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Synthesis of Dance Performance Based on

Analyses of Human Motion and Music

Takaaki Shiratori†1 and Katsushi Ikeuchi†2

Recent progress in robotics has a great potential, and we are considering to
develop a dancing humanoid robot for entertainment robots. In this paper,
we propose three fundamental methods of a dancing robot aimed at the sound
feedback system in which a robot listens to music and automatically synthe-
sizes dance motion based on the musical features. The first study analyzes
the relationship between motion and musical rhythm and extracts important
features for imitating human dance motion. The second study models modi-
fication of upper body motion based on the speed of played music so that a
humanoid robot dances to a faster musical speed. The third study automat-
ically synthesizes dance performance that reflects both rhythm and mood of
input music.

1. Introduction

Since technology regarding humanoid robots is advancing rapidly, many re-
search projects related to these robots have been conducted. To add to this
research, we are considering to enhance human dance moiton for entertainment
robots, and aiming at mimicing dance performance with a biped humanoid robot.

We developed an algorithm to enable a humanoid robot to represent dance
performance 17). This algorithm is based on a Learning-from-Observation (LFO)
paradigm that has a robot directly acquire the knowledge of what to do and how
to do by observing a human demonstration. This paradigm is necessary because
the difference in body structure between a robot and a human performer makes
it impossible to directly map human motion to a robot that needs to maintain its
balance. We designed task models for leg motion of dance performance based on
contact states, and we have used these to automatically modify human motion
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for use by a robot.
However, there still remains the problem that this algorithm is done offline and

a robot cannot listen to music and respond to it when performing a dance. In
this paper, we propose three fundamental techniques aimed at the achievement
of dancing-to-music ability. This ability, which we call sound feedback system,
indicates that people can synchronize their dance motion with various musical
features such as rhythm, speed, and mood, even if they are novices. The ulti-
mate goal is that a robot listens to currently played music and automatically
synchronizes or composes dance motion synchronized with the music.

2. Overview of Proposed Methods

Considering characteristics of actual dance performances, there are various mu-
sical features affecting dance motion. We mainly focused on the following corre-
spondences between music and motion:
Rhythm Rhythm is one of the most important features for dance performance.

Even novices can recognize musical rhythm, and easily clap or wave their
hands and legs in response to it.

Speed Dance motion should be synchronized with the speed of musical rhythm.
Usually, when music gets faster, dance motion is modified to follow up the
musical speed.

Mood Some dance performances are much affected by musical moods such as
happiness and sadness. Even if we don’t dance to music, we feel quiet and
relaxed when listening to relaxing music such as a ballad, and we feel excited
when listening to intense music such as hard rock music.

Based on these factors, we developed three methods to analyze and synthesize
dance motion with musical features based on human perceptions.

The first study described in Section 3 is to analyze the relationship between
motion and musical rhythm and to extract important stop features in order to
mimic human dance motion. The goal of this study is to distinguish which fea-
tures should be preserved for dance motion imitation. According to observation
of human dance motion, motion rhythm is represented with a stop motion called
a keypose, at which dancers clearly stop their movements, and the motion rhythm
is synchronized with musical rhythm when performing a dance. The proposed
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35 Synthesis of Dance Performance Based on Analyses of Human Motion and Music

method aims to reveal this relationship.
The second study described in Section 4 is to model how to modify upper body

motion based on the speed of played music. When we observed structured dance
motion performed at a normal music playback speed and motion performed at
faster music playback speed, we found that the detail of each motion is slightly
different while the whole of the dance motion is similar in both cases. To prove
this, we analyzed the motion differences in the frequency domain, and obtained
two insights on the omission of motion details.

The third study described in Section 5 is to synthesize dance performance
that is well matched to the mood of the input music. We mainly focus on
intensity in dance performance as a mood feature. We designed an algorithm
to synthesize new dance performance by assuming these relationship between
motion and music rhythm mentioned in the first study, and the relationship
between motion and music intensity. However, dance motion with high intensity
is difficult to reproduce with a biped robot due to balance maintenance, and our
target in this study is CG character animation. But we believe that this method
will be applicable to a robot in the future.

