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A Pre-attributed Resampling Algorithm for
Controlled-Precision Volume Ray-Casting
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Accurate volume rendering is essential for some visualization applications, e.g., medical
imaging. However. the computationally expensive feature of conventional volume rendering
algorithms for high-quality image generation has restricted their practical use. In this pa-
per. we propose a pre-attributed resampling algorithm that accomplishes controlled-precision
volume ray-casting at low computational costs. This algorithm changes resampling intervals
based on numerical errors of the volume rendering integral so that the number of resampling
points becomes minimum for a given error bound. Besides. to reduce computational costs for
resampling. a simple interpolation method is applied to resampling points in regions where in-
tensities and opacities are constant. To suppress the overhead of precision control, information
on the numerical errors and the constant regions is obtained for each voxel in pre-processing.
and then related to volume data as voxel attributes. The experimental results demonstrate
that the proposed algorithm outperforms conventional ray-casting algorithms without, preci-
sion control for accurate visualization in terms of accuracy/processing-time performance.
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1. Introduction

Volume rendering is a useful and important
tool to directly visualize 3-dimensional numer-
ical data (volume) acquired through scientific
computing or measurement, such as compu-
tational fluid dynamics and medical imaging.
Most of recent researches in volume rendering
pay attention to rendering speedups by means
of efficient computation at the expense of accu-
racy of visualization. However, accurate visu-
alization is essential for some applications. e.g.,
medical diagnoses with critical decisions, that
require exact observation of volume data.

Volume is generally defined as a set of val-
ues given at 3-dimensional grid points called
voxels. These voxel values and their deriva-
tives are mapped to intensities and opacities
using shading and classification transfer func-
tions for visualization. In practical volume ray-
casting, intensities and opacities are calculated
at resampling points along a ray by interpolat-
ing voxel intensities and opacities pre-computed
at given voxel locations because of low compu-
tational complexity !). However, pre-aliasing )
errors occur in voxel intensities and opacities
when non-linearity of shading and classification
transfer functions leads to a large amount of
energy above the Nyquist rate of a voxel res-
olution. Interpolation of voxel intensities and
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opacities with errors cannot provide correct in-
tensities and opacities, even if the interpolation
is almost ideal. Therefore, to compute accurate
intensities and opacities for arbitrary transfer
functions. voxel values and their derivatives
should be reconstructed at resampling points,
and then shaded and classified.

A voxel value and its derivative at an arbi-
trary position can be reconstructed by using
3-dimensional convolution of voxel values and
a reconstruction filter. Poor reconstruction fil-
ters such as a trilinear interpolation filter cause
noticeable errors due to post-aliasing 2)~4). Al-
though the ideal filter avoids post-aliasing, it
needs a tremendous computation for recon-
struction because of its infinite support. There-
fore, practical filters that well approximate the
ideal one with a small support have been de-
sired. A number of researchers have investi-
gated piecewise cubic filters based on various
metrics to design more efficient reconstruction
filters for volume rendering®~"). Moller, et
al.%) evaluated numerical accuracy of the cu-
bic BC-spline filter in the spatial domain us-
ing a Taylor series expansion. Their evaluation
concluded that the Catmull-Rom spline is the
most optimal reconstruction filter in the class
of cubic BC-spline filters®), in terms of asymp-
totic error behavior. They also designed a good
derivative filter only with 4 filter weights; the
C'-2EF derivative filter 7).

The higher order filters provide more ac-
curate interpolation at higher computational
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costs. Sanchez, et al.®) proposed an adaptive
interpolation method that achieves high image
quality while reducing the computation time.
In this method, voxels are classified into three
kinds of zones: constant, linear, and non-linear.
Accurate, but expensive reconstruction filters
are applied only to non-linear zones. Although
this technique effectively works for efficient in-
terpolation, numerical errors in solving the vol-
ume rendering integral along a ray are not taken
into account.

In most of volume rendering algorithms, the
volume rendering integral to calculate an inten-
sity of each pixel is solved by numerical quadra-
ture along a ray. The interval of the integral is
subdivided into several subintervals, where in-
tensities and opacities are resampled. By short-
ening a resampling interval, an error of numeri-
cal quadrature can be reduced, while leading to
higher resampling costs. However, the resam-
pling intervals necessary to ensure a given ac-
curacy should be different, since the errors also
depend on the derivatives of the integrand. Ac-
cordingly. the number of redundant resampling
operations for a given accuracy can be reduced
by computing a proper length of a subinterval.

