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Abstract: Training a deep neural network includes thousands of iterations and has significant computational
cost. Data parallelism over multiple GPUs has widely used in deep learning frameworks to accelerate the
training phase. However, data parallel training has high overhead due to the exchange of a large number of
learnable parameters among GPUs. In this paper, we propose a novel approach to optimizing the exchange
of parameters in data parallel training by 1) collecting gradients during the backward phase of an iteration
from the GPUs to the CPUs and 2) offloading the gradient accumulation from the GPUs to the CPUs.
Three neural networks: AlexNet, GoogLeNet-v1, and the VGGNet 16 layer network (model D) were trained
using ImageNet dataset on four Tesla P100 GPUs in a IBM POWER8 machine. The overhead of parameter
exchange per iteration was reduced from tens of milliseconds to tens of microseconds for all networks. We
achieved more than 90% weak scaling efficiency for all networks.

1. Introduction

Deep learning is an effective tool for solving complex prob-

lems such as ones in computer vision, speech recognition,

and natural language processing. For example, deep learn-

ing has been successfully used to recognize objects in digital

images. Deep learning blossomed in 2012 when a deep con-

volutional neural network (one with convolutional layers [1])

called AlexNet developed by Krizhevsky et al. [2] achieved

outstanding image classification results in the ILSVRC-2012

competition with a top-5 test error rate of 15.3%.

Training a deep neural network means optimizing the net-

work loss function by finding feasible values of learnable pa-

rameters called weights and biases. There are many such

optimization algorithms—for example, the stochastic gradi-

ent descent (SGD) algorithm with momentum [3], Adam [4],

and Adagrad [5]—and they usually update parameters iter-

atively. Such processes are called iterations. Each iteration

generally includes three phases. In the forward phase, the

value of the loss function is computed from the starting layer

to the ending layer of a network. In the backward phase, the

gradients with respect to the learnable parameters is com-

puted in the reverse direction (i.e., from the ending layer to

the starting layer). In the updateParameter phase, all the

parameters are updated using the gradients.
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Data parallelism is preferable for training convolutional

neural networks over big data due to its simplicity and the

fact that GPU memory is sufficient to store a deep neural

network. That is why most deep learning frameworks, such

as Caffe [6], TensorFlow [7], Torch [8], and the Computa-

tional Network Toolkit (CNTK) [9], are based on data par-

allelism. Furthermore, it is easy to extend data parallelism

on a single machine with multiple GPUs to a distributed en-

vironment (multiple machines) without heavy modifications.

For example, two distributed deep learning frameworks are

based on Caffe: CaffeOnSpark*1 and DeepSpark [10].

However, naive data parallelism does not scale well due

to communication overhead. The communication overhead

is significant, especially when training neural networks hav-

ing an enormous number of parameters with many GPUs.

This is because the greater the number of parameters and

the greater the number of GPUs, the greater the number of

gradients to be exchanged among GPUs.

In this paper, we propose using a novel approach to scaling

data parallelism. In our approach, gradients are collected

and accumulated on CPUs layer-by-layer during the back-

ward phase. The use of CPUs enables the power of advanced

processors to be used to accelerate training. While our ap-

proach does not affect the learning accuracy or the perfor-

mance of the forward and the backward computations on

the GPUs, it hides most of the communication overhead in

the data parallelism behind the backward phase of training.

Our approach is particularly effective for convolutional neu-

ral networks. The layers in convolutional neural networks

*1 CaffeOnSpark: https://github.com/yahoo/CaffeOnSpark
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usually start with convolutional layers having a small num-

ber of parameters and end with fully connected layers having

a large number of parameters. Since backward computations

are performed from the ending layer to the starting layer,

collection and accumulation of the gradients of the ending

layers will have been completed by the end of the backward

phase even though they take much time; furthermore, since

collecting and accumulating the gradients of starting layers

takes less time, they will be completed immediately after

the backward phase with a very low overhead.

