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Measuring Translucent Objects
using Spatially and Temporally Modulated Light
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Abstract: Measurement of translucent objects is an important technology with broad potential applications. In the
computer vision field, computational photography approaches that combine optical design and computational algo-
rithms to obtain informative images have been actively developed to enhance and restore images. However, it remains
difficult to recover heavily degraded information within translucent objects because light penetrates and scatters inside
the object. In this thesis, we propose a measurement framework using either spatially or temporally modulated light.
Using a projector to realize spatial modulation and a Time-of-Flight (ToF) camera to realize temporal modulation, we
reveal how the modulated light conveys the information of spatial and temporal spread of light, respectively. Based
on these relationships, we recover clear images stored inside translucent objects, accurate 3-d shape, and material. We
demonstrate the effectiveness of our method in real-world experiments.

1. Introduction
Measurement of transparent and translucent objects is an im-

portant technology that may have applications in fields, including
autonomous robotics, industrial inspection, underwater science,
art, and historical research. However, such measurements remain
challenging in computer vision applications because of the com-
plicated optical phenomena involved, such as subsurface scatter-
ing and refraction. For example, when a translucent object is il-
luminated by a laser pointer, the laser beam becomes blurred and
degraded as a result of the light penetrating and scattering inside
the object. To overcome these problems in measuring transpar-
ent and translucent objects, their complicated optical responses,
referred to as ‘light transport’, must be compensated for.

Properly dealing with the light transport of a scene can help a
computer to correctly understand the scene. For example, clear
images can be recovered in foggy weather if the scattering prop-
erties of the fog are identified. Translucency of the scene is also
important for recognizing the scene, as well as removing its ef-
fects. Taking into account the magnitude of subsurface scatter-
ing, the material of the target object can be recognized because
translucency conveys the optical properties of the material.

We aim to recover invisible information from images degraded
by complicated light transport such as scattering. Because scat-
tering is too complex to be fully measured and analyzed, we
do not explicitly recover either the scattering parameters or the
point spread functions (PSF). Instead, we propose model-based
approaches for visualizing invisible information that indirectly
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Fig. 1: Amplitude-modulated illumination. (a) High-frequency
illumination, in which the illumination is spatially modulated by
a projector. Illumination is rapidly switched on and off with the
illuminated position. A typical wavelength is sub-millimeter. (b)
Illumination is temporally modulated at several tens of mega-
hertz, using a ToF camera.

observes spatial and temporal PSFs.
We adopt either spatially or temporally amplitude-modulated

illumination as shown in Fig. 1. Spatially modulated illumination
can be realized using a projector, which can control the ampli-
tude of light by projecting a high-frequency pattern. Temporal
modulation can be realized by turning the light source on and
off at high speed, which is achieved using a Time-of-Flight(ToF)
camera. Observation under an ordinary illumination such as a
light bulb degrades the information of the scene because scatter-
ing behaves as a low-pass filter. In contrast, observation under
amplitude-modulated light maintains the frequency response of
the scene. Using various frequencies of the amplitude-modulated
illumination, many frequency responses can be obtained; thus,
invisible information can be recovered via computation.

We propose a framework that simultaneously deals with spa-
tially and temporally modulated illumination at different frequen-
cies, as shown in Fig. 2. We illuminate the scene by spatially or
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Fig. 2: An overview of our framework. We illuminate the scene
using either spatially or temporally amplitude-modulated light at
different frequencies and observe the response as amplitude and
phase shift of the returned wave. From these observations, we re-
cover invisible information from the scene via computation based
on the distortion model of the returned wave.

temporally amplitude-modulated light and observe the amplitude
and phase shift of the returned wave. We repeat observations at
various illumination frequencies. From these observations, we
analyze the scene to recover invisible information based on the
model about the PSFs and modulated illumination.

In this paper, we extract two works from the Ph.D. thesis [65].
In Section 3, a spatial analysis of translucent objects is discussed,
and the temporal analysis is summarized in Section 4.

2. Related Work
We summarize active illumination works that illuminate the

scene by amplitude-modulated light. They are strongly related to
our work because our aim is to analyze spatial and temporal light
transport using amplitude-modulated light. Related to our spe-
cific implementations, we summarize the work of separating lay-
ered translucent objects and material classification, respectively.

Spatially Coded Illumination
Our method can be grouped in a class of active sensing tech-

niques that use high-frequency pattern projection. These tech-
niques are based on the relationship between the pattern pro-
jection and the spatial spread of light. The original Nayar et
al. [47]’s method separate direct and global components by pro-
jecting multiple high-frequency patterns, where direct compo-
nents include specular and diffuse reflection and global compo-
nents include inter-reflection, volume and subsurface scattering.
Extending this method, Lamond et al. [36] separate specular and
difuse refrection, Mulaigawa et al. [42], [43] separate single and
multiple scattering, Tanaka et al. [68] separate transmissive and
scatttered lights, and Tanaka et al. [66] separate upper and inner
layers. We summarize these method in terms of what is exactly
the direct components in the viewpoint of optical design in this
thesis. In addition, Achar et al. [2], [3] overcome the problem
of motion and defocus of high-frequency illumination by total
variation optimization and changing projector’s focus while pro-
jection. Reddy et al. [54] separate light transport into direct, near-
indirect, and far-indirect rays by frequency-domain modeling and
analysis. There are other pattern projection techniques to decom-
pose light transport. Gupta et al. [20] acquire scene depths with
direct-global separation by modeling both projector’s defocus and
global light transport. O’Toole et al. [48], [50], [51] illuminate

a scene by a pattern while masking the camera by the comple-
mentary pattern to spatially probing the light transport of the tar-
get scene. Our methods is also based upon Nayar’s method [47]
and we use a relationship among direct components, the size of
scattering blur, and the pitch of the projection pattern to separate
depth layers. We use the pattern projection not only for separating
scattering effects, but also for recovering appearance of multiple
inner slices.

Our work is also related to imaging through scatter-
ing/occlusion methods in computational photography. For
imaging through scattering media, Narasimhan et al. [46]’s and
Gu et al. [18]’s methods sharpen images of a target scene in
muddy liquid by precisely modeling single scattering. Their
methods work well for those scenes that do not exhibit multiple
scattering. Differently from these works, our method recovers
images inside an optically thick translucent object, where signifi-
cant multiple scattering is observed and the optical thickness of
the target is unknown.

Temporally Coded Illumination
A time domain impulse response of the scene, as known as

light-in-flight and transient imaging, can be obtained using an in-
terferometer [15], holography [1], [32], and femtosecond-pulsed
laser [35], [71], [72]. The time domain impulse response can
be also recovered using the ToF camera. Because the ToF cam-
era is a device for measuring sub-nano second phenomena, it can
be used for visualizing the light propagation of the scene by fre-
quency sweep [23], [38], [52] and optical coding [30], [49], while
it requires customization of a ToF camera. These measurement
methods may be able to be applied to the task of material classifi-
cation, although they require careful and expensive setups. On the
other hand, our method bypasses the exact recovery of the time
domain impulse response and simply uses the measured depth of
a ToF camera.

