and the speed of convergence.

We can classify them from the viewpoint of
the registration ordering, matching unit, point
correspondence, error metric, and outlier elim-
ination.

2.2.1 Registration Ordering
In the registration of multiple sets of 3D data,

the ordering affects the convergence of the final
result. The sequential ordering chooses a corre-
sponding pair of data sets at each iteration for
the registration, and repeats this process until
all the data sets are aligned 2)～6). Its compu-
tation cost is lower because only two data sets
are handled at each registration. However, it is
susceptible to registration failure since the reg-
istration errors are locally accumulated and this
causes the local discrepancy of the registration
result.

In contrast, the simultaneous ordering aligns
all the data together at each iteration. Al-
though its computation cost is higher, it enables
more accurate registration because the registra-
tion error is distributed globally. Consequently,
we adopt the simultaneous ordering.

2.2.2 Matching Unit
Matching unit determines the way for select-

ing the points used in the registration. The
matching unit of the ICP algorithm has two
kinds: All-points matching uses all points of
a data set. Feature-points matching uses only
points satisfied with some condition, for exam-
ple, only high-curvature points.

Assuming that one-to-one correspondence ex-
ists among all the feature points, the feature-
points matching usually does not change their
correspondence at any iteration 7),8). So it can-
not achieve the accurate registration in the case
in which the correspondence cannot be taken
precisely. Even if it changes their correspon-
dence, the feature points are unreliable when
the range data has considerable noise, because
the feature points are derived by some differen-
tial operation.

The all-points matching updates the corre-
spondence so that it can be more plausible as
the iteration proceeds 1),9), and therefore can
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achieve more accurate registration. Hence, our
registration uses all-points matching.

2.2.3 Point Correspondence
Point correspondence determines how the

corresponding xk,yjk is chosen in Eq. (1).
There are many implementations in finding cor-
responding pairs.

As described in Section 2.1, the typical
ones are nearest neighbor correspondence 1),9)

(Fig. 1-(1)) and normal direction correspon-
dence 10) (Fig. 1-(2)). Nearest neighbor corre-
spondence is taken as the nearest pair in Eu-
clidean space.

Normal direction correspondence is taken as
the nearest pair in the normal direction of a
point, and they are time-consuming. In con-
trast, laser ray direction correspondence can re-
duce the computational cost drastically 5),11),12)

(Fig. 1-(3)). This correspondence is taken in
the direction of a laser ray emitted from the
sensor in 3D point measurement. In Ref. 12),
its search computation mainly depends on the
graphics hardware. In the case of normal and
laser ray direction correspondence, the corre-
spondence is taken between the point xk and
the point (yjk) on the plane hit in the laser
direction of the point xk. Since the plane is
calculated by the differential operation, so lots
of wrong correspondences are caused because of
the data noise.

Registration accuracy and convergence speed
change greatly according to their point cor-
respondence, and Rusinkiewicz et. al. quanta-

Fig. 1 Correspondence using 3D points. Solid and
dotted lines depict the 3D data sets. The red
line shows the correspondence between the 3D
data on solid and dotted lines. The solid line is
then aligned to the dotted line according to the
correspondence between the data.

tively evaluate this in Ref. 13). Paying atten-
tion to the difference of these convergence char-
acteristics, Ref. 4) adopts the hybrid correspon-
dence of nearest point-to-point and point-to-
plane. The top priority in our implementation
is a registration accuracy, so we employ the
nearest neighbor correspondence because the
accuracy is guaranteed for the registration of
various classes of shape in this correspondence.

2.2.4 Error Metric
The error metric depends on what kind of

value xk is. Namely, xk may represents a po-
sition vector, sometimes including a color (red,
blue, green: RGB) vector associated with the
point.

In most implementations, the Euclidean
distance of the matching point is mainly
used 10),11). Some other algorithms adopt such
additional information as the surface normal
and curvature 14), the reflectance (the reflection
ratio of the laser ray)15) and color of the cap-
tured point as the error metric 16) in order to
make up for the inaccuracy of point coordinate.
In the latter algorithms, the Eq. (1) have to be
changed as the following:

f(ti,Ri)

=
∑
j �=i

∑
k

∣∣∣∣
∣∣∣∣
[

Rixk

αexk

]
+

[
ti

0

]

−
[

yjk

αeyjk

]∣∣∣∣
∣∣∣∣
2

. (3)

Here exk
and eyjk

represent such properties as
color, normal, or curvature (possibly their com-
bination), of xk and yjk, respectively. And α
means weight against the squared norm of Eu-
clidean distance.

In our implementation, we use only the Eu-
clidean distance.

2.2.5 Outlier Elimination
To cope with outlier, such as data noise and

wrong point correspondence in the initial reg-
istration, we need to reconsider the objective
function. The straightforward function is rep-
resented as follows:

E(pi) =
∑

j �=i,k

zjk(pi), (4)

where
pi = (ti,Ri), (5)

zjk(pi) = ||Rixk + ti − yjk||2. (6)

In this straightforward least-square (LS) objec-
tive function, noise leads to an imprecise regis-
tration of 3D data, because the exact correspon-
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dences between the noisy data are unknown.
Any erroneous correspondences must be elim-
inated before registration, and a thresholding
is often used to eliminate such false correspon-
dences 3)～5). The threshold value can be deter-
mined as a fraction of the standard deviation,
σ, to the errors in the data 17). Typically, it is
set to greater than or equal to 3σ. This is the
simplest method, but it is unreliable method
because elimination is affected by the binary
classification of the threshold value.

Better outlier elimination can be provided by
M-estimation 15),18), since probability distribu-
tion of the error is considered. M-estimation
maximizes the probability by minimizing a
function of the form

E(p) =
∑

k

ρ(zk(p)), (7)

where ρ(z) is an arbitrary function of the er-
rors zk in the data set. The M-estimator is
the maximum-likelihood estimator such that
the probability distribution P is equivalent to
E(zk).

A Lorentz function is used as the M-
estimator; a Lorentz function can be repre-
sented as:

ρ(zk(p)) = log
(

1 +
1

2σ2
zk(p)

)
. (8)

Wheeler summarized the registration behavior
according to the probability distribution in M-
estimator in Ref. 19).