The main contribution of this work is the design, im-

plementation, and analysis of an overlap mechanism that

hides most of the communication overhead in data paral-

lelism behind the backward phase of a training by utilizing

CPUs. Our design is a coarse-grained optimization in the

sense that it does not change the core of deep neural network

training (forward, backward, and updateParameter phases).

Hence, it can be applied to a wide range of deep learning

frameworks. We implemented our idea in the Caffe [6] deep

learning framework, which is widely used in computer vi-

sion and is compatible with new commits from the Caffe

GitHub community. Testing using the ImageNet dataset [11]

(ILSVRC2012 challenge, 1.2 millions images classified into

1000 categories) on an IBM POWER8 machine coupled with

four NVIDIA Tesla P100 GPUs and fast NVLinks between

the CPUs and GPUs [12] showed that the communication

overhead per learning iteration was reduced from tens of

milliseconds to tens of microseconds for three state-of-the-

art convolutional neural networks: AlexNet [2], GoogLeNet-

v1 [13], and the VGGNet 16 layer network (model D) (VG-

GNet hereafter) [14]. In particular, we achieved more than

90% weak scaling efficiency for all three networks when four

GPUs were used. For AlexNet in particular, our approach

reduced the learning time from 79 minutes to 62 minutes

with 50% accuracy. An interesting finding is that offload-

ing the gradient accumulation to the CPUs increased the

memory available on the GPUs, which faciliates training a

network with many datasets—e.g., VGGNet-16Layers can

be trained with using 10% more images.

This paper is organized as follows. Section 2 presents an

overview of Caffe, a state-of-the-art deep learning framework

in computer vision. Section 3 describes in detail our opti-

mization for making Caffe more scalable by minimizing com-

munication overhead. We focus on a single machine coupled

with multiple GPUs. Experiment results for a real dataset

(ImageNet [11]) are presented in Section 4. Related work

is discussed in Section 5, and key points are summarized in

Section 6.

2. Deep Learning Framework

2.1 Definition

A neural network is defined as a set of layers by using a

plaintext modeling language. Layers are organized in a di-

rected acyclic graph and each node in the graph represents

a layer. Though layers can be organized as a cyclic graph,

this paper only focuses on neural networks that are directed

Algorithm 1 Sequential training algorithm using SGD

Require: Neural network net , solver sv.

Ensure: Neural parameters are updated.

1: i← 0

2: while (i < sv .iteration numbers()) do

3: loss ← net.forward()

4: net.backward()

5: sv.updateParameter()

6: i← i+ 1

7: end while

acyclic graph. Connections between layers are automatically

inferred from their named inputs and outputs.

A layer is the essence of a neural network. It takes one

or more binary large objects (blobs) as input and returns

one or more blobs as output. Input blobs are called bottom

blobs and output blobs are called top blobs. (Blobs will be

discussed in more detail at the end of this section.) Inside

a layer, there are three important routines: setup, forward,

and backward. Setup is used to initialize the layer and its

connections once the model is initialized. Forward is used

to compute top blobs from bottom blobs. Backward is used

to compute the gradient with respect to the bottom input

given the gradient with respect to the top output. If a layer

has learnable parameters, the gradient with respect to the

parameters is computed and stored internally in order to

update the parameters.

A blob is a multi-dimensional array used as a data struc-

ture to provide seamless synchronization capability between

the CPUs and the GPUs. It serves as a unified memory

interface for storing data as well as communicating between

them. Blobs are used to hold data such as a batch of images,

model parameters, and derivations for optimization.

Figure 1 shows a simplified version of the AlexNet neural

network [2]. Only the layers with learnable parameters are

shown. They comprise five convolutional layers and three

fully connected layers. The convolutional layers are repre-

sented in the figure by rectangles with “CONV” as a pre-

fix. The fully connected layers are represented by rectangles

with “FC” as a prefix. “DATA” represents the input layer.