Novins ) presented volume ray-casting algo-
rithms to compute a subinterval length locally
adequate for a given error bound by evaluating
the maximum error of the numerical quadra-
ture in each domain. The maximum error is
computed with upper bounds on the derivatives
of the integrand. His algorithms can achieve
controlled-precision rendering at low computa-
tional costs by reducing resampling operations.
In his algorithms, the derivatives are bounded
under the assumption that intensity and opac-
ity functions in the integrand are piecewisely
polynomial due to trilinear or higher order poly-
nomial interpolation of voxel intensities and
opacities.

However, even if interpolation is polynomial,
this assumption is not suitable for intensi-
ties and opacities calculated from interpolated
voxel values and their derivatives because shad-
ing and classification transfer functions com-
monly have non-linearity. His algorithms do
not work well on non-polynomial intensity and
opacity functions. In addition. since bounds
on the derivatives are computed during a ren-
dering stage, volume ray-casting based on his
algorithims has a large overhead. Moreover.
Novins's algorithms do not take account of effi-
clent interpolation by choosing a proper recon-
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struction method for each domain.

In this paper, we propose another volume ray-
casting algorithm to control precision by chang-
ing a reconstruction method and a subinterval
length. The proposed algorithm interpolates
pre-computed voxel intensities and opacities in
the regions where intensity and opacity are al-
most constant. Elsewhere, shading and classi-
fication operations are applied to an interpo-
lated voxel value and its derivative. This algo-
rithm calculates an adequate length of a subin-
terval by evaluating the maximum error of the
numerical quadrature with upper bounds on a
derivative of the integrand. Since intensity and
opacity functions calculated from interpolated
voxel values and their derivatives are not always
piecewisely polynomial, this algorithm bounds
the derivative without Novins’s assumption.

In addition. to suppress the overhead of pre-
cision control. information on the numerical
errors and the constant regions is obtained
for each voxel in pre-processing. and then ap-
pended to volume data as voxel attributes.
During the ray-casting stage, a reconstruction
method and a subinterval length are simply ob-
tained by looking up the voxel attributes with
a small overhead. Since voxel attributes do not
have to be re-computed until resampling pa-
rameters except viewing ones change, computa-
tional costs for pre-processing are not critical to
render a sequence of frames for a walk-through
animation.

This paper is organized as follows. Section
2 provides basic concepts of the proposed al-
gorithm based on formulated error factors of
volume ray-casting. Section 3 presents tech-
niques to estimate local errors in volume ray-
casting. Section 4 describes an implementation
of the proposed algorithm. Section 5 shows
experimental results and discussion of the al-
gorithm in terms of accuracy/processing-time
performance. Section 6 gives conclusions and
future directions.

2. Controlled-Precision Volume Ray-
Casting

2.1 Volume Ray-Casting

Volume ray-casting is a basic and represen-
tative volume rendering algorithm that calcu-
lates pixel intensities by numerically solving
the volume rendering integral along a ray em-
anated from a viewing point through the pix-
els ):19~12) * The volume rendering integral is
given by
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where 7(t) and o(s) are an intensity function
and an opacity function, respectively. Since no
general solution to the volume rendering inte-
gral is known for arbitrary intensity and opac-
ity functions, numerical quadrature is applied
to it. Due to simplicity, most volume ray-
casting algorithms use the open composite mid-
point rule 3 that divides the interval into sev-
eral subintervals. in each of which intensities
and opacities are assumed to be constant with
their midpoint values. The integration results
of subintervals are composited to a pixel with
the “over” operator '4) in the front to back or-
der.

Two ways exist for calculation of intensities
and opacities at the midpoints. The first one
calculates an intensity and an opacity from a
reconstructed voxel value and its derivative.
We refer to this method as R(SC) because
of shading and classification after reconstruc-
tion. The second one calculates an intensity
and an opacity by interpolating voxel intensi-
ties and opacities. In this paper, this method
is called (SC)R because of reconstruction af-
ter shading and classification. In the R(SC).
shading and classification operations are neces-
sary for each midpoint though only reconstruc-
tion process impacts accuracy of intensities and
opacities. On the other hand, computational
costs of the (SC)R are less than those of the
R(SC), because shading and classification are
removed from rendering stages. However. the
(SC)R may cause noticeable errors in recon-
structed intensities and opacities because of in-
sufficient voxel resolution for arbitrary intensity
and opacity functions.