When a ToF camera measures a multi-path scene, the mea-
sured depth is distorted due to inter-reflections and subsurface
scattering, known as the multi-path interference. Mitigating the
multi-path interference and recovering the correct depth is of
broad interest, and it has been studied by assuming two-bounce
and simplified reflection model [10], [13], [17], [28], paramet-
ric model [25], [34], K-sparity and optimization [6], [12], [53],
stereo ToF cameras [37], using external projector [44], and fre-
quency sweep [29]. Instead of recovering the correct depth, we
use a distorted depth as a cue for the material classification.

There are other scene analysis methods using ToF cameras,
e.g., recovering the shape of transparent and translucent ob-
jects [60], [67], and measuring a slice of BRDF [45]. In addition,
computational imaging methods using the ToF camera, such as
imaging around the corner [24], [31], separating direct and indi-
rect light transport [19], [49], [74], imaging the velocity of the
object [22], [62], and imaging at a specific depth [64] are pro-
posed. Our method can also be considered one of the scene anal-
ysis methods as it aims at material classification of the scene.

Separating Layers from Superposed Images
There have been independent developments of technologies for
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imaging internal structures of target objects for special purposes.
In art analysis, several techniques have been developed for imag-
ing hidden layers of paintings. Infrared reflectography [14] and
X-ray transmission radiography [9] have been used for visualiz-
ing internal layers of paintings, although the surface texture can-
not be separated. X-ray fluorescence technique [9] uses spec-
troscopic information measured over a couple of days and esti-
mates the metallic atom distribution for determining colored ap-
pearance of inner layers. Tera-hertz imaging [4], [55] is another
technique that can see inner layers of paints and books. In the
medical imaging and its related areas, optical coherence tomogra-
phy [11], [26] techniques are widely used, especially for visualiz-
ing retina. These techniques enable to observe inside translucent
objects based on interference of coherent light at the cost of ex-
pensive wavelength-order optics and mechanics. In contrast, our
method uses a commodity camera and projector for recovering
slices inside translucent objects, which allows low-cost imple-
mentation.

Time domain coding for analyzing light transport is another
approach to recover images that are not directly measurable.
Heide et al. [25] sweep the modulation frequency and phase of
their customized Time-of-Flight (ToF) camera to recover the light
propagation inside scattering medium. Kadambi et al. [30] build
a coded-illumination ToF camera with a deconvolution technique
and use it for recovering a sharp image by observing through a
diffuser. O’Toole et al. [49] combine spatial probing and ToF
imaging to separate direct and indirect light-in-flight images.
Tadano et al. [64] propose an imaging system that is capable to
select a target depth using a coded ToF camera. While these meth-
ods effectively recover light transport, they require carefully tai-
lored ToF cameras. Contrary, our method uses a simple projector-
camera system and spatial pattern coding to analyze light trans-
port inside translucent objects.

Material Estimation
Non-invasive and non-contact material classification is an im-

portant research topic in computer vision and yet remains a chal-
lenging task. There are several prior works for material estima-
tion. The methods based on the visual appearance, e.g., color,
shape, and/or textures of the material [5], [7], [39], [58], [59],
[70], [73], [77], typically only require a single RGB image; thus,
the setups are easy to realize. The main problem is that this ap-
proach suffers from similar appearances of different materials,
e.g., texture-less boards, resulting in a lower accuracy due to the
lack of information.

The class of approaches based on the optical properties, such as
BRDF [40], [76], shading [41], and spectrum [57], has a capabil-
ity of distinguishing visually similar objects in higher accuracy
because the optical properties convey richer information about
the material. However, constructing such measurement systems
and building database of samples generally require carefully con-
trolled settings. This class includes approaches based on other
physical properties, e.g., elasticity [8], and water permutation and
heating/cooling process [56]. Our method falls into this class be-
cause we use a temporal response of the incident light, which im-
plicitly measures the optical and physical properties of target ob-

jects. Unlike these approaches, our method uses an off-the-shelf
ToF camera and needs only single observation at least, hence the
cost of constructing the system is as low as the appearance-based
methods.

In the context of material classification using a ToF camera,
Su et al.’s method [63] is closely related. They propose a method
that classifies a material from raw ToF measurements by sweep-
ing over several modulation frequencies and phases. While the
approach is shown effective, it requires special customization of
a ToF camera for obtaining the measurements. In contrast, our
method only uses an off-the-shelf ToF camera. We show that the
material classification can be achieved by such a simple setup by
exploiting the depth-dependency of the measurements.

3. Analysis of Spatially Spread Lights and
Multi-frequency Illumination

Translucent objects have complex appearance. It is a super-
position of light rays emitted from inner slices at every depths,
blurred by subsurface scattering. Because seeing internal appear-
ance of objects is of broad interest in medical and art analyses and
industry inspection, various imaging techniques have been devel-
oped in the past. In particular, since the translucency effect be-
comes significant for many materials in near infrared (NIR) wave-
lengths, infrared photography is used as one of common tech-
niques for achieving this goal. For example, it is used for observ-
ing inner layers of oil paintings that tell us the drawing technique,
growth, history, and/or authenticity of old age painters.

One of the major challenges in observing inner layers of
translucent objects is to separate inner appearances with properly
dealing with scattering. To overcome this problem, we develop
a multi-frequency illumination method, which can recover sharp
appearance of inner slices at a desired depth with explicitly re-
moving scattering blur. Compared with conventional techniques
that aim at a similar goal, our method is faster and safer than the
X-ray fluorescence technique [9], and sharper results can be ob-
tained differently from infrared reflectography [14].

Our method exploits the fact that the spread of light due to scat-
tering has dependency on the depth of inner layer where light rays
are emitted. By modeling the light spreads as depth-dependent
point spread functions (PSFs) and utilizing their depth-dependent
low-pass characteristics, we develop a method for recovering in-
ner layer appearances from a set of images taken under a vari-
ant of high-frequency illumination [47]. Specifically, our method
uses a spatial pattern projection with varying the pattern pitch –
we call this multi-frequency illumination. Our multi-frequency il-
lumination method allows us to separate direct (high-frequency)
and global (low-frequency) components as in [47], yet at vari-
ous frequency levels that define high- and low-frequencies. Our
method uses the direct component observations for recovering the
appearance of inner slices, which are related to the direct compo-
nents via depth-dependent PSFs.

The key contributions of this section are twofold. First, we de-
scribe the relationship between depth inside a translucent object
and its PSF by a physically motivated scattering model. Second,
using the relationship, we develop a method for recovering the
appearance of inner slices using varying pitch pattern projection.
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Fig. 3: Illustration of the image formation model for translucent
objects. (a) Recorded intensity is the summation of all layer’s
appearance. (b) Spatial spread of light varies with depth.

We implement a coaxial projector-camera setup for measuring
real-world objects, and show the recovery results using oil paint-
ing.