“LOSS” represents the ending layer, in which network loss

is computed. Blobs are represented by hexagons. Taking

the layer “CONV2” as an example, it accepts bottom blob

“conv1” as input and outputs top blob “conv2”.

2.2 Training neural networks

As explained in Introduction, training a deep neural net-

work consists of many iterations of three phases: forward,

backward, and updateParameter phases(see Algorithm 1).

In general, the network loss value is computed in the for-

ward phase, the gradients with respect to the learnable layer

parameters are computed in the backward phase, and the

parameters are updated in the updateParameter phase. Be-

cause the input dataset is usually too large to fit in the

memory of a single machine or GPU device, the training is

often done in multiple iterations, and a minibatch of data
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Fig. 1: AlexNet deep neural network

Algorithm 2 Forward algorithm in Caffe

Require: L network layers

Ensure: Network loss

1: act[0] ← net.data()

2: for i = 1 to L do

3: act[i] ← net.layers[i].forward(act[i− 1])

4: end for

5: loss ← net.loss(atv[L], label)

6: return loss

Algorithm 3 Backward algorithm in Caffe

Require: L activations of layers

Ensure: Layer gradients are computed

1: grads[L] ← net.backward(act[L])

2: for i = L− 1 to 1 do

3: grads[i] ← net.layers[i].backward(act[i], grads[i+ 1])

4: end for

records (e.g., images) is processed in each iteration.

Algorithm 2 corresponds to the forward phase of an iter-

ation. Global blob act is used to store intermediate layer

outputs (activations). First, a minibatch is read and trans-

formed by the layer DATA (line 1) and stored in the first

element of act. Then, forward computations are performed

layer-by-layer (lines 2–4). Finally, the loss of the network is

computed from the last activation (output) and the ground-

truth label (line 5).

Algorithm 3 corresponds to the backward phase of an it-

eration. Global blob grads is used to store intermediate

layer gradients. Backward computation is performed from

the top to the bottom. First, the gradients are computed

with respect to the output (line 1), and then they are com-

puted with respect to the rest of the network layer-by-layer

by using the chain-rule for gradients in mathematics.(lines

2–4).

The learnable parameters for the whole network (i.e, the

parameters for all layers) are updated using the act and

grads. Hyperparameters such as learning rate and momen-

tum are also used to update the parameters. Such hyperpa-

rameters together with the number of iterations are defined

in a solver. Some widely used solver algorithms include the

SGD algorithm with momentum [3], Adam [4], and Ada-

grad [5].

2.3 Data parallelism for training

Algorithm 4 Data parallel algorithm for training

Require: Neural network net; solver sv.

Ensure: Neural network with updated parameters.

1: i← 0

2: while (i < sv.iteration numbers()) do

3: broadcastParameters()

4: loss ← net.forward()

5: net.backward()

6: collectGradients()

7: if sv.is root() then

8: sv.updateParameter()

9: end if

10: i← i+ 1

11: end while

Data parallelism for neural network training on GPUs is

quite straightforward. Algorithm 4 shows the data parallel

training. At every iteration of training, each GPU trains

the network by using a different minibatch. Then, one GPU

(the root GPU) updates the parameters for the whole net-

work (lines 7–9). More specifically, at the beginning of an

iteration, the root GPU broadcasts its parameters to the

other GPUs to ensure that every GPU has the same net-

work parameters (line 3). The GPUs then perform their

forward and backward phases using different minibatches

to compute the gradients. The gradients are then collected

and accumulated (line 6) in the root GPU where a param-

eter update is done. The number of gradients is equal to

the number of learnable parameters because a gradient is

computed for each parameter. In Caffe, data transfers and

accumulations between GPUs are done in accordance with a

GPU tree representing the optimized physical links between

GPUs, which minimizes communication overhead.

Let us consider weak scaling of the data parallelism, in

which the number of GPUs is increased while the size of the

minibatch for each GPU remains unchanged. It is clear that

the times for the forward and backward phases remains ba-

sically unchanged. However, the times for broadcasting the

parameters and collecting the gradients increase with the

number of GPUs due to communication overhead between

GPUs. This results in poor scaling of the data parallelism.

