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Abstract: The fusion of the research field of high-performance computing (HPC) with that of big data, which has be-
come known as the field of extreme big data, is problematic in that file creation in storage systems such as distributed
file systems is not optimized. That is, the large workload leads to simultaneous creations of many files by many pro-
cesses when creating checkpoints. The need to improve the file creation processes prompted us to design a scale-out
distributed file system for post-petascale systems named PPFS. PPFS consists of PPMDS, which is a scale-out dis-
tributed metadata server, and PPOSS, which is a scalable distributed storage server for flash storage. The high file
creation performance of PPMDS was achieved by using a key-value store for metadata storage and non-blocking dis-
tributed transactions to update multiple entries simultaneously. PPOSS depends on PPOST, which is an object storage
system that manages the underlying low-level storage, such as Fusion IO ioDrive, a flash device connected through PCI
express supporting OpenNVM. The high file creation performance was attained by implementing the PPFS prototype
using file creation optimization, termed bulk creation, to reduce the amount of communication between PPMDS and
PPOSS. And, to enhance the I/O performance of PPOSS when the client process and PPOSS run on the same node,
PPOSS accesses a local storage device directly. The prototype implementation of PPFS with a further file creation
optimization called object prefetching achieves 138,000 Operations Per Second for file creation when using five meta-
data servers and 128 client processes, thereby exceeding the performance of IndexFS by 2.52 times. With local access
optimization, PPOSS reached its limit at a block size of 16 KiB, which is an improvement of 1.5 times compared to
before optimization. Furthermore, this evaluation indicates that PPFS has a good scalability on file creation and IO
performance, that is required for post-petascale systems.
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1. Introduction

One of the main problems associated with extreme big data,
which is a new area fusing high-performance computing (HPC)
and big data, is that the creation of storage systems, such as dis-
tributed file systems, is not optimized. The area of extreme big
data is noted for very large workloads that create many files by
many processes at the same time for checkpointing purposes. On
the other hand, the number of CPU cores employed in the HPC
field has become increasingly large. In other words, an increas-
ing number of processes create many files simultaneously. There-
fore, it is important to improve the file creation performance. This
trend is not expected to change in the future because the current
trend in HPC for post-petascale systems is that computer nodes
use accelerators such as GPU and MIC. Besides checkpointing,
there are several create-intensive applications including gene se-
quencing, image processing, and phone and video logs, which
require metadata operation performance such as file creations.
Several studies have been devoted to overcoming this problem,

1 Graduate school of System and Information Engineering, University of
Tsukuba, Tsukuba, Ibaraki 305–8577, Japan

2 Faculty of Engineering, Information and Systems, University of
Tsukuba, Tsukuba, Ibaraki 305–8577, Japan

†1 Presently with Yahoo Japan Corporation
a) takatsu@hpcs.cs.tsukuba.ac.jp
b) hiraga@hpcs.cs.tsukuba.ac.jp
c) tatebe@cs.tsukuba.ac.jp

e.g., PPMDS [1], GIGA+ [2], and IndexFS [3]. However, these
authors attempted to address this problem by only improving the
performance of the metadata server and they did not attempt to
achieve a high IO performance, which is also important in the
case of a distributed file system. Our aim is to realize a distributed
file system with the ability to create 1 million files per second and
access data at a rate of 100 TB/s. This requires us to re-design a
scale-out distributed file system as a matter of critical importance.

The IO performance of a distributed file system depends on the
local file system or local object storage that manages the underly-
ing low-level storage. We proposed the design of object storage
using OpenNVM [4] for HPC [5] (hereafter termed PPOST). This
is used as the backend of a storage node that manages file data on
a local storage device. It shows 740,000 Input/Output Operations
Per Second (IOPS) for object creations that use 16 threads, which
is 12 times faster than DirectFS [6], thereby reaching the perfor-
mance limit of the device in terms of access performance. In this
paper, we present our design of a scale-out distributed file system
named PPFS, which uses the distributed metadata server PPMDS
and a storage server using PPOST.

The contributions of this paper are as follows:
• We design a scale-out distributed file system for post-

petascale systems
• We design two optimization techniques to improve the file

creation performance
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• A prototype implementation achieves 138,000 ops/s for file
creation when using five metadata servers and 128 client pro-
cesses, and its performance exceeds that of IndexFS by 2.52
times

• The evaluation indicates that PPFS has a good scalability on
file creation and IO performance that is required for post-
petascale systems

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work. Section 3 introduces PPFS, a dis-
tributed file system for post-petascale systems, PPMDS, a dis-
tributed metadata server for post-petascale systems, and PPOSS,
a scalable distributed storage server for post-petascale systems
using OpenNVM. The prototype implementation of this system
are described in Section 4 and are evaluated in Section 5. We
conclude our work in Section 6.