3.1 Appearance of Translucent Objects
When an image of a translucent layered object is recorded, the

observed intensity can be modeled as a summation of the appear-
ance of multiple depth layers as illustrated in Fig. 3(a). Let Sd

be the appearance slice of the layer at depth d. The observed
intensity Lo(q) at camera pixel q can be expressed by

Lo(q) =
∑
d

Sd(q) (1)

in a discrete form.
The appearance slice Sd is generally blurry due to the scatter-

ing effect inside the medium. The spread of radiance at a scene
point inside a translucent object varies depending on its depth
from the object surface [61]. In general, the spatial spread of
light can be expressed using PSFs. Let us consider light rays
emitted (or returned) from a specific depth inside a translucent
object. When the depth is shallower, the PSF becomes sharper.
On the other hand, it gradually spreads as the depth d becomes
deeper inside the medium as illustrated in Fig. 3(b). In this man-
ner, there is a close relationship between the PSF and depth. By
denoting hd as a PSF at depth d, the appearance slice Sd at depth
d can be expressed as

Sd(q) = (Rd ∗ hd)(q), (2)

where Rd is the sharp slice that we are interested in estimating,
which we call a radiance slice, and ∗ denotes a convolution oper-
ator.

Since the appearance of the translucent object under normal
illumination is a superposition of radiance of multiple layers as
Eq. (1), the observation can be re-written as

Lo(q) =
∑
d

(Rd ∗ hd)(q). (3)

Our goal is to recover radiance slices Rd from the composite ob-
servation Lo. Before introducing the solution method, we de-
scribe a model of depth-dependent PSFs hd.

3.2 Proposed Method
We are interested in recovering radiance slices Rd from the

mixed observation Lo. To achieve this goal, we develop a multi-
frequency illumination measurement method, which is built upon
the high-frequency illumination (HFI) method proposed by Na-
yar et al. [47]. To begin with, we briefly review the original HFI
method.
High-frequency illumination method [47]

The HFI method separates direct and global components by
projecting small pitch checker patterns. When the phase of the
projection pattern changes slightly, the direct component D(q)

varies accordingly, but the global component G(q) remains sta-
ble. Based on this observation, their method computes direct and
global components using the maximum Lmax(q) and minimum
Lmin(q) intensities that are obtained by shifting the projector pat-
tern as{

D(q) = Lmax(q)− Lmin(q),

G(q) = 2Lmin(q).
(4)

The direct component D(q) contains high-frequency compo-
nents, while the global component G(q) contains only lower
frequency components than the frequency of projection pattern.
Therefore, the HFI method can be viewed as a separation tech-
nique for high- and low-frequency components.
Pattern pitch of HFI

In our case, when a translucent object is measured under HFI
with pattern pitch p, we can obtain direct component D(p, q) and
global component G(p, q) as

D(p, q) =
∑

d Dd(p, q)

G(p, q) =
∑

d Gd(p, q)

Sd(q) = Dd(p, q) +Gd(p, q),

(5)

where Dd(p, q) and Gd(p, q) are the direct (high-frequency) and
global (low-frequency) components at depth d, respectively, and
the sum of direct and global components for each depth becomes
the radiance slice. As mentioned in [47], the pattern pitch p must
be sufficiently smaller than the scene texture for a faithful sepa-
ration.
3.2.1 Multi-frequency Illumination

By measuring the target object using multi-frequency patterns,
multiple of corresponding direct components are obtained. Un-
fortunately, increasing the number of measurements does not
make the problem easier as it also increases the number of vari-
ables to solve for. To make the problem tractable, we assume
that the texture of direct components does not vary drastically
when the pattern frequency is high enough and the pitch variation
(pv − pu) is sufficiently small. These direct components Dd at
a certain depth d are supposed to have a similar texture with the
original radiance; therefore, we can expect the following relation-
ship:

Dd(p, q) ≈ α(hd, p)Rd(q), (6)

where α(hd, p) is the relative brightness of Dd(p, q) to Rd(q).
We call α(hd, p) the direct component ratio that represents the ra-
tio of direct component’s mean intensity to the radiance Rd(q)’s
mean intensity. Hence, Eq. (5) can be rewritten as

D(p, q) =
∑
d

α(hd, p)Rd(q). (7)
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These assumptions are based on the fact that the diffuse re-
flection and subsurface scattering can be regarded as the same
physical phenomena [21], [27]; the light scatters on or beneath
the surface and eventually bounces off of the material in random
directions. Direct components Dd represent total intensities of
lights from all the points inside the object whose distance from
the incident point on the surface is smaller than the pattern pitch
p. Hence the pattern pitch p controls the scale of the separa-
tion of scattered lights in the direct-global separation scheme, and
thus controls the intensity of direct components. Furthermore, be-
cause p is sufficiently smaller than the scene texture, the texture
of direct components and the original texture are largely similar.
Based on these observations, we obtain the original texture at dif-
ferent brightnesses by changing p.

With these assumptions, a set of direct component images
D(p, q) taken under the multi-frequency illumination of m pitch
variations (p = p1, p2, . . . , pm) can be written in a matrix form
as

D(q) = AR(q), (8)

where

D(q) =
[

D(p1, q) D(p2, q) · · · D(pm, q)
]T

,

A =


α(hd1

, p1) · · · α(hdn
, p1)

...
. . .

...
α(hd1

, pm) · · · α(hdn
, pm)

 ,

R(q) =
[

Rd1
(q) Rd2

(q) · · · Rdn
(q)

]T
.

Here, D ∈ Rm is a vector of direct components measured un-
der m variations of the pattern pitches at pixel q, R ∈ Rn is a
vector of n layers of radiance slices, and A ∈ Rm×n is a matrix
containing direct component ratios computed from the projected
pattern pitch and the depth-dependent PSF.

When the number of projected patterns m is no less than the
number of depth layers n (m ≥ n) and rank(A) = n, the radi-
ance slices R can be obtained by a norm approximation of the
residual vector, i.e., D(q) − AR(q). For example, with a least-
squares approximation, the radiance slices R(q) can be deter-
mined using the pseudo-inverse A+ as

R(q) = A+D(q). (9)

3.2.2 Estimation of Informative Slices
Once we know the target depths (or PSFs) to inspect, we can

set up a matrix A, and thus can recover slices corresponding to
the depths using Eq. (9). However, such a prior knowledge is
difficult to obtain before measurement; therefore, automatically
selecting a good set of depths becomes important for recovering
informative slices. For example, if an arbitrary depth is chosen, it
has a chance to correspond to the middle of distinct texture lay-
ers. To recover informative slices, we use a two-step approach.
The first step is the estimation of a set of informative depths via
optimization. This is equivalent to selecting a small number of
useful PSFs from many other possible PSFs. The second step is
the recovery of slices at the informative depths determined by the
earlier step.