2.3 Deformation Registration
In this paper, we propose the extended frame-

work of the conventional registration algorithm
to allow the shape deformation during reg-
istration process. This kind of registration,
namely, deformation registration, has been re-
searched in such field as the medical imaging,
and the target object for the registration is
mainly soft tissues. They adopt similarity 20),
affine 14), a kind of spline (octree-spline)21), ge-
ometric hashing 22), quadric/superquadric 23),
and displacement-field-based transformation 24)

so that their deformation works well for any
kind of target shape. For another example, de-
formable motion parameter are estimated us-
ing deformable net model that enables a linear
transformation of deformable objects 25).

These methods can be generally adopted in
shape modeling and fitting. However, if the de-
formation is strictly defined by some parame-
terized formulation derived form the deforma-
tion mechanism, the deformation is much more

accurate when using its formulation than when
derived from their methods. The parameters
obtained from our strict formulation carry with
them the essential information about the cause
and origination of the deformation. So our
framework pays as much attention to the ob-
tained parameters as to the appearance result-
ing from the deformation. In this point, our aim
is different from theirs. So in our assumption
that the shape changes are strictly represented
with a mathematical formula including some
variable parameters and its formula is known
a priori, we formulate the generally extended
registration which allows the 3D data to be de-
formed and determines both the deformation
and the translation and rotation parameters.

3. Robust Determination of Transla-
tion and Rotation Parameters

3.1 Robust Simultaneous Registration
Algorithm

Based on the previous section, here we ex-
plain the details of our designed registration.

In the ICP based registration algorithm, the
acquisition of the valid initial parameter is im-
portant for the optimal registration result. As
a preprocess in our implementation, all the ini-
tial transformation parameters are set manu-
ally, using GUI, with accuracy good enough to
reach a true optimum. In iterative process, the
followings are done:
( 1 ) Constructing kd-trees of data sets.
( 2 ) Searching nearest neighbors using kd-

trees.
( 3 ) Minimizing the objective function

(squared sum of nearest neighbor dis-
tance) to find the better (optimal) reg-
istration parameter.

( 4 ) Updating data sets according to the ob-
tained registration parameter.

The above process is repeated until the optimal
registration is reached.

This kind of algorithm is usually time-
consuming, and most of the computation cost
depends on searching the corresponding (clos-
est) point. Therefore, we use kd-tree search.
Kd-tree is a tree structure from data set to ef-
fectively search closest points. We have already
proposed more effective kd-tree algorithm for
nearest neighbor search than the basic one 26),
and we adopt it in our designed registration.

Pseudo-code for this technique is shown as
Algorithm 1 in Section 4.1 together with the
difference from that of our extended registra-
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tion. Ignore the gray boxes in Section 4.1 if
you understand just the simultaneous registra-
tion without deformation.

3.2 Minimization of Objective Func-
tion for Parameter Estimation

Our registration algorithm aligns all data sets
simultaneously so as to minimize the squared
sum of nearest neighbor point-to-point dis-
tances. The objective function is represented
as follows:

E(pi) =
∑
j �=i

∑
k

ρ(zjk(pi)), (9)

where
pi = (ti,qi), (10)

zjk(pi) = ||R(qi)xk+ti−yjk||2, (11)

ρ(zjk(pi)) = log(1 +
1

2σ2
zjk(pi)), (12)

ti : translation vector,
R(qi) : rotation matrix corresponding to

quaternion qi,
xk : kth point in the data set of

interest,
yjk : the corresponding point of xk

in the jth measured data set.
As for its rotation matrix, we use a quaternion
representation of 3 Degrees Of Freedom (DOF).

Using error metric E(pi), we compute the pa-
rameters pi which fulfill the following equation:

piopt
= arg min

pi

E(pi). (13)

For the gradient-based solution of our non-
linear optimization, the descent gradient is:

∂E

∂pi
=

∑
j �=i

∑
k

∂ρ(zjk)
∂zjk

· ∂zjk

∂pi

=
∑
j �=i

∑
k

1
2σ2 + zjk

· ∂zjk

∂pi
(14)

If we evaluate ∂zjk/∂pi by an identity quater-
nion qI , we can represent ∂zij/∂pi as

∂zjk(pi)
∂pi

= 2(R(qi)xk + ti − yjk)
∂(R(qi)xk + ti − yjk)

∂pi

∣∣∣∣
qI

=
[

2(xk + ti − yjk)
4C(xk)T (xk + ti − yjk)

]

=
[

2(xk + ti − yjk)
−4xk × (ti − yjk)

]
, (15)

because the (negative) gradient of quaternion

at an identity quaternion qI is obtained by
Eq. (16).

∂(R(qi)xk)
∂qi

∣∣∣∣
qI

= 2C(xk)T . (16)

Here, C(xk) is the skew-symmetric matrix to
represent a cross product of two vectors as fol-
lows:

a× b =


 aybz − azby
azbx − bzax

axby − bxay




=


 0 −az ay

az 0 −ax

−ay ax 0





 bx
by
bz




= C(a)b, (17)

where a =


 ax

ay

az


 b =


 bx
by
bz


 ,

and it has such property as C(a)T = −C(a).

From the obtained descent gradient, the con-
jugate gradient is calculated so that all the ob-
tained gradient is guaranteed to be orthogo-
nal. Transformation vector pi is acquired us-
ing the conjugate gradient 27)～29) and line min-
imization method with a combination of golden
ratio bracketing (golden section search) and
parabolic fits.

3.3 Evaluation
In this section, we quantify the effectiveness

of our robust registration on the basis of four
issues by comparing previous registration meth-
ods. First, we discuss the merits of adopting a
simultaneous strategy. Second, we observe the
effectiveness of using stochastic outlier elimina-
tion to increase the robustness of the technique.
Third, to evaluate the effectiveness of these two
steps, we evaluate the overall estimation accu-
racy of our registration.

3.3.1 Simultaneous vs. Sequential Or-
dering

In this evaluation, we align seven partial data
sets of the Fugoppe Cave in simultaneous and
sequential strategies. The data sets were ac-
quired by Cyrax 2500 (Leica), and the standard
deviation of this sensor is 2 [mm]. The average
length of neighbor edges are 5 [mm]. The used
data sets are shown in Fig. 2, and the height in
this figure is 6 [m]. The upper figure in Fig. 2
shows the initial state of these data sets. They
are slightly shifted among the overlapping data.
The middle and lower figures in Fig. 2 respec-
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Fig. 2 Registration results in simultaneous and se-
quential strategies. The upper figure shows the
initial state of partial 3D data. The middle and
lower figures respectively show the registration
results in simultaneous and sequential strate-
gies.

tively show the registration result in simulta-
neous vs. sequential ordering. The sequential
registration we used is basically the implemen-
tation proposed by Ref. 2). In order to observe
only the effect of simultaneous and sequential
strategies, however, this sequential registration
uses M-estimator for outlier elimination.