3. Keypose Extraction for Imitating Dance Motion 26)

Mapping human motion to a humanoid robot is a difficult problem, and under-
standing what features in human motion are important and using the features for
reproduction with robots has been well studied. Some previous methods have ac-
tually extracted abstract models by recognizing what to do and how to do it, and
generating motion for robots from the models 7),8),16),20),28). However, we found a
problem that the traditional techniques tended to extract too many models from
dance motion 19), and it is nearly impossible to distinguish what is truly impor-
tant for dance performance imitation. This section describes a novel method to
analyze the relationship between important postures in dance motion and musi-
cal rhythms in order to understand the essential features of dance motion. We
refer to these important postures as keyposes.

According to Flash, et al. 3), every human motion consists of several motion
primitives, which denote fundamental elements of human motion, and these
primitives are segmented by detecting instances when hands and feet stop their

movements. In whole body motion, there are many methods to segment human
motion by detecting the local minima of end-effector speed and to classify the
motion segment into several clusters by calculating co-occurrence 21), by using
Hidden Markov Models (HMM) 7), or by applying a spatio-temporal isomap for
dimensionality reduction 8). Kahol, et al. 9),10) proposed a motion segmentation
method using approximated physical parameters such as force, momentum and
kinetic energy. We decided to follow this biomechanical concept basically, and
thus we defined that keyposes in dance motion as stopping postures.

In addition, we focused on the rhythm of dance performance. The motion
rhythm of most dance performance corresponds to music rhtyhm, and some
prior work on character animation uses this property for animated motion syn-
thesis 1),12),13). So our method consists of a motion analysis step that extracts
stopping postures from motion and a music analysis step that extracts rhythm
from music. Combining motion and musical information allows the motion’s
keyposes to be established.

3.1 Rhythm Tracking from Music Sequence
To estimate musical rhythm, we use the following known principles:

Principle 1: A sound is likely to be produced consistent with the timing of the
rhythm.

Principle 2: The interval of the onset component is likely to be equal to that
of the rhythm.

The onset component represents the spectral power increase from the previous
temporal frame, and we use Goto, et al.’s method 5) for the extraction of onset
components. By applying an auto-correlation function to time series of onset
components, we can estimate the rhythm of music.

3.2 Keypose Candidate Extraction from Motion Sequence
Our motion analysis method is based on the speed of a performer’s hands, feet

and center of mass (CM). In many forms of dance, including Japanese traditional
dance, the movements of hands and feet have a strong relationship with the
intended expression of the whole body. Therefore, the speed of the hands and feet
is useful for extracting stop motions. However, this is not sufficient for keypose
extraction because sometimes the dancer makes rhythm errors, or dances are
varied by the preferences or the genders of performers, etc. So in addition to the
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36 Synthesis of Dance Performance Based on Analyses of Human Motion and Music

Fig. 1 Keypose candidate extraction for hand and CM motions.

motion of the hands and feet, our algorithm uses the motion of the body’s CM
calculated from standard mass distribution. The motion of the CM represents the
motion of the whole body; thus, the effects of missteps and individual differences
are less. Through this step, we extract motion keypose candidates that satisfy
the following criteria:
( 1 ) Dancers clearly stop their movements.
( 2 ) Dancers clearly move their body parts during neighboring keyposes.
The second criterion is necessary to avoid very small spikes of speed sequence
produced by noise.

3.2.1 Hand and CM Motions
The speed of hand and CM motions approaches zero for stopping movements

as shown in Fig. 1. To extract keypose candidates for hand and CM motions,
we modify the criteria described above as:
( 1 ) Each candidate is a local minimum in the speed sequence, and the local

minimum is less than a minimum speed threshold.
( 2 ) The local maximum between two successive candidates is larger than a

maximum speed threshold.
3.2.2 Foot Motions
In foot motions, one leg often functions as a supporting leg while the other leg

is functioning as a swing leg. Thus, the speed sequence for foot motions often
consists of a series of bell-shaped curves, as shown in Fig. 2. To extract keypose
candidates from foot motions, we first extract the rise and decay of the feet speed
sequences. Then, the area between the rise and decay, which shows how far each
foot moved while it was used as a swing leg, is calculated. If the area is larger

Fig. 2 Keypose candidate extraction for foot motions.

Fig. 3 Refinement of the keypose candidates using musical rhythm.

than a trajectory length threshold, these rise and decay become candidates.
3.3 Keypose Candidate Refinement Using Musical Rhythm
The next step is to refine the keypose candidates by considering musical

rhythm. For each speed sequence, our method tests whether there are candidates
around musical rhythm inflection points as detected from the onset components.
If there is a keypose candidate, it is possible that there is a stop point in the
musical rhythm, and if so, this keypose candidate is retained for the final step.