3. Coarse-grained optimization of com-

munication

In this section, we explain our main idea—optimizing data
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Fig. 2: Comparison of Caffe and proposed data parallel model

Algorithm 5 Our data parallel algorithm for training

Require: Neural network net; solver sv.

Ensure: Neural network with updated parameters.

1: i← 0

2: broadcastParameters()

3: while (i < sv.iteration numbers()) do

4: loss ← net.forward()

5: net.backward ()

6: collectRemainingGradsFromCPU()

7: sv.updateParameter()

8: i← i+ 1

9: end while

parallel training on multiple GPUs. Our optimization is

coarse-grained in the sense that it is high level. We do

not change the training of the layer computations or change

solver algorithms. This means that every functionality re-

lated to deep learning (say, learning accuracy) is preserved.

Furthermore, such a coarse-grained optimization can be eas-

ily applied to different deep learning frameworks in general.

Algorithm 5 corresponds to our data parallel algorithm

for training. First, the GPUs synchronize their learnable

parameters (line 2) to ensure that every GPU learns with

the same network. For each training iteration, we only mod-

ify the backward phase (line 5). During the backward phase,

the layer output blobs (gradients) are collected and accumu-

lated on the CPUs, overlapping with the backward phase

on the GPUs (Section 3.1). The gradients accumulated on

CPUs are sent back to every GPU, also overlapping with

the backward phase (Section 3.2). At the end of the back-

ward phase, the remaining updated gradients are collected

from the CPUs to the GPUs to ensure that all the gradients

are sent to the GPUs (line 6). This may introduce some

overhead, but in practice the overhead is very low because

the ending layers in the backward phase are often convolu-

tional layers that have a small number of learnable parame-

ters (details are discussed in Section 4). After receiving the

gradients, the GPUs update their own parameters (line 7).

Because the GPUs train using the same learnable param-

eters and update the parameters with the same gradients

(received from the CPUs), every GPU holds the same learn-

able parameters after the update, and it can start a new

iteration without communicating with another GPUs.

Figure 2 illustrates the difference between the conventinal

Algorithm 6 Our backward propagation algorithm

Require: L activations of layers; u updated layer

Ensure: Layer gradients are computed

1: grads[L] ← net.backward(act[L])

2: u← L− 1

3: for i = L− 1 to 1 do

4: grads[i] ← net.layers[i].backward(act[i], grads[i+ 1])

5: MemcpyD2HAsync(p grads[i], grads[i], d2h stream)

6: accGradsCallback(i, d2h stream)

7: if (u ≥ 0) & (isUpdated(u)) then

8: MemcpyH2DAsync(grads[u], g grads[u], h2d stream)

9: u← u− 1

10: end if

11: end for

data parallel algorithm (left hand side) and our proposed

algorithm (right hand side). While the conventional data

parallel algorithm doesnot use CPUs for gradient accumula-

tion, our algorithm use the CPUs to accumulate the gradi-

ents layer-by-layer during the backward propagation (details

are discussed in the next section). In our algorithm, every

GPU does the same computation including forward com-

putation, backward computation, and parameter updating.

Hence, after parameter updating, there is no need to broad-

cast the updated parameter to every GPUs. This is only

necessary to be done once at the beginning of the program.

3.1 Collecting gradients during backward propa-

gation

In this section, we describe our backward algorithm for

collecting and accumulating layer gradients during backward

propagation. This algorithm is based on the observation

that the layer gradients remain unchanged during backward

propagation, so there is no need to postpone gradient accu-

mulation until the end. Furthermore, to avoid interrupting

the backward propagation on the GPUs, the gradients are

sent to the CPUs, where they are processed as well. The use

of different streams in the GPU programming means that

the computations on the CPUs and GPUs and the commu-

nications between them overlap completely, thereby mini-

mizing the communication overhead in data parallelism.