In sequential registration, we must determine
the data pairing of alignment targets such that

Fig. 3 Detailed observation of registration results of a
pair of aligned data sets in simultaneous and
sequential strategies. The upper figures show
their whole appearance of registration results
in simultaneous (left) and sequential (right)
strategies. The lower figures show the detail
of their overlapping area between them. The
green shows no difference (less than 1 [cm]),
while the red and blue show larger differences
(more than 1 [cm]).

they are exactly overlapping each other. Se-
quential registration considers pairing only two
data sets at a time, and assumes that the reg-
istration works well among each pair of data
sets. So if the transformation is determined in
one data set, it is transformed together with the
rest of the data.

Good registration is visible as evenly mottled
pattern in overlapping area because of slight
differences in sampling and because of the ran-
dom noise, even if the area has an identical
shape.

Comparing simultaneous registration meth-
ods, sequential registration introduces local dis-
crepancies (between the yellow and cyan-blue
data sets, for example). The detailed observa-
tion of a pair of aligned data sets is shown in
Fig. 3. In the lower figures, the green color
indicates areas of little difference (less than
1 [cm]), while the red and blue colors indicate
areas of larger difference (more than 1 [cm]). Si-
multaneous registration results in almost no dif-
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Fig. 4 Initial pose and position between two mirrors.
In this figure, The yellow mirror is slightly
translated and rotated against the red. (Data
Informant: Kashihara Institute of Archaeology
and Tokyo National Museum.)

ference, by comparison; simultaneous registra-
tion is clearly better.

3.3.2 Straightforward Least Square
Registration vs. Robust Regis-
tration

In this investigation, we align the data sets
of two ancient mirrors that were cast from the
same mold. They have local differences in their
shapes.

The initial pose and position between them
is shown in Fig. 4. They are aligned using
straightforward LS registration as well as ro-
bust M-estimator registration. The former is
the registration proposed by Ref. 17), and the
latter is our implemented registration. The reg-
istration result is shown in Fig. 5. Figures in
the first row show the convergence result.

Figures in the second and third row, respec-
tively, show the convex and concave areas of
one mirror vs. the other when the length be-
tween each corresponding point is exceeded by
the setting threshold. This threshold is respec-
tively set to 0.5 and 0.25 [mm] in the second
and third row. In the second row, the upper
circular area has more concave area when using
an M-estimator, but the lower area has more
convex area otherwise. Similarly in the third
row, the left area has more convex area in the
M-estimator result, but the right area has more
convex area otherwise. As shown in the numer-
ical results, the green area, regarded as an area
of no difference in shape, is 51.7 and 49.6 per-
cent of the total in the middle, and is 77.0 and
77.3 percent in the lowest, respectively, in the
case for which the thresholds are 0.25 and 0.5.
This result shows that the outlier area is auto-

Fig. 5 Convergence results of two mirrors. Figures
in the first row show the convergence result,
and figures in the second and third row show
the convex and concave areas of one mirror
against the other when the length between each
corresponding point is exceeded by the setting
threshold, regarded as shape difference. (Data
Informant: Kashihara Institute of Archaeology
and Tokyo National Museum.)

matically recognized and ignored in the regis-
tration process in order to align as much area
as possible.

3.3.3 Estimation Accuracy of Transla-
tion and Rotation parameters

In this investigation, we align two data sets
capturing the face of a tower at Bayon ruin in
Cambodia (Fig. 6-(a)). To consider the reg-
istration of the actual measurement data, we
created two data sets from the same measure-
ment data by sub-sampling the different points.
Figure 6-(b) shows the appearance of two super-
imposed data, which is regarded as the correct
registration between them.

To create the initial position states of two
data sets — original and transformed data sets
— the transformed data set is translated and
rotated, then it is realigned to the original data.
The estimation accuracy of the registration pa-
rameter is regarded as the difference between
the amount of the translation and rotation of
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Fig. 6 Data used in this evaluation. In (a) in this fig-
ure, the size of each unit square is 0.1 by 0.1 [m].
Here, positive axes of x-axis and y-axis are re-
spectively set to the right and upper direction,
and the positive direction of z-axis is set to the
front direction, perpendicular to this figure.

the transformed data set in its initial state and
that of the registration result.

The initial position of transformed data set is
set to three steps in translation and rotation re-
spectively. It is translated to ± 0.5 [m] in each
axis, and is rotated to ± 30 [deg] around all the
direction that can be represented as the com-
bination of −1, 0, and 1 in each axis. As a
result, the number of translation settings is 26
(27 (33) minus 1 (to remove the trivial transla-
tion (0, 0, 0) because the translation distance
of the different sampling data sets is approxi-
mately 10−3 [m] at the convergence if they are
aligned without changing their initial pose and
position)). In rotation, the number of rotation
axes is 26 (27 (33) minus 1 (likewise, to remove
the “rotation” axis (0, 0, 0))), but half of these
axes are symmetrical with respect to the coordi-
nate origin (For example, (−1, 1, 1) and (1, −1,
−1)), so the actual number of rotation axes is
13. In each axis, transformed data set is rotated
30 [deg] in clockwise and counter-clockwise di-
rections, so the number of rotation settings is
26. The number of combining case of trans-
lations and rotations is 676 (26 × 26). Then,
the number of our test cases is 728 (26 cases of
only translation, 26 cases of only rotation, and
676 cases of translation and rotation caused to-
gether).

Figure 7 shows the registration process. In
this case, transformed data set is translated
0.5 [m] and rotated 30 [deg] around the z axis,
and they are accurately aligned after the regis-
tration.

As a numerical result, we show twelve param-
eter sets which are considered typical of all the
estimation results, in Fig. 9. In this figure, “x-t
0.5” means 0.5 [m] translation along x axis, and
“x-r 30” means 30 [deg] rotation around x axis.