Figure 3 illustrates the keypose candidate refinement process. Musical
rhythms are represented as vertical solid lines. There are keypose candidates
around second and fourth musical rhythms, represented in the figure by green
vertical lines, and these candidates are preserved for the keypose extraction pro-
cess.

3.4 Keypose Extraction
In the next phase, keypose candidates of a dance performance are subjected to

two further criteria:
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( 1 ) Retained keypose candidates must include a match in time between more
than two of the following: left hand, right hand, or feet.

( 2 ) Retained keypose candidates must include a CM keypose match.
For example, the first criterion would be satisfied by keypose candidates of the
left hand, the right hand, and one foot if these match in time. It would not
be satisfied by keypose candidate time-matches in only one foot and one hand.
In other words, the first criterion can extract poses at which dancers stop the
movements of their hands and feet even when the stopping instance of each body
part is slightly different. These poses are likely to be stop motions.

But this first criterion may extract poses that are not considered to be keyposes.
For example, consider walking motion. In this motion, a performer’s hands nearly
stop their movements when his or her feet are on the ground. However, the body
keeps moving in the forward direction, and this pose cannot usefully be considered
a stop motion. Such translations are common in dance, so we define the second
criterion to help eliminate false positives (keypose candidates labeled as valid
poses, when in fact they are not); both criteria must be simultaneously satisfied
to retain a keypose candidate.

3.5 Experiments
Our proposed method was evaluated using motion capture data and music data

of two dance sequences: the Aizu-bandaisan dance and the Jongara-bushi dance.
To evaluate the effectiveness of our proposed method, we compared the results
of our keypose extraction method with those from Nakazawa, et al.’s method 19),
which uses only motion capture data to extract keyposes. Additionally, we com-
pared the results of our method with the important postures manually extracted
by dancers. We refer to these dancers understandings as ground truth of the
keyposes.
Aizu-bandaisan Dance

A subset of our method’s analysis of a female dance master performing the Aizu-
bandaisan dance is shown in Fig. 4. Our method correctly extracted all of these
keyposes with no false positives and no mis-detected errors. The previous method
which considers only motion capture data extracted 8 of the 9 true keyposes
correctly, but generated 4 false-positives and mis-detected 5 errors.

Fig. 4 Subset of extracted keyposes from the Aizu-bandaisan dance (top) and dancer’s
understanding (bottom).

Fig. 5 Subset of extracted keyposes from the Jongara-bushi dance (top) and dancer’s
understanding.

Jongara-bushi Dance
A subset of results of our extraction method for a dancer performing the

Jongara-bushi are shown in Fig. 5. This dance has 12 true keyposes. The previ-
ous method extracted 6 of these, and had no mis-detected errors. In contrast, our
method extracted 9 correct keyposes, with no mis-detected errors. We believe
that our method failed to detect 3 keyposes because of the high speed of this
dance.

From these results, we concluded that our method was much more accurate
than the previous method. We believe that the reason for our superior results is
that our method considers not only motion capture data but musical information,
while the previous method considers only motion capture data. By incorporating
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an analysis of a dance’s musical rhythm, we reduced the number of false positives
that previous methods have generated due to the high degree of freedom of any
articulated figure.

4. Synthesis of Temporally-Scaled Dance Motion Based on Obser-
vation 25)

Temporal scaling of dance motion is very important for development of the
sound feedback system, since there is a possibility that the speed of pre-recorded
dance motion data is different from that of a live music performance. If this
occurs, a robot cannot collaborate with music performers without this ability. In
this section, we propose a novel method to temporally scale upper body motion
involved in dance performance for synchronization with music.

Many researchers have attempted to efficiently edit and/or synthesize human
motion from a single motion sequence through such procedures as editing motion
capture data by signal processing techniques 2), retargeting motion to new char-
acters 4), and modifying human motion to make it funny 29). However, there are
no methods to generate temporally scaled human motion except McCann, et al’s
method 15) that aimed at temporal scaling of jumping motion by considering
physical laws. Their method does not work well for non-jumping motion.