Algorithm 6 corresponds to our backward propagation al-

gorithm. To accumulate the gradients on the CPUs, two

parallel vectors of blobs need to be maintained on the CPUs:
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Algorithm 7 Gradient accumulation on CPUs

Require: Layer index i

1: idx ← criticals[i]→pop()

2: #pragma omp parallel for

3: for j = 0 to p grads[i].size() - 1 do

4: g grads[i][j] ← g grads[i][j] + p grads[i][j]

5: end for

6: idx ← idx + 1

7: criticals[i]→push(idx)

one for partial gradients and one for global gradients. On

each GPU, there is a blob for partial layer gradients (grads,

and there is a copy of it on the CPUs (p grads). The global

gradients are used to store the accumulation results over

partial gradients from different GPUs. Hence, the blobs for

partial gradients and global gradients have the same size.

The backward propagation runs as follows. After back-

ward propagation of layer i on a GPU has been completed,

the partial gradient of the layer is copied from the GPU to

the CPUs (line 5), and a callback function on the CPUs is

called to accumulate the gradients (line 6). Then, whether

layer u has been processed on the CPUs is checked. If it has

been processed, each GPU copies the global gradient of u on

the CPUs to the partial gradient of u on that GPU and up-

dates u (lines 7–10). The copy from the GPUs to the CPUs

and the callback are called with the same stream to ensure

the correct order between them. Because the copies from

the CPUs to the GPUs and from the GPUs to the CPUs

are asynchronous and belong to two different streams, they

completely overlap, and the next layer’s backward compu-

tation will start immediately upon completion of the copy

calls.

3.2 Accumulating gradients on CPUs

Algorithm 7 corresponds to the algorithm used to accu-

mulate gradients on the CPUs. For each GPU, there is a

CPU thread to handle the gradients for that GPU. Because

threads update to the same location in the global gradient

blob for the a particular layer, they need to be synchronized.

This is done by maintaining a global array of blocking queues

(criticals in Algorithm 7). There is one queue for each layer,

each queue always contains one integer value. At the begin-

ning of each iteration, these integer values are initialized to

0. One thread enters the critical section by obtaining the

element in the queue of the target layer (line 1). It then

accumulates the partial gradient for the global gradient by

using an OpenMP parallel loop. Finally, it updates the inte-

ger value and pushes it back to the queue. When all threads

have finished accumulating their partial gradients, the inte-

ger value in each queue is equal to the number of GPUs.

This integer value is also used in the function isUpdate(u)

in Algorithm 6 to check whether the gradients for layer u

have been processed on the CPUs.

4. Experimental results

In this section, we describe the experimental results for

Machine specifications

CPU
two 4GHz 10-core POWER8 processors
8 SMTs per core

CPU memory 512 GB
GPU 4 NVIDIA Tesla P100 GPUs
GPU memory 16 GB

Bandwidth

NVLink between GPUs and CPUs
80 GB/s duplex btwn GPUs 0 and 1
80 GB/s duplex btwn GPUs 2 and 3
80 GB/s duplex btwn CPUs and GPUs

Software versions

CUDA Toolkit 8.0.44
cuDNN 5.1.5 (the latest as of 30 Aug. 2016)
gcc 5.4.0
BVLC/Caffe commit b2982c7 (the latest as of 30 Aug. 2016)

Table 1: Machine specifications and software versions

Layers Parameters
(million)

Minibatch size / GPU

AlexNet 8 60 256
GoogLeNet 22 13 64
VGGNet 16 138 32

Table 2: Neural networks and experimental settings

the original version of Caffe [6]—hereafter, BVLC/Caffe to

distinguish it—and for the version with our idea applied

TRL/Caffe. A comparision shows that our approach re-

duces training time during training while preserving training

accuracy.

4.1 Experimental environment

The experiments were run on an IBM POWER8 ma-

chine [12] (see Table 1). The CUDA Toolkit is a develop-

ment environment for building GPU-accelerated programs,

and cuDNN is a state-of-the-art library for primitives used

in deep neural networks.