Step 1: Estimation of informative depths
Frequently, there are only a small number of informative slices

inside translucent objects. Hence we can regard such radiance
slices exist sparsely along depth. Our method uses this sparsity to
determine the informative slices by solving a l1 regularized prob-
lem (as known as the lasso [69]) with a non-negative constraint
about R:

R̂(q) = argmin
R(q)

∥AR(q)−D(q)∥22 + λ ∥R(q)∥1 (10)

subject to R ⪰ 0.

We can regard the depth d (= T
σ ), where R̂d(q) has a non-zero

value, is informative while others are not. Equation (10) be-
comes a quadratic programming (QP) problem and thus can be
efficiently solved in a polynomial time. We solve the optimiza-
tion in a per-pixel manner. Solving a similar problem for the
entire image at a time instead of computing in a pixel-wise man-
ner is also a viable option; however, we have observed that they
do not make much difference because of the following Step 2.
Therefore, for efficient parallelization, we choose the per-pixel
implementation.
Step 2: Informative slice recovery

This step determines informative depth slices of the whole im-
age by consolidating all the pixel-wise selections.

The informative depths d̂ are local maximas of the sum of l0
norm of R̂d(q) for all pixels. The evaluation function f(d) is
defined as

f(d) =
∑
q

∥∥∥R̂d(q)
∥∥∥
0
, (11)

and we find all local maxima of f(d) along d in the rage of in-
terest. Once the depths of interest are selected, we can set up a
small matrix Â. Finally, the appearances of informative slices are
recovered using the matrix Â using the least-squares approxima-
tion as

R(q) = Â+D(q) (12)

in the same manner to Eq. (9).

3.3 Experiments
We develop a coaxial projector-camera setup for realizing the

measurement setup as shown in Fig. 4. The coaxial setup has a
favorable property; correspondence between projector and cam-
era pixels becomes invariant with respect to depths. Unlike non-
coaxial settings, with which a illumination ray inside the translu-
cent object forms a line in the image coordinates [68], the coax-
ial setting allows us to easily separate the direct rays. We use
a LightCommander projector, which is a DMD projector devel-
opment kit by Texas Instruments, and use near infrared (NIR)
light for measurements. The lenses of both camera and projector
are set equivalent (Ai Micro-Nikkor 105mm f/2.8S) for making
the alignment easy. In the experiment, we use 18 variations of
checker patterns (3px to 20px with 1px interval), and shift the
pattern for one-third of square size for each pattern.

c⃝ 2017 Information Processing Society of Japan 5

Vol.2017-CVIM-207 No.38
2017/5/10



IPSJ SIG Technical Report

camera

beam splitter
projector

target object

a pair of same lenses

Fig. 4: Measurement setup. The coaxial system allows us to
maintain the correspondences between projector and camera pix-
els.
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Fig. 5: Experimental result of oil painting using the baseline
method. (a) Target scene. We draw a colored round tree on top
of the draft of spiny tree. (b) Inner layer (draft) of the painting.
(c) Painted scene. Red rectangle region is measured. (e) Nor-
mal photo using infrared light. (d) Selected PSFs. There are two
peaks in the plot, hence two corresponding PSFs are selected to
recover. (f, g) Results of our method. Layer of surface texture and
hidden drawing, respectively. Range of the intensities is adjusted
for visualization.

Experimental results
First, we use an oil painting as a target scene as shown in

Fig. 5(a), which has draft and surface pigment layers as depicted
in Figs. 5(b) and 5(c). By taking a standard photograph under the
near infrared light, we can only vaguely observe the draft layer
as shown in Fig. 5(e). Since it is the superposition of draft and
surface pigment layers, it naturally results in a blurry image. By
applying our method to this scene, two PSFs are estimated as de-
picted in Fig. 5(d) and two slices are recovered as in Figs. 5(f)

and 5(g). The upper surface layer corresponds to the surface pig-
ment layer. Because the yellow pigment is almost transparent in
the infrared wavelength, the corresponding painting regions be-
come dark in the surface slice. The lower layer shows the inner
layer, where the texture of the tree is clearly observed.
Shadow detection from recovered inner layers

The recovered appearance of inner layers suffers from shadows
caused by their upper layers. If the upper layer’s transmittance is
low, it casts shadow to the inner layer. Here we describe a simple
technique for dealing with shadows by post-processing. To sim-
plify the discussion, we assume that there are only two layers in
the scene, i.e., upper and inner layers.

The shadowed regions have two common properties: (1) The
shape of shadows observed in the inner slice is similar to the tex-
ture of upper slice. (2) The shadowed region becomes darker
due to low irradiance. Based on these observations, we define a
shadow likelihood measure Ps for identifying shadowed regions.

The similarity S of the texture shapes in the recovered slices
R1 and R2 can be obtained using the absolute value of their cross
correlation as

S (q) = |Cw,c(R1, R2)| , (13)

where Cw,c is the cross-correlation within a small window w cen-
tered at pixel location q, and values in R1 and R2 are normalized
in the range of [0, 1]. Using this similarity, the shadow likelihood
Ps is defined using the darkness of the shadowed region in R2 as

Ps(q) = S (q)(1−R2(q)). (14)

It yields a likelihood score for each pixel being in shadow, and by
a simple thresholding, a shadowed region can be determined.

Once the shadow regions are identified, we can use a shadow
removal technique. For example, the lost information within the
shadow region can be filled in by arbitrary image inpainting meth-
ods. In this paper, we use a patch-match based image inpainting
method [33].

Finally, we show a recovery and shadow removal result for a
three-layer scene. Figure 6(a) shows the target scene, where three
printed papers are overlaid. By applying our baseline method,
three slices with shadows are recovered. With shadow detection
and inpainting, we obtain the recovery of three layers as shown
in Figs. 6(b)-6(d) For the shadow detection of the third slice, we
compute the correlation with the original second slice which con-
tains the shadows casted by the top slice. The lowest layer only
retains a limited amount of high-frequency components hence its
recovery becomes slightly blurry. However, it shows the different
characteristics among layers, which indicates the separability of
the layers.

3.4 Discussions
This section described a method for recovering inner slices of

translucent objects based on multi-frequency pattern projection.
The proposed method is built upon the observation that the PSF
inside translucent objects varies according to the depth of slices.
Based on that, we have shown that inner radiance slices can be
recovered by estimating PSFs using varying pitches of projection
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(a) The scene (b) Uppermost slice

(c) Middle slice (d) Lowest slice

Fig. 6: The result of seeing through pages. (a) The target ob-
ject. Three printed thin papers are superposed. (b) Recovered
uppermost slice. Only the first page can be seen. (q) Recovered
second page. Shadows from the upper layer is inpainted. (d) Re-
covered third page. Shadows from the first and second layers are
inpainted.

patterns. We also developed a method for automatically selecting
informative slices via a sparse representation, i.e., determining
sparse coefficients that corresponds to radiance slices. We further
extended the method for dealing with inhomogeneous translucent
objects based on a combination of pixel-wise appearance recov-
ery and gradient-based image repairing. The effectiveness of the
proposed method are shown by several experiments on simulation
and real-world translucent objects.