2.2 Numerical Errors of Volume Ray-

Casting

2.2.1 Errors of Reconstructed Inten-

sity and Opacity

Here. we formulate intensities and opaci-
ties reconstructed by using the R(SC) and the
(SC)R to explain the reason why the (SC)R
cannot always calculate accurate intensities and
opacities.

For simplicity but without the loss of gener-
alitv. we consider 1-dimensional reconstruction.
Let voxel values be v(hi), where i € Z and h
is an interval between adjacent voxels. Opac-
ity ogescy(x). which is calculated by using the
R(SC) at point z, is expressed as
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orso)(z) =C (Z K(z - hi)v(hi))

where K(z) is a 1-dimensional reconstruction
filter function, and C(v) is a transfer function
that maps voxel values to opacities. K(z) is
normalized so that Y, K (2 — hi) = 1.

On the other hand, the (SC)R calculates an
opacity at point z as

osoyr(x) = 3 K(x — hi)C(v(hi)).

i
It is obvious that opscy(z) # o(soyr(z)
when C(v) does not have linearity. However,
oar(scy(z) is equal to o(scyr(z) for arbitrary
transfer functions when v(z) is constant. This
indicates that the (SC)R reconstructs accurate
intensities and opacities at lower computational
costs in the region where they are constant. We
refer to such a region as a constant region.
2.2.2 Errors in Numerical Quadrature
of Volume Rendering Integral
In this section, we formulate errors caused by
the numerical quadrature of the volume render-
ing integral. For convenience, we define f(t) to
be the integrand for interval [—t,/2.¢5/2] as

t
f(f) _ T(t)f_f—t»‘/z o(s)ds
where t, is the length of the interval. In the
open composite midpoint rule, the interval is
subdivided into n subintervals [t;.%;41], where
the integrand is assumed to be constant with
its midpoint value. Integral in each subinterval
is expressed as

/"“ F(t)dt = hf(m:) + Ri(h)

wheret;, = —ts/2+hi, h = % and a midpoint of
subinterval [t;.t,41] is m; = “14L Remain-
der R;(h) is an error of the midpoint rule in
[titiya].

The error in the interval, E(—ts/2,t:/2),
is given by the sum of R;(h). For & €
[—ts/2.15/2]. the sum can be transformed into a

term of (&) by using the mean-value theorem:
n—1

E(—ts/2.t/2) = > Ri(h) = S—Zh-zf”(&)-
i=0 -

When t is small enough for f”(¢) to approxi-
mate f'/(0), we get
ts a4
E(_fs/(z:fs/?): ﬁhzf (0) (l)

This equation states that the error of the nu-
merical integration can approximately be esti-
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mated by using the second order differential co-
efficient of the integrand at the midpoint of the
interval for small ¢,.

Since f”(t) is expressed with 7(¢), o(t) and
their derivatives, an absolute error bound of the
numerical integration is given as

E(—te/2.1,/2)
”2
LD )]+ 217 (0)lo (0)

24
+7(0)(a3(0) + [o"(0)))}. (2)
7(t) and o(t), which are 1-dimensional func-
tions along a ray, can be expressed as 7(c + dt)
and o(c + dt) respectively, where unit vec-
tor d = (dy.dy.d.) is a direction of the ray
passing through the midpoint of the interval,
¢ = (¢ Ye, 2¢)- Using d.? + dyz +d.?r =1,
|7"(0)[. |7'(0)] and |o’(0)| are bounded as fol-
lows:
[7"(0)] = I7ax(e)da® + Tyy(e)dy’
+ ”’_:.:(C)d,:.2 + Q(TTy(C)drdy
+7y:(c)dyd. + 72(c)d.d,)|
< ree(€)] + |Tyy(c)| + |7:2(c)]
+ |Try(c)| + ITyZ(C)I + |Tz:r(c)|s
(3)
I7(0)] = |7x(€)de + Ty(€)dy + 7= (c)d|
<l + Iy +Im(e)]  (4)

<

A

and
lo"(0)] = |oz(c)ds + oy(c)dy +o:(c)d.|

< loz(e)| + loy(c)[ + |oz(c)].  (5)