To achieve this goal, we first observe how dance motion is modified based on
played musical speed, and then we model the modification based on the acquired
insights. When we observe structured dance motion performed by humans at
normal music playback speeds versus motion performed using music that is 1.3
times faster, we find that the details of each motion sequence differ slightly,
though the whole of the dance motion sequence is similar in both cases. An
example of this type of motion modification, which is natural in humans, is shown
in Fig. 6. This phenomenon is derived from the fact that dancers omit details
of a dance, but retain its essential aspects, if this is necessary to follow faster
music. If we therefore observe motion differences in dances performed at different
speeds in the frequency domain, we can obtain useful insights regarding motion
detail omission. Based on these insights, we propose a new modeling method and
develop some applications useful for humanoid robot motion generation.

Fig. 6 Comparison of hand trajectory differences depending on music playback speed. The
green and yellow curves represent the hand trajectories at a normal musical speed, and
1.3 times faster musical speed, respectively.

4.1 Observation of Human Dance Motion
This section denotes how we observed the relationship between human motion

and musical rhythm speed.
4.1.1 Motion ObservationUsing Hierarchical B-spline
Hierarchical B-spline consists of a series of B-spline curves with different knot

spacings; higher layers of a hierarchical B-spline are based on finer knot spacing
that can preserve the higher frequency components of the original sequence. Each
subject motion sequence has a different underlying musical rhythm, and a B-
spline allows us to control frequency resolution by only setting its control points
at desired temporal intervals. In our analysis, we considered musical rhythm
for knot spacing, and we normalized temporal frames of motion sequences into
the knot space with musical rhythm. Then we applied hierarchical B-spline
decomposition to joint angles of dance motion via a least squares solution 14).

4.1.2 Observation Using Hierarchical B-spline
Using an optical motion capture system, we captured the Aizu-bandaisan

dance, a classical Japanese folk dance, at three varying musical speeds for ob-
servation: the original speed, 1.2 times faster speed, and 1.5 times faster speed.
Motion sequences at each speed were captured five times in order to investigate
motion variance, so a total of 15 datasets were considered in this experiment.
We set the knot spacing to the musical rhythm, and then applied a hierarchical
B-spline decomposition technique. We used up to five layers in our motion de-
composition and observed the mean and variance of each reconstructed motion.
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(a) (b) (c)

Fig. 7 Comparison of mean joint angle trajectories at the original musical speed (green),
1.2 times faster speed (yellow), and 1.5 times faster speed (light blue). Top: whole
trajectories, and bottom: closer-look at top-left. (a) mean motion using a single-layer
B-spline, (b) mean motion using a two-layer hierarchical B-spline, and (c) mean motion
using a three-layer hierarchical B-spline.

Our choice of five layers was arbitrary, but it was empirically found to be enough
to reconstruct high-frequency components of human motion.

Figure 7 shows mean joint angle trajectories of the left shoulder. With regard
to motion reconstructed from a single-layer B-spline (Fig. 7 (a)), the motion at the
1.2 times faster musical speed is quite similar to the motion at the normal musical
speed. The motion at the 1.5 times faster musical speed is also similar to the
motion at the normal speed, but their details such as curvature differ slightly from
each other. With regard to motion reconstructed from a two-layer hierarchical
B-spline (Fig. 7 (b)), the shape of the joint angle trajectory at the normal musical
speed differs slightly from that of the 1.2 times faster musical speed, especially
in the trajectory’s sharpest curves. On the other hand, the shape of the joint
angle trajectory at the 1.5 times faster musical speed appears to be a smoothed
version of the normal music playback speed trajectory. With regard to motion
reconstructed from a three-layer hierarchical B-spline (Fig. 7 (c)), the differences
among the joint angle trajectories become more noticeable. The shape of the joint
angle trajectory at the 1.5 times faster musical speed is a much smoother version
of the trajectory at the normal musical speed, whereas the shape at the 1.2 times

Fig. 8 Comparison of variance sequences at the original musical speed (green), 1.2 times faster
speed (yellow), and 1.5 times faster speed (light blue). The blue line represents the
variance calculated from all the motion sequences.

faster musical speed is just a slightly smoother version of the trajectory at the
normal musical speed. As for motion reconstructed from a four-layer hierarchical
B-spline and a five-layer hierarchical B-spline, these phenomena appear more
clearly.