4. Analysis of Temporally Spread Light and
Time-of-Flight Distortion

Material classification plays an important role for computer
vision applications, such as semantic segmentation and object
recognition. One of the major challenges in material classifica-
tion is that different materials may yield very similar appearance.
For example, artificial plastic fruits and real fruits confronting a
camera produce visually similar RGB images that are difficult to
distinguish. One of the possible strategies to distinguish similar
appearance is to use the optical responses of the target object such
as spatial, angular, and temporal spread of the incident light. Be-
cause different materials may have different optical responses due
to their own subsurface scattering and diffuse reflection proper-
ties, it is expected that a more reliable material classification can
be achieved using such optical cues on top of the RGB observa-
tions.

Recently, Heide et al. [23] have developed a method that re-
covers transient images from observations by a low-cost Time-of-
Flight (ToF) camera, which is originally designed for depth mea-
surement. There are other related studies that use ToF cameras for
recovering ultra-fast light propagation, e.g., impulse response, of
the scene [30], [49], [52] with some hardware modifications and
computation. Motivated by these previous approaches that ex-
ploit the temporal spread of light, we aim to classify materials
using an indirect temporal cue from an off-the-shelf ToF camera

(a) Mayonnaise bottle (b) Distorted depth

Mayonnaise
Paper label
Plastic cap
Undefined

(c) Classification (d) Corrected depth

Fig. 7: Depth distortion of a ToF camera. (a) A mayonnaise bot-
tle is measured by a Kinect. (b) Measured depth in a 3D view.
There is a gap in depth between the mayonnaise and label re-
gions. We use this depth distortion for material classification. (c)
Material segmentation result. The material label is assigned for
each pixel. (d) Application of material classification to depth cor-
rection. Depths are corrected based on the segmentation result
and the distortion database. Depth gaps among materials are cor-
rected and a faithful 3D shape is recovered.

without explicitly recovering impulse response.
We develop a material classification method based on a key

observation that the measured depth of a translucent object be-
comes greater than the actual depth as shown in Fig. 7(b), where
the depth gap between the mayonnaise and paper label regions is
obvious. We show that this depth distortion is caused by the time
delay due to subsurface scattering and varies along with both the
modulation frequency of ToF camera and the distance between
the target and the camera. Using the depth distortions as a feature
of the material, we propose an exemplar-based material classifi-
cation method.

The chief contributions of this section are twofold. First, we
demonstrate that the material classification is tractable by an off-
the-shelf ToF camera, e.g.., Xbox One Kinect. Our method uses
the distorted depth measurements as an indirect temporal cue for
material classification without explicitly recovering impulse re-
sponses; therefore it does not require any modifications of hard-
ware unlike [23], [30]. Second, we show how ToF measurements
are distorted inside materials and along with depths. By mov-
ing the target object along the depth direction, rich information
about the target can be obtained and it serves as important clue
for realizing material classification.

4.1 Time-of-Flight Observation
To begin with, we briefly review the measurements that are ob-

tained by a ToF camera. A correlation-based ToF camera illumi-
nates a scene by the amplitude modulated wave fω(t) and mea-
sures its attenuated amplitude and phase delay. From the phase
delay and the speed of light, the depth of the scene can be ob-
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tained.
In general, a scene can have the “multi-path” effect due to inter-

reflections and subsurface scattering, which degrade the depth es-
timation accuracy. Image formation models regarding the multi-
path effect have been well understood thanks to the previous
works [19], [23], [30]; hence, we briefly explain one of the mod-
els that we are going to use in this paper. Following a phasor rep-
resentation [19], amplitude and phase of the returned wave can be
represented by a single complex value c ∈ C, called phasor, gov-
erned by the modulation frequency ω. The measured amplitude
ãω ∈ R and depth d̃ω ∈ R of the ToF camera are obtained as{

d̃ω = c
4πω arg c(ω),

ãω = |c(ω)| ,
(15)

where the arg operator returns the angle of a complex phasor, and
c is the speed of light.

When the illumination wave is a sine wave, i.e., fω(t) =

sin(2πωt), the observed phasor can be represented as

c(ω) =

∫ ∞

0

r(t− τ)e−2πiωtdt, (16)

where τ(> 0) is the time of flight toward the surface of the object,
r(t) is the impulse response, or a point spread function (PSF), of
the object along with the time t, and i is the imaginary unit. The
impulse response is the summation of all possible paths ρ ∈ P;
therefore, r(t) can be written as

r(t) =

∫
P
rρδ(|ρ| − t)dρ, (17)

where rρ is the contribution of the path ρ, |ρ| is the time travelled
along the path ρ, δ(t) is the Dirac delta function, and t = 0 is the
time when the impulse light hits the surface of the object. Fig-
ure 8(b) illustrates a phasor representation of the multi-path ToF
observation. The time domain PSF r(t− τ) is expanded onto the
imaginary plane, and the phasor depicted by a red arrow is the
integration of expanded PSF over the angle. Because the nega-
tive domain of r(t) is zero, Eq. (16) expresses that ToF camera
measures the Fourier coefficients of the impulse response at the
frequency of the light modulation.
4.1.1 Frequency Dependent Depth Distortion

The principle of the ToF camera assumes that the impulse re-
sponse forms Dirac delta function as r(t) = βδ(t), where β is
the amplitude decay of modulated light. In this case, the mea-
sured depth d̃ω becomes

d̃ω =
c

4πω
arg

∫ ∞

0

βδ(t− τ)e−2πiωtdt︸ ︷︷ ︸
=2πωτ

=
cτ

2
= d, (18)

where d = cτ
2 is the ground truth depth of the object. Equa-

tion (18) represents that the accurate depth can be obtained re-
gardless of modulation frequency ω, if the impulse response of
the scene is exactly the Dirac delta.

In reality, almost all materials except for the perfect mirror sur-
face yield various shapes of impulse responses due to diffuse and
subsurface scattering [74]. When the target object exhibits a tem-
porally broad shape of the impulse response, band-pass charac-
teristic in the frequency domain becomes unique to the object.

t

(a) Sinusoidal wave

Re

t
Expand

Im

(b) Phasor representation

Re

Im

(c) Phasor at different depth

t

(d) Distorted wave

Re

Im

(e) Distorted unit ball

Re

Im

(f) Large distortion of depth

Fig. 8: Phasor representation of ToF observations. (a) Sinusoidal
illumination, (b) Time domain PSF is expanded to the imaginary
plane (orange). (c) When the object is placed at different depths,
the observation gets rotated but phase distortion remains the same
as (b). (d) Biased periodic illumination. This toy example adds
20% harmonics to the sinusoid for biasing. (e) The unit ball of the
phasor representation is distorted due to the biased illumination.
(f) The object is placed at the same depth as (c). The distortion of
the phase becomes different than (e) and (c).