Fig. 7 Registration process.

When the initial translation and rotation is set
as shown in the translation and rotation axes
(e.g., x-t 0.5, x-t −0.5, ..., z-t −0.5, x-r 30, x-r
−30, ..., z-r −30), the difference between each
true initial parameter and the corresponding
estimated parameter with respect to each axis
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Fig. 8 Pairs of data sets which result in registration
failure.

Fig. 9 Estimation errors in translation and rotation
for each initial position.

(Translation along x axis, Translation along y
axis, Translation z axis, Rotation around esti-
mated axis) is shown on the vertical axis (e.g.,
0, ± 0.1, ...). This figure shows the translation
and rotation estimation errors of our registra-
tion is respectively within 0.05 [m] and 0.5 [deg].

Of our 728 cases, 694 result in good regis-
tration. Figure 8 shows four pairs of initially
positioned data sets which result in registration
failure. Because we can easily observe large po-
sition differences in these 34 cases as shown in
Fig. 8, our registration seldom fails if the initial
position estimate is manually improved.

In addition, we investigate the result of two
implementations proposed by Ref. 12) (laser
ray direction, point-to-plane correspondence,
thresholding) and Ref. 17) (nearest neighbor,
point-to-point, thresholding) by aligning 728
pairs of data set in the same condition as the
above. In the first registration method 12), 483
result in good registration. Observing the reg-
istration process, the convergence of this reg-
istration looks slow until the optimal registra-
tion is acquired. And in the second registra-

Fig. 10 Partial data used to compare the registration
result of ours and Ref. 17)

tion method 17), 715 result in good registration.
These pairs are completely superimposed in all
area each other, so it looks preferable not to
employ the operation for outlier elimination.
To verify this, we create and align the partial
shape data sets as shown in Fig. 10. The initial
setting of translation and rotation is the same
as the above. Then in our registration, 343
result in goodregistration, while 335 result in
good registration in the registration of Ref. 17).
Though our initial setting is rough in this evalu-
ation, our implementation can prove to be more
robust than Ref. 17), if the more detail evalua-
tion is done than in this investigation.

4. Extension of Rigid-body Transfor-
mation

In this section, we first generally extend the
rigid-body transformation to allow deformation
during a registration. Therefore, estimated pa-
rameters include those which affect their shape
in addition to six parameters of the pose and
position in a conventional registration. In later
sections, we adopt this extended framework to
solve each problem.

4.1 Simultaneous Determination of
Registration and Deformation Pa-
rameters

Our proposal assumes that the deformation
can be represented by a parameterized mathe-
matical formula whose form is known a priori,
but whose parameters are unknown.

Our goal is to simultaneously determine these
deformation, translation, and rotation parame-
ters by comparing the target data to transform
with its corresponding data. We do this using
the ICP framework: translation and rotation
parameters are determined in a minimization
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paradigm. If we fix the translation and rotation
parameters, determination of the deformation
parameter becomes an iterative shape match-
ing problem. Thus, we can handle all param-
eter determinations in a unified minimization
framework.

We extend the parameter estimation of the
registration formulation to add the shape pa-
rameter by extending the objective function in
Eq. (11). Therefore, zjk(p) in Eq. (11) is trans-
formed into:

zjk(pi) = ||R(qi)g(xk, si) + ti − yjk||2,
(18)

where pi = (ti,qi, si),
si : shape parameter,
g(xk, si) : deformation function of

point xk

with respect to parameter
si.

Our rigid-body registration is designed to be
robust, and here we adopt the same strategy as
in Section 3. In this extended framework, we
consider the registration of multiple data sets.
Pseudo-code is as follows.

Algorithm 1 SimultaneousRegistration
AndDeformation
input: InitialDataSets {Di|i = 0, 1, ..., n−1}
{initially aligned data sets}

output: AlignedDataSets {Di|i = 0, 1, ..., n
− 1} {updated and aligned data sets}

local: Kdtree {Ki|i = 0, 1, ..., n− 1}
local: Registration AndDeformation Param-

eter {Pi|i = 0, 1, ..., n− 1}
local: PreviousDescentGradient V
local: CurrentDescentGradient S
local: PreviousConjugateGradient U
local: CurrentConjugateGradient C
local: TemporalDataSet T
const: GainControl λ

repeat
for all i = 0, 1, ..., n− 1 do
Ki ← MakeKdtree(Di)
Pi ← identityparameter {initializing
registration and deformation param-
eter}

end for
for all i = 1, 2, ..., n− 1 do

for all j = 0, 1, ...,m− 1 do
T ← UpdateDataSet(Pi, Di) {tem-
porally updating data set according
to current Pi}

S ← identityparameter {initiali-
zing descent gradient}
for all k = 0, 1, ..., n− 1 do

if i �= k then
S ← S+DescentGradient(Kk,
T )

end if
end for{process for conjugate gra-
dient method begins next}
if j = 0 then
C ← S
U ← S

else
C ← ConjugateGradient(S,U ,
V ) {converting descent gradient
to conjugate gradient}
U ← C

end if
V ← S {process for conjugate gra-
dient method ends here}
C ← LineMinimization({Kl|l =
0, 1, ..., n−1}, Pi, C) {1-dimensional
search in the direction of conjugate
gradient C}
Pi ← Pi + C

end for
end for
for all i = 1, 2, ..., n− 1 do
Pi ← λPi {decelerating transforma-
tion to converge stably}
Di ← UpdateDataSet(Pi, Di)

end for
until Registration AndDeformation Error
Converged

end

Notice that n and m respectively represent the
number of data sets and parameters.

4.2 Detail Explanation of Our Algo-
rithm

We denote Di, Ki, and Pi (i = 0, 1, ..., n− 1)
respectively by a data set of 3D points in the
ith range image, kd-tree of a data set Di, the
transformation parameter of Di in each iter-
ation. For every i, all points in every data
set Di are converted to a kd-tree structure in
function MakeKdtree (Fig. 11). These kd-
trees are used in function DescentGradient.
Function ConjugateGradient converts the de-
scent gradient of a transformed data set
into the conjugate gradient in registra-
tion parameter space. As a final proce-
dure, Function LineMinimization performs 1-
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Fig. 11 Illustration of alignment process.

dimensional search in the direction of conjugate
gradient. This procedure is described in Sec-
tion 3.2. After obtaining every transformation
parameters, Function UpdateDataSet updates
the data sets according to the obtained trans-
formation parameter as shown in Eq. (2).