To determine the effect of our optimization, we measured

the training time and memory consumption during training,

using three neural networks widely used in computer vision:

AlexNet*2 [2], GoogLeNet*3 (Inception-v1) [13], and VG-

GNet*4 (model D) [14]. Table 2 shows the basic information

for these networks and the size of the minibatch (number of

images processed by one GPU in one training iteration) used

for training them. We investigated whether our optimiza-

tion changes the training results by examining the network

outputs after training. The training dataset was a subset of

ImageNet, which contains the 1000 categories and 1.2 mil-

lion images and was used for the ILSVRC2012 challenge [11].

There is a performance problem with BVLC/Caffe that

should be kept in mind. Briefly, although BVLC/Caffe

strictly follows a data parallel model for training on multi-

ple GPUs, in practice some of the GPUs are blocked during

training, especially in the convolutional layers, making the

training time longer than expected. This problem is due to

*2 AlexNet’s network definition: https://github.com/BVLC/

caffe/tree/master/models/bvlc_alexnet
*3 GoogLeNet’s network definition: https://github.com/BVLC/

caffe/tree/master/models/bvlc_googlenet
*4 VGGNet-16Layers-D’s network definition: https://gist.

github.com/ksimonyan/211839e770f7b538e2d8
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the use of an empty kernel to synchronize between the non-

default threads in the GPUs. To determine whether our

optimization is effective even when the GPUs are utilized

fully, we applied a pull request*5 that corrected the prob-

lem and used the corrected version—BVLC/Caffe2 —for

comparison; the implementation of TRL/Caffe is based on

BVLC/Caffe2. In what follows, to show that BVLC/Caffe2

is inherently faster than BVLC/Caffe, we describe the re-

sults of all three versions BVLC/Caffe, BVLC/Caffe2, and

TRL/Caffe.

To obtain exact results, for each training session, we ran

the program ten times and calculated the average execution

time. Each training session comprised 1000 training itera-

tions. The running time for an iteration was averaged on

the basis of 1000 iterations.

4.2 Results

4.2.1 Execution time for training

Figure 3 shows the execution times for one training itera-

tion with one, two, and four GPUs for AlexNet, GoogLeNet,

and VGGNet. The results indicate that TRL/Caffe is more

scalable than BVLC/Caffe and BVLC/Caffe2. When the

number of GPUs was one, the execution times in all frame-

works were almost the same for each network. When the

number of GPUs was four, TRL/Caffe was the fastest in

all networks—in particular, it was 1.19, 1.04, and 1.21 times

faster than BVLC/Caffe2 for AlexNet, GoogLeNet, and VG-

GNet, respectively. These results show that our approach

was the least effective for GoogLeNet and the most effec-

tive for VGGNet, respectively. In fact, the effectiveness of

our approach depends on the number of parameters for the

network: it makes the training of networks with more pa-

rameters faster because it distributes the computation for

collecting and accumulating gradients, the number of which

is the same as the number of parameters for any minibatch

size. The numbers of parameters in GoogLeNet and VG-

GNet are the least and the most, respectively, so we obtained

corresponding results.

We also conducted experiments using long-term runs to

investigate whether our approach is also effective for long-

term runs. The experiments are to to train AlexNet to

achieve 50% accuracy The three versions reached 50% ac-

curacy at around iteration 20, 000 (21, 000 iterations in to-

tal). TRL/Caffe took 62 minutes while BVLC/Caffe and

BVLC/Caffe2 take 94 and 79 minutes, respectively. This

result shows that TRL/Caffe was also the fastest in long-

term runs. Note that this training included a testing phase,

in which a testing iteration was simply a forward computa-

tion using validation data to verify network accuracy. After

1000 training iterations, there was one test comprising 1000

testing iterations. Hence, there were 21 tests in total, and

each test took about 14.7 seconds.