Accordingly, ToF observation c(ω) can take an arbitrary value,
because c(ω) is a Fourier coefficient of the impulse response r(t)
at the frequency ω. In such a case, arg c(ω) does not necessarily
represent the correct phase 2πωτ , and as a result, the measured
depth d̃ω is distorted, and the distortion varies with the modula-
tion frequency ω. This frequency-dependent depth distortion is
one of our key observations, and our method exploits this prop-
erty for the goal of material classification.

The shift in the time domain corresponds to the shift of phase
in the Fourier domain:

F [r(t− τ)] = e−2πiωτF [r(t)]

= e−2πiωτ r̂(ω),

where F [·] is the Fourier transform and r̂(ω) is the Fourier trans-
form of the function r(t). Measured depth d̃ω can then be repre-
sented as
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d̃ω =
c

4πω
arg

(
e−2πiωτ r̂ (ω)

)
= d+

c

4πω
arg r̂(ω).

(19)

The second term c
4πω arg r̂(ω) is the depth distortion at fre-

quency ω. In Fig. 8(b), the depth distortion is illustrated as a
blue arrow.

While a single observation of depth distortion can be the same
among different materials by chance, multiple observations us-
ing varying modulation frequencies can be used for enriching the
measurement. Such multiple observations can be obtained with
negligible latency because the ToF measurement is much faster
than the ordinary video frame intervals [52].

However in practice, it is not straightforward to measure dis-
tortions using many different frequencies by an off-the-shelf ToF
camera. For example, Kinect has only three modulation frequen-
cies, and the frequencies cannot be easily changed; hence, only
three distortion measurements are practically available, which
may be too few for developing a reliable material classification
system. To increase the information about the material in an alter-
native and easy way, our method employs a strategy of changing
the distance between the camera and object. Now, we discuss the
depth-dependency of the depth distortion.
4.1.2 Depth Dependent Depth Distortion

When the target object is placed at a different depth d + ∆d,
r(t− τ) is shifted by ∆τ = 2∆d

c in the time domain. As a result,
the measured depth d̃′ω becomes

d̃′ω =
c

4πω
arg

(
e−2πiω(τ+∆τ)r̂ (ω)

)
= d+∆d+

c

4πω
arg r̂(ω).

(20)

The measured depth is just shifted by ∆d, and the depth distortion
c

4πω arg r̂(ω) remains the same as the one at the original position
as in Eq. (19). Figure 8(c) illustrates the depth distortion at a dif-
ferent depth in a phasor representation. The blue arrow, which
represents the depth distortion, is the same as that of the original
position as illustrated in Fig. 8(b).

So far, we have assumed that the illumination is a perfect
sinusoidal wave. In practice, because a high-frequency sinu-
soidal wave is difficult to generate, today’s ToF cameras emit
non-sinusoidal periodic waves that contain high-order harmon-
ics [16], [75]. When the illumination wave has harmonics com-
ponents as shown in Fig. 8(d), the ToF observation exhibits depth-
dependency as illustrated in Figs. 8(e) and 8(f). Let us sup-
pose that the distorted sinusoidal wave is biased as fω(t) =

bω(2πωt) sin(2πωt), where bω(2πωt) is a periodic bias of the
illumination wave due to harmonics. The observed phasor is then
written as

c(ω) =

∫ ∞

0

r(t− τ)bω(2πωt)e
−2πiωtdt. (21)

The above indicates that the observation c(ω) is the Fourier co-
efficient of r(t − τ)bω(2πωt), where the impulse response r(t)

is distorted by the bias bω(2πωt). Obviously, the biased impulse
response r(t− τ)bω(2πωt) varies along with τ , i.e., the observa-
tion varies along with the depth.

Usually, this depth-dependent variation is unwanted; therefore,

previous works attempted to eliminate it. For example, Su et
al. [63] remove the depth-dependent variation using a correla-
tion matrix. In contrast, we use the depth-dependent distortion
as an important cue for material classification as it contains rich
information about the target’s response.

4.2 Material Classification
Our method uses either or both of the frequency- and depth-

dependent depth distortions of ToF observations for the purpose
of material classification. For describing how to use the depth dis-
tortions for material classification, we begin with the case where
the actual depth is known and later describe a more general case
where such an assumption is eliminated.

When the target object is placed at a known depth location,
the depth distortion with respect to the actual depth is directly
measurable. Let us suppose that the target object is measured
by n(≥ 1) modulation frequencies and m(≥ 1) positions. The
absolute depth distortion aωi,dj

can be obtained by

aωi,dj
= dj − d̃ωi,j , (22)

where d̃ωi,j is the measured depth at the i-th modulation fre-
quency ωi (i ∈ {1, · · · , n}) and the j-th position (j ∈
{1, · · · ,m}), and dj is the actual depth at the j-th position. By
aligning these distortions, a mn-length vector v can be formed
as a feature vector of the object as

v =
[
aω1,d1

· · · aωn,dm

]T
. (23)

Because the actual depth of the target object is not generally
accessible, we develop a feature that does not require the knowl-
edge of the actual depth. Although we cannot directly obtain the
depth distortion in this case, the relative depth distortions among
multiple frequencies and/or multiple depths can be alternatively
used. When multiple modulation frequencies are available, i.e.,
n ≥ 2 case, the relative depth distortion a′ωi,dj

can be computed
by regarding the measurement of one of the modulation frequen-
cies, say the n-th modulation frequency, as the reference mea-
surement. The relative depth distortions can be obtained by tak-
ing differences from the reference measurement as

a′ωi,dj
= aωi,dj

− aωn,dj
= d̃ωn,j − d̃ωi,j , (24)

where i ranges from 1 to n− 1. We can then setup an m(n− 1)-
length vector v by aligning the relative depth distortions, and it
can be used as a feature vector for material classification. Al-
though the reference measurement d̃ωn,j may be distorted de-
pending on the material, the feature vector v encapsulating the
relative distortions conveys discriminative cues for classifying
materials.

In a similar manner, for the case where a single modulation
frequency and multiple depth locations is available, i.e., n = 1

and m ≥ 2, the relative depth distortions among depth locations
a′′ω1,dj

can be obtained by regarding the measurement of the m-th
depth position as the reference measurement as

a′′ω1,dj
= aω1,dj

− aω1,dm
= d̃ω1,m − d̃ω1,j +∆dj , (25)

where ∆dj is the amount of movement from the base position,
which should be measured.
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4.2.1 Classifier
We assume that we have a database of materials that consists

of the feature vectors measured using predefined modulation fre-
quencies and depth locations in a certain range beforehand. For
classification, the target object is measured with the full or partial
set of the predefined modulation frequencies and depth locations.
Once we obtain the feature vector of the target object as a query,
we use the material database as exemplar to look up the closest
material.

While any arbitrary classifiers can also be alternatively used,
it is desired for classifiers to have the following two properties.
First, since the feature vectors tends to be high-dimensional while
the number of materials in the database may be small, it is pre-
ferred the classifier uses a model with a small number of param-
eters, or non-parametric like our choice. Second, a capability of
handling missing elements in the feature vector is practically im-
portant, because the measurement is sometimes missing due to
specular reflection on the object surface, or becomes saturated
with near-distance reflectance.