In our algorithm, two ideas are implemented
to align data sets stably, and to avoid the wrong
convergence and the vibration. First, one data
set (D0 in the pseudo-code, for example) is not
transformed. Second, the transformation is de-
celerated without using the obtained transfor-
mation parameter itself. Our implementation
solves the optimal parameters of both transla-
tion and rotation together, then the decelera-
tion parameter (GainControl λ in the pseudo-
code) is determined so as not to exceed the
maximum permissible levels of both translation
and rotation at each iteration. In our imple-
mentation, the maximum permissible transla-
tion and rotation are empirically determined as
a fraction of the scale of a transformed data set,
and as a constant, respectively.

In addition, the minimization of objective
function is usually involved with respect to
all registration parameters (P0, P1, ..., Pn−1)
(letting the dimensional number of Pk(k =
0, 1, ..., n − 1) be m, then the parameter di-
mension is m × n.), but our registration is im-
plemented by minimizing the objective func-
tion with respect to each registration param-

Fig. 12 (1) A Mathematical model and (2) its ideal
representation used in our experiment. It
has the constant negative curvature on all
points of their surface. [Data Informant: Prof.
Toshitake Kohno (Graduate School of Mathe-
matical Sciences, The University of Tokyo)]

eter (Pi)(i = 0, 1, ..., n − 1) (where the param-
eter dimension is m) because our registration
assumes to begin with a good initial state, and
to be gradually improved because of the trans-
formation deceleration. As a consequence, both
implementations provide the same convergence
result. Moreover, it is easier to implement the
minimization with respect to each parameter,
and to extend this rigid-body transformation
to allow the deformation during a registration
step.

5. Shape Parameter Estimation of
Mathematical Model

5.1 Mathematical Model : Revolution
Surface of Catenary

As a main topic in this section, we estimate
the shape parameter of certain mathematical
model made of plaster in order to examine its
manufacturing accuracy (Fig. 12). This model
is a cultural asset; it was manufactured in Ger-
many at the end of the 19th century for educa-
tional purposes. It has been displayed in The
University Museum, The University of Tokyo.

This object has no documentation, and we
are interested in identifying the shape parame-
ters the makers used in manufacturing it. We
wish to estimate deformation parameters by ap-
plying our extended registration framework al-
gorithm to both measured data sets and the
data set computed by mathematical formula, in
order to evaluate the manufacturing accuracy of
the plaster model.

Using our estimated parameters, we also wish
to remake more accurate model for compari-
son, because both historians and the mathe-
maticians are interested in the level of manu-
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facturing skill extant in those days. Our target
is the model that is called “revolution surface
of catenary”.

5.2 Mathematical Formula and Exper-
imental Result

The surface generated by rotating a 2D cate-
nary is shown in Fig. 12-(1). Such a surface al-
ways has azimuthal symmetry. Besides scale
parameter (l), there are two parameters (a,
b) involved in the generation of such surfaces.
This model does not depend on measurement
points, so g(xk, si) in Eq. (18) is actually g(si).
The numerical formula is as follows:

shape parameter si =(a, b, l) (0<b≤a),
g(si) = (lφ(v) cosu, lφ(v) sinu, lψ(v)),

(19)

where
0 ≤ u ≤ 2π,

−a · sinh−1
(a
b

)
≤ v ≤ a · sinh−1

(a
b

)
,

φ(v) = b cosh
(v
a

)
, (20)

ψ(v) =
∫ v

0

√
1− b2

a2
sinh2

(
t

a

)
dt. (21)

Then, the descent gradient is calculated as
∂zjk(pi)
∂pi

=


 2(Rig(si) + ti − yjk)

−4g(si)× (ti − yjk)
2(Rig(si) + ti − yjk)Ri

∂(g(si))
∂si


 ,

(22)
where

pi = (ti,qi, si).
The 3D shape of the plaster model was captured
using a VIVID 900 (KonicaMinolta) range
finder. The data sets were initially aligned us-
ing a manual process via Graphic User Interface
(GUI). Initial shape parameter was also manu-
ally estimated. Figure 13 shows the registra-
tion process. The result was well-behaved and
convergent. The shape parameters were esti-
mated as follows:

a = 0.0568, b = 0.0237, l = 0.996.
5.3 Evaluation
Our estimation is affected by various kinds of

errors: range data measurement errors; initial
registration errors; and the errors in the man-
ually input initial shape parameter. We have
already reported how the accuracy of our esti-
mated parameter depended on such errors by
using synthesized data computed using known

Fig. 13 The convergent characteristic of the paramet-
ric data. Views (1)-(8) show gradual conver-
gence to the data of the revolution surface of
a 2D catenary.

parameters and adding Gaussian noise 30).
Additionally, here we investigated the com-

bined effects of an initial translation, rotation,
and specified shape parameter. The initial
shape parameter (a, b, l) of the calculated data
was set to five steps around each truth value.
In particular, a, b, and l were set to 0.03, 0.04,
0.05, 0.06, 0.07, to 0.01, 0.015, 0.02, 0.025, 0.03,
and to 0.7, 0.85, 1.0, 1.15, 1.3. Initial transla-
tion and rotation were exclusively set to three
steps as follows: translation to 0.01, 0.02, and
0.03 [m] along x and z axes, and rotations of
10, 20, and 30 [deg] around the x axis. This
results in 124 deformation cases (125 (53) mi-
nus 1 (0.05, 0.02, 1.0: the truth value)). There
are 9 translation and rotation cases, so there
are 1,116 (124 × 9) cases to investigate. Alto-
gether, therefore, we investigated 1,249 (124 +
9 + 1,116) cases.

Of these 1,249 cases, 991 result in the cor-
rect registration. Judging from these results, a
registration tends to fail if there is too much dif-
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Fig. 14 Reproduced metallic mathematical model.

ference between the initial value and the truth.
These data sets are obviously different in their
shape and position; these differences might be
easy to cancel because the user can immediately
recognize a deficiency and re-run the algorithm
after improving the initial shape parameter and
position estimates.