2. Related Work

2.1 Distributed File System
This paper proposes a distributed file system for HPC named

PPFS. A considerable amount of research about distributed file
systems for HPC has been carried out.

The Panasas parallel file system [7] has a metadata manage-
ment service named PanFS. This file system manages a file in
multiple objects. When PanFS receives file creation requests, it
not only presents object creation and write requests to the OSDs,
but also maintains a local journal to record in-progress actions to
recover from object creation failures and metadata server crashes.
However, this design causes performance degradation. In our file
system, a file is managed in an object. Moreover, PPFS only
sends a request for object creation to a storage server. So, the
current design of PPFS is inferior to PanFS in terms of fault tol-
erance in order to show higher performance.

Our distributed file system is designed to address file creation-
intensive workloads. We show high file creation performance by
using PPMDS, which optimizes the metadata service, including
the namespace. However, many researchers have investigated the
use of distributed metadata servers for HPC.

Lustre [8] supports the Lustre Distributed Namespace (DNE),
which allows for the distribution of metadata on multiple meta-
data servers known as Luster Metadata Targets (MDT). Ceph [9],
a distributed file system providing reliability and scalability, man-
ages metadata on multiple metadata servers based on the server
load. On the other hand, these metadata servers do not manage
metadata on the key-value store. And, Lustre does not distribute
the metadata in a single directory on multiple metadata servers.
So, the metadata performance is limited to a single metadata per-
formance. Moreover, Lustre and Ceph manage the metadata on
remote storages. Storages and the metadata server do not always
run on the same node. So, there is some overhead due to access-
ing remote storages via a network.

IndexFS [3], which is mentioned in Section 5, is a metadata
server that manages metadata on a key-value store like PPMDS.
IndexFS is middleware that adds support to existing distributed
file systems such as PVFS [10], Lustre [8], and HDFS [11] to
manage metadata and small files. It manages file and directory
metadata of the same directory on multiple metadata servers by

splitting large directories like GIGA+ [2]. This middleware is
intended to improve the metadata performance of existing dis-
tributed file systems. So, the IO performance depends on these
distributed file systems. Moreover, IndexFS dynamically splits
a directory to several metadata servers when the number of files
exceeds a threshold like GIGA+. When spliting the directory, the
related metadata needs to be atomically transferred among meta-
data servers without any inconsistency. This atomic metadata
transfer is left as an unsolved issue. PPMDS uses non-blocking
transactions to resolve this issue. BatchFS [12] is an extension
of IndexFS to reduce the RPC (Remote Procedure Call) over-
head by using a relaxed consistency model. DeltaFS [13] is a
serverless file system designed for exascale computing. How-
ever, it also uses other distributed file systems to store file data.
ShardFS [14] is another distributed metadata service that shows
high metadata performance. It replicates directory entries to all
metadata servers, making it possible to obtain file metadata by us-
ing a single RPC. This design, on the other hand, requires a con-
siderable amount of memory when billions of entries are created
in post-petascale system. It even may cause memory shortage.

2.2 Storage System
We demonstrate high IO performance by achieving object stor-

age using OpenNVM on PPOST. POSIX-compliant file systems,
such as ext3 [15], ext4 [16], XFS [17], ZFS [18], and Btrfs [19],
are often used as object storage for large-scale storage systems.
For example, Ceph [9] used the OSD-based Btrfs, and Lustre [8]
used the OSD-based ext4 or ZFS. SCMFS [20], NVMFS [21],
F2FS [22], Yaffs [23], and JFFS2 [24] are designed for flash de-
vices. However, these devices are not utilized for new flash prim-
itives such as OpenNVM. Direct File System (DFS) [6] is a
POSIX-compliant file system designed for flash devices support-
ing new flash primitives such as OpenNVM. However, the use of
a POSIX-compliant file system as a local storage system makes
it difficult to achieve the limit of the device. BlobSeer [25] and
OBFS [26] are object storage systems. However, BlobSeer is a
distributed data storage system and does not manage local stor-
age devices directly. Instead, it uses local file systems to store
data. OBFS is a local object storage system; however, it is not
utilized for new flash primitives such as OpenNVM. Likewise,
object-based SCM [27] is an object storage system supporting the
OSD interface [28], but it is also not utilized for new flash prim-
itives such as OpenNVM. Therefore, we decided to use PPOST
as local storage backend.