Equations (2)—(5) give an upper bound on the

absolute errors of the numerical integration for

any ray direction as:

toh?
|E(—14/2.t,/2)] < 9; D(c) (6)
where -
D(c) =

|T.r.r(C)[ + ITyy(C)| + |72 ()]
+|T.ry(c)| + |Ty:(c)| + IT::,(C)|
+2(|72 ()] + |y (D) + |72 (e)])|o(e)] +
[7(e)(0>(€) + low ()] + oy ()] + o ()]).
Although this is a coarse bound, we can
evaluate the maximum of the absolute errors
for the volume rendering integral in the c-
neighborhood by computing D(¢) from 7(e),
o(c), and their partial differential coefficients
at c.
2.3 Precision Control
As described in the previous subsections.
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voxel region

ray

voxel segment

Fig.1 Voxel region and voxel segment.

the reconstruction methods and the lengths of
subintervals to accomplish a given error bound
at low computational costs are influenced by
the local behavior of the intensity and opacity
functions, and therefore should differ for each
domain of the volume rendering integral. We
propose an algorithm that exploits this prop-
erty by resampling with an adequate recon-
struction method and a subinterval for precise
visualization at low computational costs.

We define a voxel region as the inside of a
rectangular solid centered at a voxel. which has
the same size as a rectangular solid with eight
neighboring voxels as vertices. We also define
a voxel segment as the longest segment along
a ray that is included in a voxel region. Ex-
amples of a voxel region and a voxel segment
are depicted in Fig.1. In the proposed algo-
rithm, the whole interval along a ray is divided
into several voxel segments, to which the nu-
merical quadrature is applied. In each voxel
segment, a reconstruction method is chosen be-
tween the R(SC) and the (SC)R. The (SC)R is
used in constant voxel regions for lower recon-
struction costs, while the R(SC) is used else-
where for precise reconstruction of intensities
and opacities. Besides. the length of a subin-
terval is determined so that the maximum er-
ror of the numerical quadrature is less than a
given error bound at the lowest computational
costs for each voxel segment. We refer to these
processes as precision control.

To suppress the overhead of precision control.
information on the constant regions and the nu-
merical errors is obtained for each voxel region
In pre-processing, and then related to volume
data as voxel attributes. During a rendering
stage, precision control is simply performed by
looking up the voxel attributes that a ray passes
through. A method for voxel attributes gener-
ation is described in Section 4.1.
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3. Evaluation of Intensity and Opacity
Functions

3.1 Detection of Constant Region

The order of a polynomial function can lo-
cally be obtained by evaluating wavelet coef-
ficients of a wavelet basis with vanishing mo-
ments. For wavelet basis ¥(x2) with M vanish-
ing moments,

(V(z).2")=0, 0<n<M-1 (7)
This states that all wavelet coefficients are 0
when the wavelet transform with a basis of
M vanishing moments is applied to polynomial
functions of order M — 1. Therefore, constant
regions can be detected by evaluating wavelet
coefficients of Haar basis with one vanishing
moment. To detect constant regions of inten-
sity and opacity functions, their 3-dimensional
wavelet transform is performed with Haar basis
in the same way as Refs. 15) and 16).

3.2 Estimation of Differential Coeffi-

cients

The maximum of the absolute errors for the
volume rendering integral in each voxel region
can be computed based on Eq. (6). In Eq. (6).
the first and second order partial differential co-
efficients of intensity and opacity functions have
to be computed at a voxel location. We approx-
imately estimate these partial differential coef-
ficients by using the Haar wavelet coefficients of
intensities and opacities computed at a resolu-
tion four times higher than the voxel resolution.

Here. we explain the estimation in 2D
for simplicity, which will be extended to
the 3-dimensional representation. In the 2-
dimensional case, each voxel region includes 42
intensities and opacities at a resolution four
times higher than that of voxels. As shown in
Fig. 2, let intensities in the voxel region (a, b)
be

20 -3 2m —3
Clm =T (a. -+ ——4—/1,,b+ —,—”:1—/1>

I.me{0,1.2,3}

where 2h is a distance between adjacent voxels.