5.4 Reproduction of Mathematical
Model

Using our algorithm of shape parameter esti-
mation, another mathematical model of Dini’s
Surface was reproduced in metal by Yamada
Seiki Co., ltd. 31) under the supervision of
an artist, Mr. Hiroshi Sugimoto 32). Yamada
Seiki Co.,ltd successfully generated the 3D
Shape of the original model with high accuracy
(Fig. 14), and Mr. Sugimoto held an exhibition
of the work at the Mori Art Museum at Rop-
pongi Hills.

In this way, our algorithm can create CAD
(computer-aided design) primitives and com-
pressed 3D shape data faithful to the original
shape, and as a result, we can refine or alter the
shape as desired.

6. Registration for Range Data Ob-
tained by Floating Laser Range
Sensor

6.1 Floating Sensing System
To obtain 3D measurement data of large ob-

jects, a laser range sensor (LRS) mounted on
a tripod is often used. Unfortunately, it often
happens that some part of a large object is in-
visible from the ground. In order to scan these
invisible faces, a scaffold might be built nearby.
However, this involves time and expense, and
moreover, some surfaces might still not be visi-
ble due to space limitations for this scaffolding,
lack of a viable superstructure, and so forth.

In order to remedy this problem, several
aerially-based measurement systems have been
proposed. For example, aerial 3D measure-
ments could be taken with a laser range sen-
sor installed on a helicopter platform 33)～36).
High frequency vibration of the platform, how-
ever, would need to be considered to obtain
accurate results. Another technique is aerial
stereo photography with a digital camera at-
tached to a balloon 37); however, this method
cannot achieve a high level of measurement pre-
cision. For another example, the 3D data acqui-
sition method of freely moving objects can be
developed by using Lissajous pattern for track-
ing objects 38). But this system does not use
raster scan unit, so this rectification algorithm
cannot be adopted for general range sensors.

We have developed a novel 3D measurement
system 39). Our system digitizes objects from
the air while being suspended beneath a bal-
loon. Although our system is free from high fre-
quency vibration like that caused by helicopter
engines, there still remains low frequency move-
ment due to the floating balloon which distorts
the data. However, this movement can be mod-
eled as simple trajectory consisting of constant
velocity translation and constant angular veloc-
ity rotation.

Our system consists of two main processes:
scanning and registration. For the 3D scanning
of visible surfaces from the ground, we use an
LRS mounted on a tripod on the ground, as
usual. To scan facets invisible from the ground,
such as the rooftop of a building, we have de-
veloped and tested a Floating Laser Range Sen-
sor (FLRS). The FLRS data contains distor-
tion caused by the swing motion of the balloon
during scanning, but our extended registration
framework can be applied to remove this to rec-
tify the data.

6.2 Floating Laser Range Sensor
Our FLRS system consists of a scanner unit,

a controller and a personal computer (PC).
These three units are suspended below a bal-
loon.

Our scanner unit includes a laser range finder
especially designed to be hung from a balloon.
Our design requirements were that the unit be
compact and lightweight enough to be carried
by a balloon, and that it be fast enough to
minimize the influence of the balloon’s normal
swing.

The scanner unit includes a spot laser radar
unit and two mirrors. We chose to use the
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LARA25200 supplied by Z+F Inc. as a laser
radar unit because of its high sampling rate
(maximum 625,000 [points/sec]).

6.3 Inter- and Intra-Scanning Regis-
tration

6.3.1 Assumption and Formulation of
FLRS Motion

In order to align data sets from the FLRS,
we distinguish between two different types
of movement, “inter-scanning” and “intra-
scanning”. Inter-scanning movements provide
different views of a scene, and are equivalent
to a series of rigid-body transformations. But
the FLRS moves during the acquisition of each
range data set; this intra-scanning movement
of the sensor distorts the measurement data.
Our extended registration framework enables
the rectification of this distortion; we can rep-
resent this motion as a deformation parameter.

The motion of FLRS during scanning de-
pends on the following:
( 1 ) Its initial velocity
( 2 ) Its initial angular velocity
( 3 ) Any acceleration generated by external

force
( 4 ) Any angular acceleration generated by

external moments
We can ignore the influence of translation and
angular accelerations because our FLRS needs
only one second to scan a frame. Therefore,
we consider FLRS movement to have constant
velocity in translation and rotation, without
changing its rotation axis during a frame. Un-
der this assumption we set up the deformation
equation in Eq. (18).

Figure 15 shows positional relationship in
intra-scanning registration. Here, Ou means
the origin of the camera coordinate system for
the case in which FLRS does not move during
a scan, and Od means the origin of the camera
coordinate system at the time τk. (Note that
0 ≤ τk ≤ 1; one measurement can require up to
a second.)

Assuming that the FLRS moves during scan-
ning, τk is the time elapsed since the first point
was captured. Then FLRS acquires a 3D point
au in the camera coordinate system u (i.e., ad

in the camera coordinate system d).
If the corresponding point of au is bu in the

world coordinate system w, then the error in
this registration can be represented as

zi = ||Rw←uau + Tu − bu||2. (23)
If the FLRS moves during acquisition, the mea-
surement point is captured from the origin of

Fig. 15 Positional relationships in the case of intra-
scanning registration. Ow, is the origin of the
world coordinate system, Ou the camera co-
ordinate system origin when the measurement
starts, and Od is the camera coordinate at
time τk elapsed since its start. Capital and
small letters are respectively concerned with
the world coordinate and each camera coordi-
nate shown by their subscript.

the camera coordinate Od at the measurement
time τk. Letting the translation vector and ro-
tation matrix from the coordinate system u to
the coordinate system d at time τk be vuτk and
Rd←u(τk) respectively, then in the coordinate
system u,

au = ∆R−1
d←u(τk)ad + vuτk. (24)

Notice that R−1
d←u(τk) is equal to Ru←d(τk).

Substituting Eq. (24) for Eq. (23),
zi = ||Rw←u(∆R−1

d←u(τk)ad + vuτk)
+Tu − bu||2. (25)

In this case, the geometric function g(xk,k)
is represented as follows:

g(xk,pintra) = ∆R−1
d←u(τk)xk+vτk, (26)

where pintra include the state of the intra-
rotation axis, its angular velocity, and the intra-
translation (v).