Figure 8 shows a comparison of variance sequences; the green, yellow, and light
blue lines represent the variance sequences of the left shoulder joint angle at the
normal musical speed, 1.2 times faster musical speed, and 1.5 times faster musical
speed, respectively, and the blue line represents the variance sequence calculated
from all the motion sequences. The joint angles for the variance calculation were
reconstructed with a five-layer hierarchical B-spline, and were normalized by ad-
justing the knot of the estimated control points. From these variance sequences,
it is confirmed that there are some valleys where each variance sequence is lo-
cally minimum. This means that the postures at these valleys (the middle row of
Fig. 8) are preserved even if the musical speed gets faster and the high frequency
components are attenuated. We found that most valleys represent important
stop motions specified by the dance masters (the bottom row of Fig. 8), and that
they are very close to the results of our keypose detection method described in
Section 3.

From these observations, we obtained the following two insights:
Insight 1: High-frequency components of human motion will be attenuated

when the music playback speed becomes faster.
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Fig. 9 Illustration of our sampling method to consider keypose information for hierarchical
motion decomposition.

Insight 2: Keyposes will be preserved even if high frequency components are
attenuated.

Based on these insights, we propose a method to model the temporal scaling of
human dance motion.

4.2 Upper Body Motion Generation By Temporal Scaling
This section describes how to temporally scale human motion based on the

insights.
4.2.1 Hierarchical Motion Decomposition Using Keypose Informa-

tion
According to Insight 2, keypose information, including posture and velocity

components, is preserved even if the musical speed is fast. Therefore, low fre-
quency components of dance motion sequence must contain the keypose infor-
mation. Remembering this insight, we improved the method of the traditional
motion decomposition. To achieve this, our motion decomposition method needs
to consider the posture and velocity information of the keyposes.

To consider posture information, we densely sample input motion sequence
around keyposes, we sparsely sample it in other parts, and then we use these
samples to form a linear system of equations. Figure 9 provides an illustration
of our data-sampling method for motion decomposition. All vertical lines in this
illustration represent originally sampled data, and our method uses only the solid
lines shown among them.

With regard to velocity information, the movements of a dancer’s arms and

hands stop around keyposes: the velocity of the hands and arms are approxi-
mately zero at keyposes. We exploit this useful property of keyposes as velocity
information in our motion decomposition method. From all the keyposes, we
form a linear system of equations to satisfy the velocity constraints. For each
layer of hierarchical B-spline, we estimate the control points from posture and
velocity constraints using pseudo inverse matrix and decompose the input motion
sequence.

4.2.2 Motion Generation Based on Mechanical Constraints
The final step is to generate temporally-scaled motion for a humanoid robot.

Simple temporal scaling can be done by adjusting the temporal frame of B-spline
control points with the specified scaling ratio. However, the resulting motion
may violate angular limitations such as joint angular velocity. To solve this, we
consider Insight 1 and mechanical constraints that a humanoid robot has, and
we modify upper body motion.

In this step, we first segment the motion sequence to correspond to music
rhythm frames, and then we optimize weighting factors for each hierarchical B-
spline layer in each motion segment so that a resulting motion sequence must
satisfy certain mechanical constraints. The resulting joint angle θopt is repre-
sented as

θopt(t) =
N∑

i=1

wifi(2i−1st), (1)

where s represents a temporal scaling factor (i.e., the resulting motion is s-times
faster than the original motion), N represents the number of hierarchical B-spline
layers, and fi represents the i-th layer of the constructed hierarchical B-spline.
wi ∈ [0, 1] represents the weighting factor for the i-th layer to be detected via
this optimization process.

According to Insight 1, the high frequency component is attenuated when the
motion is beyond joint angle limitations. Therefore, this optimization process
is done by attenuating the weighting factors from the finest layer. When the
weighting factor reaches zero and the resulting motion does not satisfy mechanical
constraints, the weighting factor for the next coarser layer is then gradually
attenuated. Finally, when the resulting motion consists of n layers, the weighting

IPSJ Transactions on Computer Vision and Image Media Vol. 1 No. 1 34–47 (June 2008) c© 2008 Information Processing Society of Japan



41 Synthesis of Dance Performance Based on Analyses of Human Motion and Music

Fig. 10 Motion reconstruction considering mechanical constraints.

factors from the 1st to the (n− 1)-th layers are 1, the factor for the n-th layer is
with in a range of (0, 1], and the factors from the (n + 1)-th to the N -th layers
are 0. This is illustrated in Fig. 10.

In this process, a discontinuity might develop between neighboring motion seg-
ments if there ends up being a difference in the weighting factors. So we simply
apply motion blending around the discontinuities using spherical linear interpo-
lation (SLERP) for joint angles. Through this interpolation process, there is a
possibility of going beyond mechanical limitations. So we iteratively do the opti-
mization and interpolation procedures until the resulting motion does not violate
the mechanical constraints.