Haar wavelet coefficients, which are denoted by
01  J10 .3 711 .

d;,,. ld,TmA and d;;, . can be computed from ¢,

by using a decomposing operation of the filter

banks!7) as
01
d?,'m = (c2141.9m — c2.9m + 241 2m+1
- C21,‘2m+1)/4 (8)

where [.m € {0,1}. For 7(z, y) that is assumed
to be a real analytic function. a Taylor series ex-
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Fig.2 Intensities at a higher resolution and their
wavelet coefficients in a voxel region.

pansion of 7(z.y) in the neighborhood of (a.b)
and Eq. (8) give the following approximations:

dll(r]n or P
[Z — = 5-(a.b) + O(h?)
and
dlom - dlom 827

For d}! . we can similarly derive
4d111, %7
2: hf = awy(a,.b) + O(h?).

I.m

In the 3-dimensional case, similar derivations
for 7(z,y, z) give the following approximations:

J100 )
Z bmn 0_7"(“7 b.c) + O(h?).

Il.m.mn h 81

i — Ao, 9T
Y TR = o (a.b.c) + O(h)
m.n

and
4dI117(3 7 >
L O(h?).

1; 2 awoy b T O

In addition, the d-symmetry indicates that the
other partial differential coefficients of 7(z, y. z)
at (a,b,c) can also be approximated by using
480 0L 9l and df9) . The first order
partial differential coefficients of o(z,y, 2) are
also approximately estimated in the same way
as 7(z.y. 2).
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4. Implementation

4.1 Voxel Attributes

Voxel attributes are computed in pre-
processing as follows. First, intensities and
opacities are calculated at a resolution four
times higher than that of voxels by using the
R(SC). In the intensity and opacity calcula-
tion, voxel values and their derivatives resam-
pled with proper reconstruction filters, such as
cubic spline filters, are used for shading and
classification in the same way as Levoy's ray-
casting algorithm ). Then. Haar wavelet co-
efficients dj,, , are computed for each of the
intensities and opacities. Voxel attributes are
calculated from these wavelet coefficients. After
all of attributes are calculated, the wavelet coef-
ficients. the reconstructed intensities and opac-
ities are discarded to save memory space.

A voxel attribute consists of a reconstruction
method flag (called RMF) and a resampling
resolution level (called RRL). An RMF is ex-
pressed in one bit to choose a reconstruction
method between the (SC)R and the R(SC). The
(SC)R should be chosen in the regions where
intensities and opacities are approximated to
be constant in order to reduce reconstruction
costs. while the R(SC) should be used elsewhere
for accurate reconstruction. Since constant re-
gions can be detected based on the vanishing
moments of Haar wavelet as described in Sec-
tion 3.1, the RMF of a voxel is set to the (SC)R
when all the wavelet coefficients of intensities
and opacities are 0 in its voxel region. Other-
wise, the RMF is set to the R(SC).

An RRL indicates a degree of the maximum
absolute error of the numerical quadrature for a
certain length of subintervals. A floating point
representation is suitable for the RRL represen-
tation to precisely determine the proper length
of each subinterval. However, the small size of
an RRL is desired to avoid too much memory
consumption because of a large number of vox-
els. Therefore, an RRL is expressed in an n-
bit unsigned integer that indicates a class of
the maximum absolute error of the numerical
quadrature. Consequently, an RRL is set to one
of the numbers: 0,1.2,---,2" — 1. An appro-
priate bit length of an RRL will be examined
in Section 5.

An RRL of each voxel is set to L when a given
error bound Ej}, satisfies the following condition
in the voxel region:

Aug. 2000
D(e) D(c) 1

oL ="t ™ "oy 9L—1 (9)
for 0 < L < 2™ —1 where ¢ is the voxel location.
Otherwise, an RRL is set to 0 or (2" — 1) as
follows:

1
9L

D(C) 4
rRL={ ° ny < ()

2" —1 Ep < §W_L2

%} in Egs.(9) and (10) denotes the maxi-

mum absolute error in the voxel segment with
a length of 1 for 2L subintervals. D(c) is ap-
proximately computed by estimating the partial
differential coefficients of intensities and opaci-
ties from their wavelet coefficients as shown in
Section 3.2.