In addition to the parameters of the rigid-
body transformation Rw←u, Tu, we have
to estimate the deformation parameter of
∆R−1

d←u(τk), vu.
Intra-rotation is represented by the descrip-

tion of the rotation axis and angular velocity,
but these parameters cannot be obtained in
the same way as the rigid-body rotation solu-
tion which involved a quaternion derivative. In
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case of rigid-body rotation, the rotation axis
description is first calculated, and then the
amount of rotation around this calculated axis
can be determined by the quaternion normal-
ization. This rigid-body rotation is common to
the whole data. But intra-rotation does change
with the time τk at each i-th point, namely, it
must be represented as a function with respect
to τk.

To remedy this problem, we represent
∆R−1

d←u(τk), by allowing m and ω be the ro-
tation axis and angular velocity respectively, as
follows:

∆R−1
d←u(τk)

=∆R−1
d←u(m, ωτk)=


 r11 r12 r13
r21 r22 r23
r31 r32 r33




where


r11 = (1− cosωτk)mx
2 + cosωτk

r12 = (1− cosωτk)mxmy − (sinωτk)mz

r13 = (1− cosωτk)mzmx + (sinωτk)my

r21 = (1− cosωτk)mxmy + (sinωτk)mz

r22 = (1− cosωτk)my
2 + cosωτk

r23 = (1− cosωτk)mymz − (sinωτk)mx

r31 = (1− cosωτk)mzmx − (sinωτk)my

r32 = (1− cosωτk)mymz + (sinωτk)mx

r33 = (1− cosωτk)mz
2 + cosωτk

(27)

m=(mx,my,mz) and ||m||=1. (28)

6.3.2 Parameter Gradient of Objec-
tive Function

To derive the descent gradient in this non-
rigid case, we replacing Rw←u, ∆R−1

d←u(τk), ad,
vu, τk, Tu, and bu with Ri, ∆Ri(τk), xk, v,
τk, Ti, and yjk in Eqs. (25) and (26) to obtain
the following:

zjk = ||Rig(xk,pintra)+Ti−yjk||2, (29)

g(xk,pintra)=∆Ri(m, ωτk)xk + viτk,

(30)

where
pintra = (v,m, ω). (31)

The descent gradient is therefore:
∂zjk

∂pi

= 2(Rig(xk,pintra) + Ti − yjk)
∂(Rig(xk,pintra) + Ti − yjk)

∂pi
(32)

=




2(Rig(xk,pintra)+Ti−yjk)
−4g(xk,pintra)×(Ti−yjk)

2(Rig(xk,pintra)+Ti−yjk)Ri
∂g(xk,pintra)

∂v

2(Rig(xk,pintra)+Ti−yjk)Ri
∂g(xk,pintra)

∂m

2(Rig(xk,pintra)+Ti−yjk)Ri
∂g(xk,pintra)

∂ω


,

(33)

where
p = (Ti,qi,v,m, ω), (34)

∂g(xk,pintra)
∂v

=


 (τk 0 0)T

(0 τk 0)T

(0 0 τk)T


, (35)

∂g(xk,pintra)
∂m

=
∂∆Ri(m, ωτk)

∂m
xk, (36)

∂g(xk,pintra)
∂ω

=
∂∆Ri(m, ωτk)

∂ω
xk. (37)

Again, notice that only the rigid-body rotation
is evaluated at qI .

∂∆Ri(m,ωτk)
∂m and ∂g(xk,pintra)

∂ω in Eqs. (36) and
(37) can be derived from Eq. (27) as follows:

∂∆Ri(m, ωτk)
∂mx

=


 2(1−cosωτk)mx (1−cosωτk)my

(1−cosωτk)my 0
(1−cosωτk)mz sinωτk

(1−cosωτk)mz

−sinωτk
0


 , (38)

∂∆Ri(m, ωτk)
∂my

=


 0 (1−cosωτk)mx

(1−cosωτk)mx 2(1− cosωτk)my

−sinωτk (1−cosωτk)mz

sinωτk
(1−cosωτk)mz

0


 , (39)

∂∆Ri(m, ωτk)
∂mz

=


 0 −sinωτk

sinωτk 0
(1−cosωτk)mx (1−cosωτk)my

(1−cosωτk)mx

(1−cosωτk)my

2(1−cosωτk)mz


 , (40)

and
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Fig. 16 Detail of Bayon Data. This range data is the
partial shape of the Bayon temple in Cambo-
dia.

∂∆Ri(m, ωτk)
∂ω

= τk


 f11 f12 f13
f21 f22 f23
f31 f32 f33




where


f11 = (mx
2 − 1) sinωτk

f12 = mxmy sinωτk −mz cosωτk
f13 = mzmx sinωτk +my cosωτk
f21 = mxmy sinωτk +mz cosωτk
f22 = (my

2 − 1) sinωτk
f23 = mymz sinωτk −mx cosωτk
f31 = mzmx sinωτk −my cosωτk
f32 = mymz sinωτk +mx cosωτk
f33 = (mz

2 − 1) sinωτk

(41)

6.4 Experiment
As an experiment on an actual case, we exe-

cuted our algorithm on the data of the Bayon
temple. In this experiment, we aligned the cor-
responding data captured by our FLRS and
Cyrax 2500. The latter data set was scanned
from the stable ground so that there was no
movement during scanning, and we assume that
it is sufficiently reliable. The details of the data
set and the registration process are respectively
shown in Figs. 16 and 17. The overlapping
area between data sets of FLRS and Cyrax 2500
is illustrated in the initial state (top figure) in
Fig. 17. You can see the big gap in shape be-
tween two data sets in the initial state, but the
gap is guradually improved, and as a result,
they are aligned and fitted in the final state.

6.5 Evaluation
To evaluate the accuracy of the algorithm, we

aligned the two data sets used in the accuracy
evaluation of our rigid-body transformation pa-

Fig. 17 Range images in our registration process: A
range image of FLRS (yellow) is aligned and
fitted onto the corresponding range image of
Cyrax 2500 (red) simultaneously. There is ini-
tially a big gap in shape between two data
sets, but the gap is gradually reduced as our
extended registration proceeds.



Vol. 48 No. SIG 9(CVIM 18) Registration and Deformation of 3D Shape Data 17

rameter (See Section 3.3.3). One data set is re-
garded as a data set without distortion, and the
other as being deformed according to Eq. (26).
This latter data set is equivalent to the qual-
ity of a data set obtained by FLRS. We con-
sidered the position difference (inter-translation
and inter-rotation: rigid-body translation and
rotation) of our two data sets.