4.2.2 Weak scaling

Figure 4 shows the weak scaling efficiency for three neural

*5 PR#4386: https://github.com/BVLC/caffe/pull/4368

networks. For deep neural network training, weak scaling is

more important than strong scaling when the objective is to

train with as much data as possible. It is easy to see that

TRL/Caffe consistently had a high efficiency (≥ 90%). The

efficiencies of BVLC/Caffe and BVLC/Caffe2 dropped sub-

stantially when the number of GPUs was increased from 2

to 4.

4.2.3 Communication overhead

Reducing communication overhead is our objective, and

Table 3 shows the execution time by phase or AlexNet. We

ignore the BVLC/Caffe version because it has too much

overhead that is not caused by data parallelism itself. We

can see that, for BVLC/Caffe2, the broadcast at the be-

ginning took 20 ms and that the collection and accumula-

tion of gradients at the end of the backward phase took 23

ms. For TRL/Caffe, these computations are hidden behind

the backward phase, and the communication overhead is for

only the ending layer of the backward phase. These com-

putations took only 21.8µs in AlexNet. However, the time

for backward propagation in TRL/Caffe was longer than in

BVLC/Caffe2. This is reasonable because TRL/Caffe needs

to do some works to invoke data copy functions and callback

functions between layers during backward propagation. The

communication overheads of TRL/Caffe for GoogLeNet and

VGGNet were the same as the one in AlexNet (≈ 21.8µs).

Hence we do not show them here.

4.2.4 Time for accumulation on CPU

Table 4 shows the time for accumulation on the CPUs

for each layers during backward propagation and the com-

munication time between the GPUs and the CPU for

TRL/Caffe with AlexNet (its architecture is shown in Fig-

ure 1). The communication and accumulation overlapped

backward propagation. Note that in backward propagation,

processing is from the top layer (layer 8) to the bottom layer

(layer 1). It is clear that the accumulation time was much

shorter than the backward propagation time. Furthermore,

because the ending layer in backward propagation, layer 1,

has a small number of parameters, the overhead for sending

the gradients of this layer to the GPUs is very small (≈ 7µs).

4.2.5 Preservation of accuracy

As shown above, our approach preserves training accu-

racy while reducing computation time and GPU memory

usage. We confirmed this by examining the results of for-

ward computation for VGGNet during training; if the results

of BVLC/Caffe and TRL/Caffe are identical, their training

algorithms set the learnable parameters to the same values.

The reason why we use VGGNet is that it does not depend

on layers, such as dropout [16], with probabilistic behavior

and so the results of forward computation do not change as

long as the parameters have the same values. We ran 500

training iterations with BVLC/Caffe, BVLC/Caffe2, and

TRL/Caffe, checked the outputs of forward computation

once every 20 iterations, and observed that they were the

same among all Caffe versions. Even for AlexNet, for which

the initial learnable parameters were randomly generated,

we observed almost the same accuracy per iteration between

c© 2017 Information Processing Society of Japan 6
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(a) AlexNet (b) GoogLeNet (c) VGGNet

Fig. 3: Execution time for one training iteration for three neural networks

(a) AlexNet (b) GoogLeNet (c) VGGNet

Fig. 4: Weak scaling for one training iteration with respect to the number of GPUs for three neural networks.

BVLC/Caffe2 and TRL/Caffe.

5. Related work

There are several ways to parallelize deep neural net-

works: data parallelism, model parallelism, and pipeline

parallelism. Data parallelism is implemented in many frame-

works such as Google’s TensorFlow [7], Torch [8], and Mi-

crosoft’s CNTK [9]. It is mainly used for deep convolutional

neural networks. Model parallelism has been used for large-

scale unsupervised learning [17]. Many distributed frame-

works, such as MXNet [18], Mariana [19], COTS HPC sys-

tem [20], and DistBelief [21], etc., support both data paral-

lelism and model parallelism so that users can choose either

one to use. Krizhevsky proposed a hybrid parallelism [22],

in which model parallelism is applied to layers with a large

number of learnable parameters (e.g., fully connected lay-

ers), and data parallelism is applied to the ones with a small

number of learnable parameters (e.g., convolutional layers).