4.3 Experiments
In this section, we show the results of the experiments. We tested our algorithm

by modifying the Aizu-bandaisan dance data through our algorithm. We applied
the proposed method to the upper body motion, and applied Nakaoka, et al.’s
method to generate leg motion 16). Our experimental platform was HRP-2.

4.3.1 Result of Original-Speed Motion Generation
We first tested our algorithm by generating the dance motion for the HRP-2

at the normal speed. In this experiment, we compared our method with Pollard,
et al.’s method that can adapt motion capture data for a humanoid robot using
PD controller 22).

Figure 11 shows the experimental result with the actual HRP-2. It is con-
firmed that the robot can stably imitate the human dance motion.

Figure 12 shows the resulting joint angle trajectories of the left shoulder yaw.
As for the joint angular velocity (Fig. 12 (b)), our method has two advantages.

Fig. 11 Result of generating the Aizu-bandaisan dance motion at the original musical speed.

(a) (b) (b.1) (b.2)

Fig. 12 Comparison of left shoulder yaw angle trajectories of the original motion (red), gen-
erated by Pollard, et al.’s method (green), and generated by our method (blue). (a):
joint angle trajectories, and (b): joint angular velocity. (b.1) and (b.2) represent the
zoomed-in graph of part (1) and (2) in (b), respectively.

One is that our method can preserve more details than the trajectories resulting
from Pollard, et al.’s method. The trajectories resulting from Pollard, et al.’s
method often lack high frequency components, due to the PD control. This
phenomenon is shown in Fig. 12 (b.1). The other is that the speed around motion
frames when speed limitations are violated is fixed to a constant value in the
motion generated by Pollard, et al.’s method. This phenomenon is shown in
Fig. 12 (b.2). This can create two problems. One is that the humanoid robot
cannot clearly reproduce a keypose if the posture and angular speed around the
keypose violate kinematic constraints. The other is that the humanoid robot may
fall because of the rapid changes in acceleration.

4.3.2 Simulation Result of 1.2 Times Faster Motion Generation
Next, we tested our algorithm by generating the dance motion whose speed was

1.2 times faster than the original speed in simulation. The upper body motion was
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Fig. 13 Simulation result of generating 1.2 times faster dance motion. The red sphere
represents the ZMP of the resulting motion.

generated by our proposed method, and as for leg motion, we first applied simple
temporal scaling to the motion capture data and then applied Nakaoka, et al.’s
method. Figure 13 shows the simulation results, and the red sphere represents
a Zero Moment Point. Our simulated motion satisfied the criterion for balance
maintenance, and the humanoid robot successfully performed the dance.

5. Dancing-to-Music Character Animation Based on Aspects of
Mood 27)

The previous section describes a method to enable a robot to dance to musical
rhythm and speed. But some dance performances are improvisational based
on music mood. The method described in this section focuses on this type of
dances and its purpose is to synthesize dance motion well matched to music
mood features. Though this method is only for CG characters because of intense
motions such as jumping, this will be also applicable to a humanoid robot in the
future.

Dancers can simultaneously compose a dance motion based on the musical
sounds they are listening to. Although this ability may appear amazing, actually
these performers do not create these motions, but rather combine appropriate
motion segments from their knowledge database with music as their key to per-
form their unique movements. Considering this ability, we are led to believe that

dance motion has strong connections with music in the two following aspects:
1) The rhythm of dance motions is matched to that of music, and 2) the inten-
sity of dance motions is synchronized to that of music. The first assumption is
derived from our work described in Section 3, while the second assumption is
derived from the fact that people tend to feel quiet and relaxed when listening to
relaxing music such as a ballad but may feel excited when listening to exciting
music.

Kim, et al. 12) proposed a rhythmic motion synthesis method using the results
of motion rhythm analysis. Alankus, et al. 1) and Lee, et al. 13) also proposed a
method to synthesize dance motion by considering the rhythm of input music.
The drawback of these methods is to consider only musical rhythm; because of
this, it is very difficult to synthesize expressive dance motion.

Our approach consists of three steps: a motion analysis, a music analysis, and
a motion synthesis based on the extracted features. In the motion analysis step,
we analyze rhythm and intensity features of input dance motions, and assign
the features to each motion in a database. In the music analysis step, first, we
analyze a structure of input music sequence, and extract music segments based
on the structure analysis results. Next, musical rhythm and intensity features
are extracted, and are assigned to each music segment. Finally, our method
automatically synthesizes new dance motion by interpolating between the motion
segments.