3. PPFS: A Scale-out Distributed File System
for Post-petascale Systems

We designed PPFS, —a scale-out distributed file system for
post-petascale systems. The designed file system provides the
following features:
( 1 ) it shows high file creation performance by scaling the num-

ber of metadata servers
( 2 ) it shows high file access performance by scaling the number

of storage servers and accessing local object storage.
We realized the distributed file system named PPFS by us-

ing PPMDS, which is a scale-out distributed metadata server,

c© 2017 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.25

Fig. 1 Architecture of PPFS. This design is commonly used for distributed
file systems such as Lustre.

and PPOSS, which is a scalable storage server. The architecture
of PPFS is shown in Fig. 1. PPFS contains multiple metadata
servers, storage servers, and clients on the same network. This
design is commonly used for distributed file systems.

In this section, we describe the design of PPMDS, PPOSS, and
PPFS in detail.

3.1 PPMDS: A Distributed Metadata Server for Post-
petascale Systems

We use PPMDS [1], which is scale-out distributed metadata
server, to show that a high file creation performance can be
achieved. General file systems not only manage file data but also
metadata such as namespaces, attributes, timestamps, the file size,
and the inode number. The metadata management techniques of a
traditional local file system are optimized for using local storage
devices; thus, they are not suitable for using distributed file sys-
tems that manage metadata across multiple nodes. This is because
the number of indirect references of inode block and data block
increases when the file system grows bigger. In the case of post-
petascale systems, when there are a large number of files in a spe-
cific directory, the directory entry becomes large that causes per-
formance degradation. File metadata, such as inode, are managed
easily because it involves one-to-one correspondence. However,
a namespace, such as a file path, is difficult to manage because
it has a tree structure. When file creation has been concentrated
in a particular directory, parallelism is inhibited. Therefore, de-
signing a metadata server for a distributed file system is highly
challenging.

PPMDS [1] is a distributed metadata server for high-
performance distributed file systems. Current parallel file
systems are problematic in that the scalability is limited when
file creation is concentrated in a particular directory. PPMDS is
intended to solve this problem. PPMDS uses a key value store
to manage file metadata and a list of metadata servers which
manage the file in a specific directory. Every file has a parent
directory. To manage file metadata on a key value store, PPMDS
uses a pair of <inode number of the parent directory, filename>
as a key of a file and stores its metadata as a value. With this
technique, it becomes possible to look up the files in a specific
directory using a range search based on its inode number. When
using multiple metadata servers, the file metadata are distributed
to multiple metadata servers. So, each metadata server also
manages the list of metadata servers that manage the metadata
entry of the directory. This list is managed for all metadata
servers that manage the directory entry in these key value stores.
When a client creates a file, the client obtains the inode number
of the parent directory and sends a request to any metadata
server. This server then starts the transaction of file creation
and decides upon a metadata server to manage the metadata of

the file, whereupon it requests the metadata server to create the
file and commit the transaction. By using this technique, it is
possible to create many files in a particular directory and to scale
out the file creation performance.

3.2 PPOSS: A Scalable Distributed Storage Server for Post-
petascale Systems

Next, we present the design of a storage server named PPOSS,
which manages the file data. Our target system uses a flash stor-
age device that supports OpenNVM flash primitives [4], includ-
ing sparse address space and atomic batch write. OpenNVM ver-
sion 0.7 enables us to use 144PB sparse address space regard-
less of the physical ioDrive capacity. The functionality of atomic
batch write is to write or trim multiple blocks atomically.
3.2.1 PPOST—An Object Storage Using OpenNVM for

High-performance Distributed File System
We previously proposed a local object storage that manages file

data as an object on a local storage device using OpenNVM flash
primitives for high-performance distributed file systems [5]. The
sparse address space allows the design of an array of fixed-size
regions that contain a single object, where the object can be ad-
dressed by a region number, i.e., object ID. Atomic batch write
plays an important role in supporting the ACID properties in each
write, and several optimizations. Each region manages object
data. We proposed two object layouts, Version and Direct, in each
region. Version Layout stores all the versions. The log to change
data is appended with the commit block that has the version as
the log-structured data format. Direct Layout stores only the lat-
est version. Furthermore, we proposed two optimizations: one for
updating the super region named Bulk Reservation, and another
for initializing super blocks named Bulk Initialization. These op-
timizations achieved 740,000 IOPS using 16 threads, which is 12
times faster than DirectFS.
3.2.2 PPOSS

PPOSS is a distributed object storage server using PPOST as
backend storage. PPOSS does not manage the metadata, such as
the size, because these metadata are also managed in the meta-
data server. In addition, PPOSSs operate independently; in other
words, there is no communication between different PPOSSs.
Therefore, the IO performance of PPOSS is scalable.