This hybrid parallelism scales better than model and data

parallelism when applied to modern convolutional neural

networks. In pipeline parallelism, each layer of a neural net-

work is executed on a different GPU and communicates its

activations to the next GPU [23]. Pipeline optimization is

used in Mariana [19]: a three-stage of pipeline for training,

consisting of data reading, data processing and neural net-

work training is used for training. Our mechanism should

also be effective for hybrid parallelism and pipeline paral-

lelism because both require collection and accumulation of

gradients on different GPUs.

A closer approach to ours is Poseidon [24], a distributed

deep learning framework, in which there is overlap be-

tween backward computation and communication between

distributed machines. Because communication overhead is

very high in a distributed environment, it is difficult to hide

communication overhead behind the backward phase. It can

be done with our approach because our target is training on

a single machine coupled with multiple GPUs.

6. Conclusion

Accelerating deep learning frameworks is important in de-

signing neural networks. In this paper, we have presented

a novel approach that combines the advantages of GPUs,

CPUs, and fast links between them to speed up data par-

allel training of deep neural networks. A key feature of our

approach is that it is coarse-grained in the sense that it is

independent of the forward and backward computation of

layers during training. Hence, it works well with the state-

of-the-art training techniques that are being actively devel-

oped by the Caffe community. Furthermore, our approach is

applicalbe to other data-parallelism-based frameworks. Ex-

perimental results for state-of-the-art deep neural networks

and the latest GPUs showed that the communication over-

head with our approach is very low (microsecond scale).

Our approach consistently achieved more than 90% weak

scaling efficiency for the three networks used, and it signif-

icantly reduced the training time for long-term runs with

large datasets (e.g., ImageNet).

References

[1] K. Fukushima, “Neocognitron: A Hierarchical Neural Net-
work Capable of Visual Pattern Recognition,” Neural Net-
works, vol. 1, no. 2, pp. 119–130, 1988.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

c© 2017 Information Processing Society of Japan 7

Vol.2017-HPC-159 No.8
2017/4/17



IPSJ SIG Technical Report

broadcast forward backward collectRemainingGradsFromCPU grad-acc update-param total time
BVLC/Caffe2 20 50.6 104 N/A 23 5.1 202.7
TRL/Caffe N/A 51 111 21.8µs N/A 5.1 167.1

Table 3: Execution time for phases in one iteration for AlexNet with four GPUs (in ms)

Layer 8 Layer 7 Layer 6 Layer 5 Layer 4 Layer 3 Layer 2 Layer 1
no. of parameters (million) 4 16.8 37.8 0.4 0.7 0.9 0.3 0.03
GPU-to-CPU copy (ms) 0.760 3.156 12.146 0.133 0.174 0.275 0.066 0.014
accumulation time on CPUs (ms) 1.263 4.441 13.074 0.285 0.465 0.578 0.155 0.018
CPU-to-GPU copy (ms) 1.786 2.568 5.538 0.064 0.095 0.123 0.041 0.007

Table 4: Communication time between GPUs and CPUs, and accumulation time on CPUs

Classification with Deep Convolutional Neural Networks,” in
International Conference on Neural Information Processing
Systems, 2012, pp. 1097–1105.

[3] N. Qian, “On the Momentum Term in Gradient Descent
Learning Algorithms,” Neural networks, vol. 12, no. 1, pp.
145–151, 1999.

[4] D. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” arXiv preprint arXiv:1412.6980, 2014.

[5] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization,”
Journal of Machine Learning Research, vol. 12, pp. 2121–
2159, Jul. 2011.

[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Con-
volutional Architecture for Fast Feature Embedding,” arXiv
preprint arXiv:1408.5093, 2014.

[7] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
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