4.2 Adaptive Resampling Based on

Voxel Attributes

The proposed algorithm calculates a pixel in-
tensity by compositing contributions of voxel
segments along a ray in the front to back or-
der. Based on an RRL. each voxel segment is
subdivided into subintervals so that the max-
imum absolute error of the numerical quadra-
ture in the segment is less than a given error
bound. Suppose that a voxel segment with a
length of 4 is subdivided into ns subintervals.
For the voxel centered at ¢, Inequality (6) gives
the maximum error of the numerical quadra-
ture, Eynax = 53h°D(c). where h = = n, can
be computed for RRL < 2™ — 1 so that £ ax is
less than E}, as follows:

t D(c) 1
ZHD(e) < %m (11)

Since n, should be the smallest natural number
that satisfies Inequality (11), n is calculated as

ns = |/t32RRL (12)

[2] denotes the ceiling function. In the case of
RRL=2" — 1, Eq. (12) gives the largest number
of subintervals though E\,. is not always less
than FEp.

An intensity and an opacity at a midpoint
of each subinterval are calculated based on the
method specified by the RMF of the voxel re-
gion including the subinterval. Each voxel also
stores an intensity and an opacity computed at
the voxel position in pre-processing. If an RMF
specifies the (SC)R, an intensity and an opacity
of the midpoint are calculated by interpolating
pre-computed voxel intensities and opacities. If
the R(SC) is specified. voxel values and their
derivatives are resampled at the midpoint. and
then transferred to intensities and opacities by
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shading and classification. as
5. Experiments 1 N=d ;
. . RMS = ,| = r< —1,?
In this section, we evaluate performance of N Z( i i)

the proposed controlled-precision volume ray-
casting algorithm in comparison with the con-
ventional volume ray-casting algorithms based
on either the (SC)R or the R(SC).

5.1 Experimental Environment

All of the timing results were measured
through rendering programs on an Ultra
SPARC-II (360 MHz) with a main memory
enough to store each volume data set. Since
the accuracy of the numerical quadrature is
improved by shortening the constant length
of a subinterval as stated in Eq.(1), we mea-
sured the accuracy of the conventional volume
ray-casting algorithms by varying a constant
length of a subinterval. For the proposed ray-
casting algorithm, error bound E} for an RRL
was varied from 0.0 to 10.0. For the R(SC),
the Catmull-Rom spline filter and the C1-2kF
derivative filter are used to reconstruct a voxel
value and its derivative. For the (SC)R., the
trilinear interpolation filter is used to interpo-
late voxel intensities and opacities. These re-
construction filters are similarly used for the
conventional (SC)R and R(SC) ray-casting al-
gorithms. Although volume data sets are repre-
sented in 8-bit integers. rendering computation
is performed with double precision operations.

For experiments. we generated 8-bit gray
scale images with a size of 2562 pixels from two
data sets: Marschner and Jaw. Marschner
was obtained by sampling an analytical func-
tion given by Marschner, et al.?), which has of-
ten been used to evaluate accuracy of recon-
struction filters and rendering algorithms for
volume data 7)8)18).19) " The function was sam-
pled over a volume of 323 samples with a depth
of 8 bits. This sampling rate provides severe
tests for reconstruction due to a large amount
of energy near the Nyquist rate. Jaw is a part of
volume data that were obtained from CT slices
of a human skull. In the Jaw data set, teeth
and a chin are represented by 642 voxels with a
depth of 8 bits. Both data sets are classified by
using an isovalue contour surface classification
function given by Levoy 1.

The accuracy of rendered images were evalu-
ated using the root mean square (RMS) of dif-
ferences in pixel intensity between a reference
image and the rendered images. When N pixels
are contained in one image, an RMS is defined

=0

where I7°/ and I, are pixel intensities of the
reference image and the rendered image, respec-
tively. For each data set, an image rendered by
using the R(SC) ray-casting algorithm with a
constant interval of 0.01 was used as the refer-
ence image. The unit of an interval is a distance
between adjacent voxels.

5.2 Rendered Images

Figures 3 and 4 show rendered images of
Marschner and Jaw, respectively. In both fig-
ures, the top-left images are the reference im-
ages of the two data sets. Figure 3a pre-
serves the shape of the waves defined by the
Marschner’s function. This demonstrates that
the spectrum of this function is almost band-
limited overall the volume, and can acceptably
be sampled at 322 points without aliasing. In
Fig. 4 a, detailed shapes of teeth are distinctly
rendered due to the higher order reconstruction
filters and the fine resampling intervals for the
numerical quadrature.

For both data sets, the top-middle and top-
right images are rendered by using the R(SC)
algorithm with intervals of 0.1 and 1.0. While
the images rendered with an interval of 0.1 al-
most look the same as the reference images,
striped patterns emerge in the images rendered
with an interval of 1.0. Since the R(SC) algo-
rithm calculates quasi-accurate intensities and
opacities, these artifacts are caused by errors of
the numerical quadrature for the volume ren-
dering integral.