PPOSS provides object creation, reading, writing, and delet-
ing. Clients send requests for object creation to any PPOSS, and
obtain a new object ID, including the server ID and object ID in
the server. Clients use the object ID to access an object when
reading or writing.

4. A Prototype Implementation

In this section, we provide a brief description of our implemen-
tation and optimization to achieve high IO performance.

4.1 PPFS
The prototype of PPFS is implemented by extending PPMDS

to access PPOSS. PPMDS is composed of ppfuse, which is
client software using FUSE [29], and ppmds, which is a meta-
data server. The combination of this software with PPOSS makes
it possible to implement a distributed file system.
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PPMDS is written in C++, and it uses msgpack-rpc [30] for
communication and it uses Kyoto Cabinet [31] as the key-value
store for storing file metadata. Hence, PPOSS is also written in
C++, and also uses msgpack-rpc for communication.

The method of file creation in PPFS is as follows:
( 1 ) A client sends a file creation request to any metadata server.
( 2 ) A metadata server that receives the request decides the inode

number of the file.
( 3 ) The metadata server which manages the metadata of the file

decides the storage server ID by using this inode number as
key by implementing Jump Consistent Hash [32].

( 4 ) The metadata server requests an object creation to the stor-
age server.

( 5 ) The metadata server stores the metadata of the created file
including the inode entry and the object ID.

4.1.1 Bulk Creation
In this prototype implementation, metadata servers, which re-

quest an object creation when requesting a file creation, are a
client of storage servers. When these two servers are not in the
same node, it is necessary to communicate over the network,
which causes overhead. The backend local object storage of
PPOSS supports the optimization of Bulk Initialization, which
initializes the first blocks of N objects every N object creation
requests. If the prototype implementation of the distributed file
system follows the concept of these optimization techniques, the
metadata server requests the storage server to create N objects
for every N file creation requests. This optimization is called
Bulk Creation. The file creation method with Bulk Creation is as
follows:
( 1 ) A metadata server prepares new object IDs by requesting the

creation of N objects to all storage servers. These object IDs
are stored in an associative array that uses the storage server
ID as the key.

( 2 ) A client requests a file creation to any metadata server.
( 3 ) Metadata servers decide the inode number of the file.
( 4 ) The metadata server which manages the metadata of the file

decides the storage server ID by using this inode number as
key by implementing Jump Consistent Hash [32].

( 5 ) If the associative array does not have an object ID of the stor-
age server, the metadata server requests the storage server to
create N objects and adds it to the associative array.

( 6 ) The metadata server obtains a new object ID from the asso-
ciative array and deletes the object ID from the associative
array.

( 7 ) The metadata server stores the metadata of the created file
including the inode entry and object ID.

Here, (1) is called during start-up time, and (2) to (7) are called
during file creation. This procedure reduces the communication
count between a metadata server and a storage server by a factor
of N.
4.1.2 Object Prefetching

Bulk Creation reduces the communication count between the
metadata server and the storage server to 1/N. However, the file
creation operation is blocked when creating objects. So, we also
propose an optimization called Object Prefetching. This opti-
mization uses a helper thread for object creation to hide the com-

munication between the metadata server and the storage server.
This obejct creation thread creates multiple objects when the
number of object IDs kept by the metadata server are less than
a threshold.