For these reasons, we adopt a simple nearest neighbor classi-
fier, which assesses the Euclidean distance (ℓ2 norm). To deal
with the missing or uninformative saturated observations, we re-
move such elements in the feature vector when evaluating the dis-
tance. The distance ξp between the feature vector v of the target
object and the training vector vp of the object p in the dataset can
be computed as

ξp =
1

N

nm∑
k=0

{
0 vk = N/A

(vk − vpk)
2 otherwise,

(26)

where N is the number of valid elements, and vk and vpk are k-th
element of vectors v and vp, respectively. Using this distance,
we can classify the object by searching the nearest class p̂ as

p̂ = argmin
p

ξp.

Throughout the evaluation in this paper, we use this simple near-
est neighbor classifier to assess the effectiveness of the depth dis-
tortion features for material classification.

4.3 Experiments
We evaluate the proposed method by a ToF camera and a lin-

ear translation stage system as shown in Fig. 9. We use Microsoft
Kinect v2 for a ToF camera, which has three modulation frequen-
cies (n = 3), and a OptoSigma’s translation stage (SGSP46-
800). As the official Kinect API does not support an access to
depth measurements of each frequency, we have slightly altered
an open-source software libfreenect2*1 to obtain such data.

First, we measure the depth distortion data for many materials
and examine their differences across materials. The target object
is placed on a linear translation stage changing the depth from
600 mm to 1250 mm (m = 2600), and is measured several times
with changing the orientation of the object. The ground truth
depth is obtained from the position of the translation stage, which
is only used this test. Figure 10 shows the depth distortion of

*1 https://github.com/OpenKinect/libfreenect2

ToF camera (Kinect)

Translation stage

Target object

ToF camera (Kinect)

Translation stage

Target object

Fig. 9: Experimental setup. We use Kinect as a ToF camera, and
the target object is placed on a linear translation stage.

three materials; white acrylic board, polystyrene board, and opal
diffusion glass. They are visually similar object (white, planer,
and no texture) hence appearance based methods have difficulty
to distinguish these objects. On the other hand, depth distortions
of ToF observations show significant difference across materials
and retain consistency over measurement sessions.

Using this depth distortion data, we assess the accuracy of ma-
terial classification by the nearest neighbor classifier. The dataset
consists of 26 materials including metal, wood, plastic, fabric,
and so on as shown in Fig. 11, with 13 orientations for each ma-
terial to enable the classifier to deal with target objects with ar-
bitrary surface orientations. We evaluate the classification accu-
racy using three different features: Frequency-dependent distor-
tion, depth-dependent distortion, and both of them. Using the
feature with only frequency-dependent distortion (n = 3 and
m = 1), the accuracy is 57.4%. This low accuracy is due to
the limited availability of the number of frequency channels. Us-
ing only depth-dependent distortions (n = 1, m = 2600, and
using Eq. (25)), the accuracy is improved to 81.6%. Finally, with
both of frequency- and depth-dependent distortions (n = 3 and
m = 2600), the accuracy is further improved to 90.5%. The
confusion matrices are shown in Fig. 12. While many mate-
rials are correctly classified, some materials are miss-classified.
For example, plaster and paper, or expanded and rigid polyvinyl
chlorides have similar impulse responses due to similar scattering
properties; therefore they are sometimes miss-classified.
Feature variations w.r.t surface orientation

When the surface orientation of the target object varies, the
time-domain impulse response may also vary. To confirm the
effect of surface orientations, we measure a wooden board by
changing the orientation and assess the variation of feature vec-
tors with respect to varying orientations. Figure 13 shows the
variation of the nearest distance from the wood class in the fea-
ture space along with the surface orientation of the target object.
The red line indicates the upper-bound distance from the wood
class, under which the query feature vector is correctly classified
as “wood.” In other words, once the distance from the wood class
to the query feature goes beyond this upper-bound distance, it will
be misclassified. The feature is stable under around 70 degrees,
which indicate that the depth distortion feature is reliable for the
confronting surface in practice but may break down for a steep-
slanted surface, e.g., near the edges of a round-shape object.
Feature variations w.r.t. shape

When the shape of the target object varies, the time domain
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(a) White acrylic board (b) White polystyrene board (c) White diffusion glass

Fig. 10: Measured depth distortions using Kinect for three objects. The ground truth depth is obtained via a linear translation stage. The
top row shows photographs of the target objects. Measurements of the second and third rows are different in terms of surface orientation.
Depth distortion of each frequency varies along with the actual depth and material. Depth distortion is similar for the same material
regardless of the surface orientation, but largely different in different materials. This frequency- and depth-dependent depth distortion is
our key observation for material classification.

Aluminium Copper Ceramic Plaster

Paper Flock paper Wood Cork

MDF Bamboo Cardboard Cotton

Fake leather Leather Synthetic fiber Polystyrene

E-PVC R-PVC PolypropyleneSilicone

Coated acryl Acryl 3mm Acryl 2mm Acryl 1mm

Diffusion glass Polyurethane

Fig. 11: All materials of our database. All images are captured
by the same camera parameters e.g.ISO, f-number, shutter speed,
and focal length.

impulse response may also vary, especially for a concave shape
where significant inter-reflections occur. To confirm the effect of
the shape of the object, we set up a scene of folded cardboard

that can change the opening angle. We measure the folding edge
area of the cardboard with changing the opening angle from the
small angle (closed) via 180 degrees (flat) to large angle (pro-
truded) as shown in Fig. 14(a). The distances of feature vectors
between the folded and flat cardboards are plotted in the blue line
in Fig. 14(b). The red line represents the upper-bound of the flat
cardboard class, under which the target is regarded a flat card-
board, and a moderate robustness against the shape variation is
shown.
Material segmentation

Our method can be applied in a pixel-wise manner to achieve
material-based segmentation. Figure 15 shows a couple of exam-
ple of material segmentation. For the scene shown in Fig. 15(a),
all objects in the scene are white and the material classes are not
obvious in the RGB image. With our method, the material is clas-
sified for each pixel as shown in Fig. 15(b). For this application,
we use only frequency-dependent variations without the depth-
dependent ones, i.e., m = 1, because the alignment of the pixels
may become hard when the geometric relationship between the
camera and scene varies. As a result, the result appears to be a lit-
tle bit noisy, but it still shows faithful classification performance.
For this experiment, we used a reduced database containing only
four materials as the dimensionality of the feature vector is lim-
ited. Figure 15(c) shows another scene where wallets made of
genuine and fake leather are placed, and they are correctly classi-
fied as shown in Fig. 15(d).
Depth correction

Once materials are classified, the distorted depths can be cor-
rected for recovering an accurate 3D shape using the material
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Aluminum
Copper