5.1 Motion Feature Analysis
Our motion analysis method strongly relies on Laban’s weight effort compo-

nent. In this section, we describe our definition of the weight effort component
and how to extract the motion features.

5.1.1 Weight Effort
According to Laban’s theory, the emotion of human motion comes from mo-

tion features consisting of effort and shape components. The effort component
is defined as the movements of body portions, and the shape component is de-
fined as the shape of elements. More recently, Nakata, et al. 18) have tested the
validity of Laban’s theory by using their small robot and user studies. Although
they could not find a significant relationship between the shape component and
any emotions, they found that the weight effort component, one of the effort
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components, is closely related to the excitement of the motion. Thus, we define
the weight effort component W as the linear sum of approximated instantaneous
momentum magnitude calculated from the link and body directions:

W (f) =
∑

i

αi arccos
(

vi(f)
|vi(f)| ·

vi(f + 1)
|vi(f + 1)|

)

+
∑

j∈{x,y,z}
arccos

(
rj(f)
|rj(f)| ·

rj(f + 1)
|rj(f + 1)|

)
, (2)

where αi is a regularization parameter for the i-th link, vn is a unit vector
representing the direction of the n-th body link in the body center coordinate
system, and rx, ry and rz represent 3-dimensional orientation of body.

5.1.2 Motion Rhythm Feature
Considering the characteristics of the weight effort component, the local min-

imums of this component indicate stop motions, which are impressive instances
for dance performance. We recognize these local minima as motion rhythm.

5.1.3 Motion Intensity Feature
It was validated that motion intensity is related to momentum and forward

translation. We obtain instant motion intensity I from the momentum W and
the speed of the forward direction:

I(f) = W (f) · (1.0 + k · ry(f) · ṫ(f)), (3)
where k is a regularization parameter between the weight effort and the speed,
and ry · ṫ represents the speed of body direction change. Finally, we calculate
the average of the instant motion intensity from the previous motion rhythm to
the next one, and set it to the motion intensity.

5.2 Music Feature Analysis
When people listen or dance to music, they extract some musical features from

an audio signal. The important features for dance performance are music struc-
ture, rhythm, and intensity. Regarding music structure, we focus on a repeating
pattern of the melody line, we employ similarity measurements independently of
timbre effects proposed by Lie, et al. 30), and we get music segments. We assign
the extracted musical rhythm and intensity features described below to the music
segments.

5.2.1 Music Rhythm Feature
To extract music rhythm, we employ the onset component-based rhythm esti-

mation described in Section 3.1. After the music rhythm estimation process, the
musical rhythm feature at time t is set to 1 when t is music rhythm time, and
set to 0 otherwise.

5.2.2 Music Intensity Feature
To extract music intensity, we use the following:

Principle 3: The spectral power of a melody line is likely to increase during
increasing intensity in the music.

Principle 4: A melody line is likely to be performed using a higher range than
the C4 note.

Many surveys on auditory psychology 24) say that our ears tend to recognize
only the sound whose spectral power is the strongest among the neighboring fre-
quency sounds, which is often used in many audio signal compression algorithms
such as MP3. Accordingly, for each music segment, we calculate a temporally
average spectral power of each music note and extract their peaks to figure out
which note sounds are mainly produced in the music segment. In order to extract
the music intensity feature, we approximately calculate the Sound Pressure Level
of the extracted musical note’s power, which considers the humans’ auditory
properties and is related to both the amplitude and the frequency.

5.3 Motion Synthesis Considering Motion and Music Features
The final step of our approach is to synthesize new dance motions considering

both the motion and music feature vectors. Figure 14 gives an overview of our
motion synthesis algorithm. From analysis steps, we have music segments with
music rhythm and intensity features, and we have motion rhythm and intensity
features for each motion sequence in the database. Since rhythm is one of the
most important features in dance performance, we first evaluate the similarity
of the rhythm components, and detect the candidate motion segments strongly
corresponding to each music segment. Then, we apply connectivity analysis,
which checks if synthesized transition motion between the neighboring motion
segments looks natural, and we extract the possible sequences of motion segments.
Finally, we analyze the similarity of their intensity components between the music
segments and the selected motion segment sequences, and we synthesize new
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Fig. 14 Overview of our motion synthesis algorithm.

dance motions by connecting the motion segments with each other.
5.3.1 Similarity Measurement of Rhythm Components
Through music analysis, we obtain music segments and then the music rhythm

feature and music intensity feature for each segment. In addition, we obtain a
motion rhythm feature and motion intensity feature through motion analysis.
The aim of this procedure is to extract candidate motion segments by evaluating
rhythm features. For each motion sequence in the database, we calculate the
cross-correlation between motion and music rhythm features frame-by-frame, and
we try to find partial motion sequences whose rhythm is well matched to music
rhythm via a thresholding process. The partial motion sequences can be used as
candidate motion segments for each music segment.