4.2 PPOSS
The implementation of PPOSS uses msgpack-rpc for commu-

nication. The data layout in a region is Direct Mode without
Size to achieve a high access performance. Our object storage
using OpenNVM for high-performance distributed file systems
has two optimizations: one for updating the super region named
Bulk Reservation, and another for initializing super blocks named
Bulk Initialization. In this prototype implementation, we set pa-
rameters of Bulk Reservation and Bulk Initialization to 64. Thus,
the super region, which manages the next region number, is up-
dated after every 64 object creations and the super block, which
is the first block of a region, is initialized every 64 times. More-
over, an object ID is an unsigned 64-bit integer: the first 32 bits
are the storage server ID, and the last 32 bits are the object ID on
the object storage server.
4.2.1 Direct Local Access

Some distributed file systems, such as Gfarm [33], Hadoop
HDFS [11], and GFS [34], use the storage server as the compute
node. This approach to writing data to the distributed file system
entails data being written to the local storage server and enables
a high IO bandwidth to be achieved. In addition, by cooperating
with the job scheduling system, it is possible to achieve a high
performance because the data movement on the network is re-
duced. When this characteristic is used on PPFS, the compute
node also executes PPOSS when an object of a file is created on
that PPOSS node. PPOSS uses msgpack-rpc for communication
between the server and the client and this causes some memory
copies. Thus, when the compute node also executes PPOSS, the
client application writes directly to a storage device, thereby re-
ducing the number of memory copies.

5. Evaluation

We evaluate the prototype implementation of the distributed
file system designed in this paper. This section provides the meth-
ods used for these evaluations and the results that were obtained.

5.1 Evaluation Environment
The environment we evaluate our approach in is indicated in

Table 1. We use from 1 to 5 nodes as metadata servers, from 1
to 8 nodes as clients, and from 1 to 10 nodes as storage servers.
In addition, we use 128 client processes at most. Although these
nodes are connected by InfiniBand, we use IPoIB (IP over Infini-
Band).

5.2 File Creation Performance Evaluation
This evaluation measures the create performance of PPMDS

by using mdtest HPC benchmark [35] version 1.9.3. The mdtest
benchmark is an MPI-based metadata benchmark test program
that performs create operations on directories and files in paral-
lel. In this evaluation, we modified mdtest to access a different
mount point in each process. At these mount points, the same file
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Fig. 2 File creation performance: (a) PPMDS (only metadata operations); (b) IndexFS; (c) PPFS;
(d) PPFS with bulk creation (N = 64); (e) PPFS with object prefetching. The lines are the number
of metadata servers.

Table 1 Node specification.

Metadata Server Client Storage Server

CPU Intel(R) Intel(R) Intel(R)
Xeon(R) Xeon(R) Xeon(R)

E5-2695 v2 E5-2665 E5620
2.40 GHz 2.40 GHz 2.40 GHz

# of cores 12 8 4

# of threads 12 8 8

# of sockets 2 2 2

RAM 64 GB 24 GB

OS CentOS 6

Network Mellanox Technologies Mellanox Technologies
MT27500 4x FDR MT26428 x QDR

(56 Gbps) (32 Gbps)

Storage Device - - Fusion-io ioDrive
160 GB SLC

SDK - - OpenNVM Version 0.7

# of nodes 1-5 1-8 1-10

system are mounted. This is because there is performance limita-
tion of kernel for a single mount point. To avoid this limitation,
we use multiple mount points.

This evaluation involves the creation of 5,000 files and 5,000
directories per mdtest process. The number of client processes
we use ranges from 1 to 128; 640,000 files and 640,000 directo-
ries are created when using 128 client processes. We perform the
evaluation five times and calculate the average of each number of
client processes.

The results are shown in Fig. 2. In each graph in this figure, the
horizontal and vertical axes show the number of processes and the
number of operations per second.

Figure 2 (a), which shows the performance of the file creation
procedure, shows that the performance is higher as the number
of nodes increases. When five metadata servers and 128 client
processes are used, the peak performance is 142,564.4 ops/s. The

file creation performance exceeds the directory creation perfor-
mance, because PPMDS does not create the list of file entries of
the distributed server during file creation.

Next, for comparison purposes, we evaluate the performance of
IndexFS [3], which also manages metadata on a key-value store
such as PPMDS. Unlike IndexFS, many traditional distributed
file systems focus on achieving a high data access performance
rather than a high metadata performance. IndexFS is a middle-
ware that adds support to existing distributed file systems such
as PVFS [10], Lustre [8], and HDFS [11]. This key-value store
manages metadata by using the pair consisting of the inode num-
ber and the hash value of the filename. According to a published
report [3], IndexFS has been scaled to 128 metadata servers and
shown an out-of-core metadata throughput that outperforms ex-
isting distributed file systems by 50% to two orders of magni-
tude. Therefore, we selected IndexFS with which to compare the
performance of our PPMDS.