The bottom-left images in Figs.3 and 4 are
rendered by using the (SC)R algorithm with an
interval of 0.1. For Marschner, the rendered
image suffers from the extreme Moiré patterns
that destroy the overall shapes of the waves
despite a fine interval of 0.1. The Moiré pat-
terns are caused due to errors in interpolating
voxel intensities and opacities. For Jaw, in-
tensities and opacities are reconstructed better
than those of Marschner by using the (SC)R
algorithm. Consequently, the overall shape of
Jaw can be perceived in the rendered image
as shown in Fig.4d. However, severe artifacts
appear on the surface of the lower jaw. and
especially the teeth with striped patterns and
dark spots. Besides, the images as a whole are
blurred in comparison with the other images.


研究会Temp
テキストボックス


120 IPSJ Transactions on High Performance Computing Systems

Aug. 2000

d. (SC)R. interval=0.1

e. Proposed. E,=0.0

f. Proposed, Ey=10.0

Fig. 3 Rendered images of Marschner.

These artifacts demonstrate that the resolution
of the voxels is not sufficient to keep the high
frequency spectrum of the intensity and opacity
functions.

Images generated by the proposed algorithm
with an RRL of 3 bits are shown in the bottom-
middle and bottom-right. For both data sets,
the bottom-middle images rendered with an er-
ror bound of 0.0 are not visibly different from
the reference images. Besides, much better
quality than the images of the (SC)R algo-
rithm is achieved for an error bound of 10.0.
even though there are slight noises overall the
images. These results manifest that almost
no visible blurring and errors of the numerical
quadrature occur in the case of error bounds
less than 10.0.

5.3 Processing Time and Accuracy

Figure 5 shows a relationship between the
rendering time and the RMS of the Marschner
data set for each algorithm. “E,” and “int”
in this figure indicate the error bound for the
proposed algorithm and the resampling inter-
vals for the conventional R(SC) and (SC)R al-

gorithms, respectively.

This figure demonstrates the tradeoff be-
tween the rendering time and the RMS for the
R(SC) algorithm. The shorter resampling inter-
val provides the smaller RMS, while the render-
ing time becomes longer. When the resampling
interval is 0.1, an RMS is 0.2 and the rendering
time is over 500 sec. The rendered image with
an RMS of 0.2 has no visible difference in im-
age quality from the reference image as shown
in Fig.3. For a resampling interval of 1.0, the
rendering time is reduced to 55 sec, although
an RMS increases to 7.

On the other hand. the (SC)R algorithm has
no tradeoff between the rendering time and the
RMS. The RMS for the (SC)R algorithm does
not decrease even though the rendering time is
increased by the shorter resampling intervals.
This is because errors in interpolated intensi-
ties and opacities are independent of the resam-
pling intervals. Furthermore. such noticeable
artifacts as the Moiré patterns result in a con-
siderably large RMS of over 25. Therefore, the
(SC)R algorithm is not suitable for accurate vi-
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d. (SC)R. interval=0.1

b. R(SC), interval=0.1

e. Proposed. E,=0.0
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c. R(SC), interval=1.0

f. Proposed. E,=10.0

Fig. 4 Rendered images of Jaw.

sualization, although fast visualization can be
achieved.

The proposed algorithm also has a tradeoff
between rendering time and the RMS, which is
shown as the solid line for a 3-bit RRL. The
smaller error bound results in a smaller RMS
and a shorter rendering time. The RMS for an
error bound ranging from 0.0 to 10.0 is much
less than that of the (SC)R algorithm. Espe-
cially. the RMS less than 1.0 is equivalent to
the rendering quality of the reference image.
Comparing timing results that achieve the same
RMS, the rendering time of the proposed algo-
rithm is always less than that of the R(SC) al-
gorithm for any error bound as shown in Fig.5.
Especially, the rendering time is almost a half of
that of the R(SC) algorithm for an error hound
of 0.0. This demonstrates that precision con-
trol effectively works for accurate visualization
at lower computational costs.

Figure 6 indicates that the results of the
Jaw data set has almost the same tendency as
those of the Marschner data set. However. the
advantage of the proposed algorithm is much

greater than that for Marschner since Jaw con-
tains many redundant regions where precision
control effectively works. This result demon-
strates that the proposed algorithm is also ef-
fective for such a class of volume data sets in
real applications.