The initial intra-transformation (intra-
translation and intra-rotation) of pseudo-FLRS
data was manipulated in five steps: exclu-
sively setting translation to ±0.5, ±0.25, and
0 [m/s] in each axis, and exclusively setting ro-
tation to ±20, ±10, and 0 [deg/s] around each
axis. In this scenario we assume the rotation
axis is known. The number of actual intra-
transformation cases are therefore 168 because
the number of only intra-translation, only intra-
rotation, and combined intra-transformation is
respectively 12 (4 (±0.5 and ±0.25) × 3 (each
axis)), 12 (4 (±20 and ±10) × 3 (each axis)),
144 (12 × 12). (The effect of a varying initial
rotation axis is investigated later.)

Next, the effects of inter-transformation
(inter-translation and inter-rotation) are con-
sidered. The initial inter-transformation was
manipulated in three steps: translation to ±0.1
and 0 [m], and rotation to ±5 and 0 [deg]. In
this case, the number of inter-transformation is
12 because the number of only inter-translation
and only inter-rotation is 6 (2 (±0.5) × 3 (each
axis)) and 6 (2 (±5) × 3 (each axis)). Thus, the
total number of evaluation pattern is 2169 (144
(only intra-transformations) + 12 (only inter-
transformations) + 144 × 12 (combination of
intra- and inter-transformation)).

As a numerical result, we show 24 eval-
uation results on behalf of all the estima-
tion results in Figs. 18 and 19. Figure 18
and 19 respectively investigate the effects of
only inter-transformation as well as only intra-
transformation on parameter estimation. In
these figures, “x-t” means translation along
x axis, and “x-r” means rotation around x
axis. Judging from these figures, the result-
ing errors of inter-translation, inter-rotation,
intra-translation, and intra-rotation are re-
spectively within 0.15 [m], 2.2 [deg], 0.11 [m/s],
and 1.9 [deg/s]. It can be seen that inter-
transformation errors tend to have more effect
on parameter estimation than that of intra-
transformation.

For estimation evaluation of an intra-rotation
axis, a data set in which intra-translation is

Fig. 18 Estimation errors of parameters for each
initial inter-transformation.

Fig. 19 Estimation errors of parameters for each
initial intra-transformation.

set to −0.25 [m] along z axis (= (0, 0, 1))and
intra-rotation is set to −10 [deg] is aligned to
the data set without distortion. Then, we set
the initial intra-rotation axis to (0.00, 0.50, 0.87
(=

√
3

2 )). After registration, estimated axis of
intra-rotation is (0.00, 0.48, 0.88). Therefore,
the intra-rotation axis can be reasonably esti-
mated by our method, with its resulting ap-
pearance visibly close to the truth (Fig. 20).
However, the initial estimate must be somewhat
close to the truth or wrong convergence may re-
sult.

Of 2,196 cases, we considered 1,860 cases re-
sulted in good registration. Generally speaking,
as long as the initial error of inter-translation,
inter-rotation, intra-translation, and intra-
rotation is respectively within±0.5 [m], ±5 [deg],
±0.25 [m/s], and ±20 [deg/s], the registration
result will be accurate, even if these effects are
combined.
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Fig. 20 Registration result in the case which the differ-
ent parameter of intra-rotation axis is initially
set.

7. Conclusion and Future Work

In this thesis, we proposed the robust simul-
taneous registration of 3D shape data. This
registration reduces the solution of a nonlin-
ear equation to iteratively minimize the dis-
tance between a pair of corresponding 3D data
sets. As a preparation for designing the regis-
tration algorithm, we analyzed the merits and
demerits of conventional methods, and to de-
sign the most accurate registration algorithm,
we adopted the simultaneous ordering, all point
matching, closest point-to-point distance, and
M-estimator for outlier elimination.

To verify the robustness of our registration
against the initial position and the measure-
ment noise, we evaluated the estimation ac-
curacy of registration parameter, comparing
the registration result between our method and
conventional registration. To summarize our
implemented registration, it can align only the
identical part of superposing 3D shape data ro-
bustly because of the use of M-estimator, and
can restore even complex shape since simulta-
neous strategy is employed.

Moreover, we extended our registration,
namely, rigid-body transformation, to enable
registration among 3D data that can deform
each other through some known mathematical
formula. This extended method requires deter-
mining more parameters concerned with shape
than just the six translation and rotation pa-
rameters. It can solve the rigid-body transfor-
mation and shape parameter in a unified man-
ner. Here we assumed that the shape changes
are strictly defined by some parameterized for-
mulation derived from the deformation mecha-
nisms.

We employed our extended registration to
estimate the shape parameter from the shape

measurement data of mathematical plaster
models. We successfully estimated their param-
eters and reproduced a metallic replica model of
the original Dini’s Surface with high accuracy.
We verified the estimation accuracy through a
simulation-based experiment.

We also applied our extended registration to
registration among range images obtained by
the laser range sensor suspended beneath a bal-
loon. In contrast with a conventional 3D sens-
ing system, this registration needs to rectify the
distortion due to the movement during mea-
surement. We also evaluated the estimation ac-
curacy of FLRS movement, and the applicable
limitation.

In our future work, we have some goals for
improving our system. The first is to automat-
ically determine the initial pose and position
among aligned data sets. This automatic deter-
mination would enable totally automatic regis-
tration among 3D data sets. The problem is
how to lead the initial state for our system to
work well.

As the next goal, the capability of our de-
formable data should be investigated in more
detail. In this paper, we do not pay attention
to the relation of the registration correctness to
the coverage ratio of identity surface between
undeformable and deformable data. And it is
interesting to consider the deformable data reg-
istration without rigid (undeformable) data. In
that case, some additional constraints might be
needed. In this thesis, we always assumed the
registration between rigid data and deformable
data. This problem here may also be how to
determine the initial pose, position, and shape
parameter as described above.

The applications we proposed here are only
a few of the possible applications, and we are
trying to develop an application to generate the
CAD primitives under the shape parameter es-
timated from the range image. This application
will convert the range images into the properly
approximated CAD data sets. The benefit of
this application is to be able to compress the
range images which usually consist of numer-
ous 3D points and polygons. We intend to ap-
ply our framework widely to various classes of
problem.
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