In Fig. 2 (b), which shows the performance of IndexFS, there
is no difference between the performance achieved with two and
three metadata servers or four and five metadata servers. This is
because, depending on the number of files, IndexFS splits the
directory to a power of two. When five metadata servers and
128 client processes are used, the performance of PPMDS is 2.60
times that of IndexFS. This is because, during file creation, PP-
MDS reads the distributed list of parent directories and writes
the metadata to the metadata server, which manages the file en-
try. However, these read and write operations are not in conflict
with each other, which means that there is no waiting time associ-
ated with either operation. PPMDS therefore shows a higher ef-
ficiency than IndexFS. But, IndexFS has a better scalability than
PPMDS for a directory creation because all metadata servers of
PPMDS store a list of nodes which manages files in its directory.
Therefore, PPMDS doesn’t have a good scalability for a direc-
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tory creation. However, we need a high file creation performance.
Therefore, using PPMDS as a metadata server is better than using
IndexFS.

Figure 2 (c) shows the performance of PPFS. It can be seen
that five metadata servers achieve only 62.8% and 11.5% of the
performance of PPMDS when using 128 and 16 client processes,
respectively. This is because the response time increased due to
the communication between MDS and OSS. Especially when us-
ing few clients, the effect is large.

Next, Fig. 2 (d) shows the performance of PPFS with bulk cre-
ation. In this evaluation, PPMDS communicates with PPOSS af-
ter the creation of every 64 files to create 64 objects. In this case,
when using five metadata servers, PPFS achieves 119,373.9 ops/s.
It is 83.7% and 65.2% of the performance of PPMDS for 128 and
16 client processes, respectively. Thus, the performance is im-
proved up to 1.34 times compared with the performance of PPFS
when using 128 clients, and 5.69 times when using 16 clients
by the bulk creation optimization. This is because PPMDS com-
municates with PPOSS on every 64 file creation requests, which
means that the number of communications is reduced. In addi-
tion, when using five metadata servers and 128 clients, the per-
formance of PPFS exceeds that of IndexFS by 2.17 times. And
also, this result indicates that PPFS has a very good scalability up
to five nodes.

Figure 2 (e) shows the performance of PPFS with object
prefetching. Object Prefetching is one of the optimizations for
file creation that hides the communication between the metadata
server and the storage server. When using five metadata servers,
PPFS achieves 138,577.7 ops/s, and it is 97.2% of the perfor-
mance of PPMDS. In addition, the performance of PPFS exceeds
that of IndexFS by 2.52 times. Moreover, the metadata perfor-
mance is improved linearly at the rate of 27.7 K OPS per server
when increasing the number of metadata servers.

Our aim is to realize a distributed file system with the abil-
ity to create 1 million files per second and access data at a rate of
100 TB/s. PPFS has a good scalability and achieves 138,000 ops/s
for file creation when using five metadata servers. PPFS meta-
data performance is improved almost linearly at the rate of 27.7 K
OPS, which means 1 M OPS is expected to be achieved when us-
ing 37 metadata servers.

5.3 Remote File Access Performance Evaluation
This evaluation measures the write performance for each block

size of our distributed file system.
We first evaluated the write performance of PPOSS as an ini-

tial evaluation, in which multiple client processes write to a sin-
gle PPOSS simultaneously. Each client process wrote 128 MiB of
data in each block size. When using 128 client processes, 16 GiB
of data was written to PPOSS.

The result is shown in Fig. 3. The horizontal and vertical axes
show the block size and the number of bytes written per second,
respectively. The lines in Fig. 3 represent the performance with
varying number of client processes. The performance is improved
by increasing the number of client processes and reaches its limit
at 32 processes. This is because of the performance limit of the
storage device. We use the result obtained for 128 client pro-

Fig. 3 Write performance of PPOSS. The lines represent the performance
with varying number of client processes.

cesses as a baseline to evaluate the prototype implementation of
the distributed file system based on the combination of PPMDS
and PPOSS.

Next, we evaluated the write performance of the prototype
implementation of the distributed file system by combining PP-
MDS and PPOSS for each block size. We use IOR HPC Bench-
mark [36] version 2.10.3, an MPI program, which writes data of
a specific size to a file in parallel. In this evaluation, each process
wrote 128 MiB of data with varying block sizes and numbers of
metadata servers. The varying number of IOR processes ranges
from 1 to 128. We used ppfuse, which is the client application
of our distributed file system, to mount 128 mount points spread
across eight nodes. Each of the IOR processes uses a different
mount point.