In other experiments, the rendering time and
the RMS in the case of a 1-bit or 2-bit RRL
had almost the same trends as those of a 3-
bit RRL except their minimum RMSs. Since
the smaller number of RRL bits limits a choice
of shorter subintervals, the minimum RMS for
an error bound of 0.0 increases as the number
of RRL bits is reduced. Therefore, the num-
ber of RRL bits should be given based on re-
quired accuracy. We empirically found that at
least 3 bits are necessary for precision control
to achieve rendering quality visibly equivalent
to the reference image.

5.4 Memory Requirement

Table 1 shows memory requirements of each
algorithm in bytes/voxel. Each element of the
voxel attributes consists of a 1-bit RMF and a
3-bit RRL. For the proposed algorithm, each
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Table 1 Memory requirement (B/voxel).

R(SC) | (SC)R | proposed
voxel value 1.0 0.0 1.0
intensity 0.0 1.0 1.0
opacity 0.0 1.0 1.0
attribute 0.0 0.0 0.5
total 1.0 2.0 3.5

Table 2 Pre-processing time (sec).
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Fig.5 RMS vs. Rendering Time for Marschner.
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voxel stores all of a voxel value, an intensity
and an opacity despite its RMF because recon-
struction in a voxel region concerns the adjacent
voxels. For example, trilinear interpolation in
a voxel region with an RMF of the (SC)R re-
quires intensities and opacities of voxels around
the region. even if these adjacent voxels have an
RMF of the R(SC). However, the memory re-
quirement of the proposed algorithm is still less
than the double size of the memory space re-
quired for the (SC)R algorithm.

5.5 Pre-processing Time

Table 2 shows the pre-processing time to
generate voxel attributes. For both data sets.
the processing time to calculate intensities and
opacities is dominant because all of resampling
points with a resolution 4% times higher than
that of voxels involve interpolation with expen-
sive reconstruction filters. shading and classifi-
cation. On the other hand, the table indicates

Marschner Jaw
intensities and. opacities 89.6 744.6
calculation
wavelet transform and
attributes calculation 219 189.5
total 111.5 934.1

that the processing time for wavelet transform
and attributes calculation is not critical.

The total time of pre-processing is almost
equal to the difference in rendering time be-
tween the R(SC) algorithm and the proposed
one. Therefore, the pre-processing, which is the
overhead of precision control, is not so large.
Since voxel attributes do not have to be re-
computed until shading and classification pa-
rameters are changed, computational costs of
pre-processing become relatively lower in the
case where only viewing parameters are varied.
In addition, it is possible to implement a more
efficient routine for interpolation of voxel values
and their derivatives by exploiting its regular-
ity. This remains as a future study.

6. Conclusions

In this paper, we have proposed the pre-
attributed resampling algorithm for controlled-
precision volume ray-casting that is designed to
efficiently synthesize high-quality images. The
proposed algorithm exploits uneven distribu-
tion of computational costs necessary to achieve
a given accuracy in each domain, by resampling
with an adequate reconstruction method and
a proper subinterval. The precision control is
based on local information about the constant
regions and the errors of the numerical quadra-
ture. To suppress the overhead of precision con-
trol, such information is obtained and stored as
voxel attributes in pre-processing.

Through experimental results, we have evalu-
ated the accuracy/processing-time performance
of the proposed algorithm in comparison with
the conventional volume ray-casting algorithms
based on either the (SC)R or the R(SC). The
experimental results clarified the properties of
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the two conventional algorithms:

e The rendering time for the R(SC) algo-
rithm dramatically increases as an RMS de-
creases.

e The (SC)R algorithm generates images
with noticeable errors at the lowest costs.

On the other hand. the experimental results in-
dicated that the proposed algorithm achieved
accurate visualization equivalent to the R(SC)
algorithm at much lower computational costs.
The proposed algorithm is suited for highly
accurate visualization at reasonable costs be-
cause the algorithm outperforms the R(SC) al-
gorithm for accurate visualization in terms of
accuracy/processing-time performance.

Computational costs for generation of voxel
attributes and the data size of voxel attributes
are the drawbacks of the proposed algorithm.
In future research we are going to refine our
algorithm by taking into account efficient com-
putation and a smart data structure for voxel
attributes.
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