Ceramic
Plaster
Paper

Flock paper
Natural wood

Cork
Medium density fiberboard

Bamboo
Cardboard

Cotton fabric
Fake leather

Leather
Synthetic fiber carpet

Polystyrene
Expanded polyvinyl chloride

Rigid polyvinyl chloride
Silicone

Polypropylene
Coated acrylic board

White acryl 3mm thickness
White acryl 2mm thickness
White acryl 1mm thickness

Opal diffusion glass
Polyurethane

0% 100%

(a) Frequency-dependent
distortion only

(b) Depth-dependent
distortion only

(c) Both of them

Fig. 12: Confusion matrix. Red indicates the higher value and it appears on the diagonal. (a) Classified result only using frequency-
dependent distortion. Accuracy is 57.4%. (b) Classified result only using depth-dependent distortion. Accuracy is 81.6%. (c) Classified
result using both of them. Overall accuracy is 90.5%.
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D
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Fig. 13: Feature vector variation over surface orientation. We
change the orientation of the target object, and plot the distance
of features along with the orientation. The feature is stable un-
der around 70 degrees, and shows large deviation at steep-slant
orientation. Red line indicates the upper-bound distance for the
correct classification.

(a) Scenes of the folded cardboard

D
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(b) Variation of feature distance between flat and folded cardboards

Fig. 14: Shape dependency of the feature vector. We measure
a cardboard with folding from 60 to 240 degrees. By folding
cardboard less than 180 degrees, the scene exhibits strong inter-
reflections.

database that contains the samples of distortions for all materials.
An example of the depth correction is shown in Fig. 7(a). Be-
cause mayonnaise has significant subsurface scattering, the mea-
sured depth of mayonnaise region is strongly distorted than that

Ceramics
Plastic (PP) Plastic (PS)
FabricFabric

Plastic (PP)

Ceramic

Pl
as

tic
 (P

S)

(a) The scene of white utensils (b) Classification result

Fake leather
Leather Copper
Flock paper

Leather Fake leather

Copper

Flock paper

(c) The scene of wallets (d) Classification result

Fig. 15: Material segmentation results. (a) All utensils are white
hence it is difficult to classify only with an RGB image. (b) The
result of our material classification. Although there are some esti-
mation error because of the pixel-wise process and only one depth
variation, the scene is much interpretable than the RGB image.
(c) Wallets made of genuine and fake leather and copper coins
are placed in the scene. (d) Material segmentation result.

of the label as shown in Fig. 7(b). Figure 7(c) shows our result
of material segmentation. Again, we do not change the depth of
the target; therefore, only frequency-dependent variation is used
(m = 1) with a limited database. Although some artifacts are
observable because of the limited amount of measurement and
steep surface orientations, mayonnaise and the label regions are
largely well separated. Using the segmentation result and depth
distortion database, a faithful 3D shape of the mayonnaise bot-
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tle is recovered as shown in Fig. 7(d). Compared to the original
shape, the depth discontinuity between mayonnaise and the label
regions is significantly reduced.
Real-time classification system

We develop a near real-time material classification system,
which can recognize the target material category by a hand-held
ToF camera. Using the partial matching described in Eq. (26),
our method outputs the result in near real-time even when ob-
servations at only a small number of depth locations m is avail-
able. By increasing the variation of depths by moving a target
object or the camera (increasing m), the classification accuracy is
gradually improved because richer information can be fed to the
classifier.
Thickness classification

Depth distortion is also useful for thickness estimation of the
optically thin material. For example, white acrylic boards are
optically thin so that the impulse response varies along with its
physical thickness. The thickness of the white acrylic board
can therefore be classified as shown at the near bottom part of
Fig. 12. Currently, our method is limited to classification of dif-
ferent thicknesses, but we are interested in turning the problem
into a regression problem for estimating the thickness.

4.4 Discussions
We have developed a material classification using an off-the-

shelf ToF camera. We show that the measured depth using a
ToF camera is distorted according to the time domain impulse
response of materials, and the distortion varies along with the
modulation frequency and the distance between the object and
the camera. We use the ToF depth distortion as a cue for material
classification, and developed a classification method.

Our method is based on a difference of time domain impulse re-
sponse among materials, hence we assume the impulse response
is the same for the same material. However, it may not be al-
ways true because complex shapes may cause varying impulse
response. We have assessed the variation of the designed feature
over varying shape and surface orientation and have shown the
robustness of the developed feature up to a limitation on the vari-
ations. Related to this problem, optically thin object’s impulse
response also varies along with the object’s thickness. On one
hand, this allows us to classify thickness of the target object, but
on the other hand, it indicates that a database with varying thick-
nesses is needed for correctly classifying materials of an object
that may have arbitrary thickness. This is one of the current limi-
tations of our method.

Another limitation is that the depth distortion measures, es-
pecially the depth-dependent distortion, is camera-dependent be-
cause the bias of illumination wave may be different across dif-
ferent devices. The development of the inter-device feature or
transferring the database for a different camera is an important
future work.

The amplitude of ToF observation also varies over different fre-
quencies and depths, hence it can be also used for analyzing the
scene. We did not use this cue in this paper, but we are interested
in investigating this respect for further improving the classifica-
tion accuracy.

5. Conclusion
We established model-based approaches for measuring translu-

cent and transparent objects using spatially and temporally modu-
lated light. Amplitude-modulated illumination techniques convey
rich information of the PSFs, and appropriate image processing
methods can recover informative images from degraded obser-
vations. We developed high-frequency illumination and image
processing methods based on the model of the spatial spread of
light. We also developed a method that processes ToF distortions
based on the model of the temporal spread of light.

Our aim was to avoid redundant measurement of PSFs. In-
stead we used the frequency responses of PSFs under amplitude-
modulated illumination at different frequencies. Specifically,
we analyzed the relationship between the spatial PSFs and the
frequencies of projection patterns, and proposed a model of
frequency- and depth-dependent ToF distortion for material clas-
sification. Based on calculations using the relationship between
the PSF and the frequency responses, we recovered invisible in-
formation from the scene.

5.1 Limitations and Future Work
Our techniques are designed for each specific purpose, limit-

ing the eligible target scenes. This is because our optical designs
and computational algorithms are based on the specialized light
transport models for the target applications. Different measure-
ment and computation techniques based on the model of target’s
light transport must be developed, to visualize different informa-
tion of the target object.

The exact cause of ToF distortions remains unclear. In the lim-
ited condition, ToF distortions are due to the material’s translu-
cency. ToF distortions may also be affected by the shape, motion,
density, temperature, and other object properties. Clarifying the
effects of these properties and establishing a framework for all
ToF distortions is an exciting topic for future research.

Proposed techniques include dealing with the behavior of light
transport separately. Concurrently analyzing the spatio-temporal
spread of light will provide more detailed and accurate analysis
of the scene. Moreover, angular spread, spectral spread, and co-
herence spread, including polarization and interference, should
also be included in future analysis. Developing a framework to
incorporate all optical cues is another interesting topic for future
research.
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