The result is shown in Fig. 4 (a) and Fig. 4 (b), which differ in
terms of the number of metadata servers. The horizontal and ver-
tical axes show the block size and the number of write bytes per
second, respectively. The lines in Fig. 4 show the performance
with varying numbers of IOR processes.

This evaluation did not include IndexFS, because IndexFS is a
middleware that is executed on other distributed file systems, such
as Lustre, PVFS, HDFS. Thus, the I/O performance of IndexFS
depends on these distributed file systems.

A comparison of the graphs in Fig. 4 indicates that the effect of
the number of metadata servers is not large. This is because the
metadata server is accessed only when calling open() and close()
when writing to a file to get the object ID and update the file size.
Thus, the metadata server is not accessed during each write() op-
eration.

Peak performance is achieved at 6,085.75 MiB/s when us-
ing one metadata server, 128 client processes, and a block size
of 2 MiB. Under these conditions, each storage server is ac-
cessed at 608.6 MiB/s on average. However, the initial perfor-
mance evaluation shown in Fig. 3 indicates that the performance
is 828.2 MiB/s under the same conditions. Thus, the PPOSS ac-
cess performance used in PPFS undergoes 26.5% degradation
compared to the single node performance of PPOSS.

We investigated the cause by evaluating the performance us-
ing one PPMDS node and 128 client processes by changing the
number of PPOSS nodes. In this evaluation, we also used IOR
HPC Benchmark [36] version 2.10.3, with each process writing a
128 MiB file in each block size.

The result is shown in Fig. 5, in which the horizontal and verti-
cal axes show the block size and the number of bytes written per
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Fig. 4 Write performance for varying numbers of metadata servers: (a) one and (b) five metadata servers.
The lines show performance with varying numbers of IOR processes.

Fig. 5 Write performance by changing the number of PPOSS nodes. The
lines show performance with varying numbers of PPOSS nodes.

second, respectively. The lines in Fig. 5 show the performance
with varying numbers of IOR processes.

Figure 5 shows that the overall performance of our distributed
file system increases as a function of the number of PPOSS nodes.
Compared to the ideal performance given the performance of a
single PPOSS (829 MiB/s), the actual result is about 24% worse
(e.g., 629 GiB/s instead of 6,285 GiB/s with 10 nodes). This is be-
cause the files are not evenly distributed throughout the PPOSS
nodes and the total number of client processes is few. So, some
PPOSSs are accessed by few clients. When using 10 PPOSS
nodes and 128 clients, it is 13 clients at most for each node even if
it is cleanly distributed. To show a high performance, each node
needs more clients. Moreover, the performance is degraded when
a small block size is used. This is because the ppfuse uses FUSE
and msgpack-rpc. FUSE and msgpack-rpc need memory copies.
When a small block size is used, the effect of overhead due to
memory copy increases.

5.4 Local File Access Performance Evaluation
We evaluated the file access performance when the file data

is managed on the node the client process is running on. For
this evaluation we also used IOR HPC Benchmark [36] version
2.10.3. The parameters are the same as in Section 5.3. We used
one PPMDS node, and eight PPOSS nodes, which also execute
client processes.

Figure 6 shows the result of the local access performance eval-
uation involving eight PPOSS nodes and 128 client processes.
In this case, each node executes 16 client processes. The blue
line (PPOSS-local) shows the performance of PPOSS with Di-
rect Local Access optimization enabled, and the orange line

Fig. 6 Local access performance by changing the block size.

(PPOSS-msgpack) shows the performance of PPOSS with Di-
rect Local Access optimization disabled. Furthermore, to evalu-
ate the PPOST performance, we implemented PPOSS using ext4
as backend storage systems. The gray line (ext4-local) shows the
performance of PPOSS using ext4 with Direct Local Access opti-
mization enabled, and the yellow line (ext4-msgpack) shows the
performance of PPOSS using ext4 with Direct Local Access op-
timization disabled.

In Fig. 6, all the methods reached their limits at 6,200 MiB/s,
which is close to the performance limit of the device. However,
PPOSS-local reached the limit using a 16-KiB block, at which
point it was 1.5 times faster than PPOSS without the optimiza-
tion. Thus, the optimization is effective in terms of achieving a
high write performance. In addition, the performance of PPOSS-
local is 3.4 times more efficient than ext4-local. This confirms
that the use of PPOST as a backend storage system is effective.