5.3.2 Connectivity Analysis of Motion Segments
Whether or not synthesized motion looks natural depends strongly on connec-

tivity analysis. In this step, we consider both posture similarity and movement
similarity. Posture similarity between the candidate motion segments is defined
as the angular similarity of the body link direction, while movement similarity
is calculated from the time derivative of the body link directions. We use these
measurements between the end frame of one motion segment and the beginning
frame of the neighboring motion segments. From the results of the connectivity
evaluation, we obtain the candidate sequences of the candidate motion segments
that satisfy the requirements for similarity with the rhythm features and natu-

Fig. 15 The synthesis result for the dance music “Kansho-odori.”

ralness of the synthesized motion.
5.3.3 Similarity Measurement of Intensity Components
Next, we evaluate the intensity components of the candidate sequences of the

motion segments and input music. In order to find the semi-optimal solution, we
consider the time series of the intensity features as a histogram, and calculate
the Bhattacharyya coefficient 11) to relatively evaluate the similarity between the
motion and music intensity histograms. The motion segment sequence maximiz-
ing the coefficient becomes the final result which satisfies rhythm and intensity
similarities.

Finally, the resulting motion sequence is acquired by connecting the motion
segments via spline-based interpolation technique.

5.4 Experiments
We have experimented in our proposed method with our motion database con-

sisting of several Japanese dance motion sequences.
Figure 15 shows the synthesized motion for music of the Japanese dance called

Kansho-odori. Figure 16 shows the features of the synthesized motion and the
input music. We can easily confirm that most of the musical rhythm is matched
to the motion rhythm, and the distributions of the intensity components are
quite similar. Some artists working with the Japanese dance performance group
Warabi-za told us that our technique was quite useful for a performance group
such as theirs to compose new Japanese dances and this would be a new method
for re-use of dance motion data.

Our proposed method is applicable not only to Japanese folk dance but also to
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Fig. 16 The feature matching result for the music “Kansho-odori.” Yellow and light blue lines
represent motion and music rhythm components, and blue and red lines represent
motion and music intensity components.

different styles of dance such as break dancing.

6. Concluding Remarks

The ultimate goal of our research is to develop a dancing entertainment robot
with the achievement of the sound feedback system. For this purpose, this paper
proposed methods to apply human perceptional models to human motion synthe-
sis. Our research is strongly motivated by the fact that most previous work did
not consider the perceptions of performers, but in fact human motion is highly
affected by these perceptions. We have developed three fundamental methods
for this purpose.

The first aspect of our proposed method, as described in Section 3, is to ana-
lyze the keyposes in dance motion. We exploit the relationship between motion
rhythm and musical rhythm by detecting the stop motions in the dance mo-
tion data and by estimating the musical rhythm itself, in the form of its onset
components. Dancers themselves have corroborated the results of our methods.

The second aspect of our proposed method, as described in Section 4, is to
model how upper body motion can be modified depending on musical speed.
Research in this arena is motivated by the observation that, as music speeds up,
dancers omit details of dances to keep up with the musical rhythm. Using the
insights obtained through this observation, we modeled our proposed algorithm
for modification of upper body motion based on music speed.

The third aspect of our proposed method, as described in Section 5, is to syn-
thesize dance motion using mood features. Our algorithm is designed such that

motion rhythm is synchronized with musical rhythm, and that motion intensity
is synchronized with musical intensity.

As future work, we will try to extend our proposed methods for sound feedback
system of dancing CG characters and humanoid robots in real-time. In addition,
we are thinking about devising an evaluation method of our work via subject
tests. Perceptions of human motion depend upon many characteristics such as
geometric models 6) and naturalness of motion after editing, and the evaluation
is a very difficult problem 23). We plan to start with subject tests to verify our
assumption, and improve the proposed method.
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