Next, we evaluated the scalability of PPOSS by using IOR.
The parameters of IOR are the same as in the previous evalua-
tion. Figure 7 shows the result of the evaluation for different
block sizes. In Figs. 7 (a)–(d), the horizontal axis of each plot
shows the number of PPOSS nodes and client processes. As each
PPOSS node executes 16 client processes, the total number of
client processes are 128 when eight PPOSS nodes are used.

Figure 7 (a) shows the result when a small block size of 512
bytes is used. This result indicates that PPOSS has a good scal-
ability. When eight PPOSS nodes are used, the performance of
PPOSS-local exceeds that of PPOSS-msgpack by 1.9 times. This
is because the optimization reduces the number of memory copy
operations. Further, ext4-local is 1.2 times more efficient than
PPOSS-msgpack. This is because the overhead due to memory
copy is larger than the overhead caused by using ext4 as backend
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Fig. 7 Local access performance for a different number of PPOSS nodes: (a) small block size of 512 B;
(b) medium block size of 4 KiB; (c) large block size of 32 KiB; (d) very large block size of 2 MiB.

when using a small block size. Figure 7 (b) shows the result for
a medium block size of 4 KiB, also indicating that PPOSS has
a good scalability. When eight PPOSS nodes are used, PPOSS-
local shows an improvement of 1.9 times compared to PPOSS-
msgpack and ext4-local is 1.1 times faster than ext4-msgpack.
The increase in performance of PPOSS using ext4 as backend is
smaller than when using PPOST. This is because, when using
ext4, the overhead is larger than the overhead caused by a mem-
ory copy. Figure 7 (c) shows the result that was obtained for a
large block size of 32 KiB. This result also shows that PPOSS
has a good scalability. The performance of PPOSS-local when
eight PPOSS nodes are used is almost the same as for PPOSS-
msgpack. This is because, by using a large block size, the time
taken for memory copying is sufficiently smaller than the time it
takes to write data, so the performance is almost the same. The
performance of PPOSS-local exceeds that of ext4-local by 1.9
times. This means that the use of PPOST as a backend storage
system is effective. Figure 7 (d) shows the result for a very large
block size of 2 MiB. This result also confirms the scalability of
PPOSS. In this case, the use of eight PPOSS nodes almost pro-
duces the same result for all local access modes. This is because
the use of a very large block size together with ext4 reduces the
overhead caused by a memory copy. Moreover, the IO perfor-
mance is improved linearly at the rate of 775 MiB/s per server
when increasing the number of storage servers.

Our aim is to realize a distributed file system with the ability
to create 1 million files per second and access data at a rate of
100 TB/s. PPFS IO performance is improved almost linearly at

the rate of 775 MiB/s, which means 100 TB/s is expected to be
achieved when using 166,000 storage servers.

6. Conclusion

This paper presents the design of PPFS—a scale-out dis-
tributed file system for post-petascale systems. PPFS consists
of PPMDS, which is a scale-out distributed metadata server, and
PPOSS, which is a scalable distributed storage server for flash
storage. High file creation performance of PPMDS was achieved
by using a key-value store for metadata storage and non-blocking
distributed transactions to update multiple entries simultaneously.
PPOSS depends on PPOST, which is an object storage system
that employs OpenNVM. The use of OpenNVM markedly im-
proves the object-creation and the access performance of PPOST.
A high file creation performance was attained by implementing
the PPFS prototype using file creation optimization, termed bulk
creation, to reduce the amount of communication between PP-
MDS and PPOSS. In addition, the I/O performance of PPOSS
is enhanced when the client process and PPOSS run on the same
node, because this avoids unnecessary memory copy.

In the file creation evaluation, PPMDS outperformed IndexFS
by 2.6 times when using five metadata servers, eight client nodes,
and 128 client processes. Further, when five metadata servers
were used, PPFS with object prefetching achieves 138,000 ops/s.
Moreover, the performance of PPFS exceeds that of IndexFS by
2.52 times.

In terms of remote access evaluation, we showed that the ac-
cess performance does not depend on the number of metadata
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servers. With local access optimization, PPOSS reached its limit
at a block size of 16 KiB, which is an improvement of 1.5 times
compared to before optimization and it is enhanced 3.4 times
compared to PPOSS using ext4 as backend instead of PPOST.
Thus, the results indicate that the optimization using PPOST as a
backend storage system is effective.

Furthermore, these evaluations indicate that PPFS has a good
scalability on the file creation and the IO performance, that is re-
quired for post-petascale systems.

Future work includes the simulation on a larger number of
clients and designing fault tolerance systems.
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