
Analyses of metabolic system dynamics for time series data

of small samples

Daisuke Tominaga1,a) Hideo Kawaguchi2 Yoshimi Hori2 Tomohisa Hasunuma3

Chiaki Ogino4 Sachiyo Aburatani1

Abstract: Measuring concentrations of metabolites and estimating reaction rates of each reaction step consisting of

metabolic pathways are significant for the improvement of microorganisms such as production maximization of materi-

als. Although the reaction pathway must be identified for improvement, that is not easy. Numerous reaction steps have

been reported, but the actually activated reaction steps vary or change according to conditions. Furthermore, reaction

mechanisms and parameter values must be known to build mathematical models for dynamical analysis, but sufficient

information has not been published for many cases to date. In addition, experimental observations are expensive. A

new mathematical approach that is applicable to small sample data and which requires no detailed information of re-

actions is strongly needed. The S-system is one such model that can use smaller samples than other ODE models can.

We propose a simplified S-system to apply minimal quantities of samples for dynamic analysis of metabolic pathways.

We applied the model to the phenyl-lactate production pathway of Escherichia coli. The obtained model suggests that

actually activated reaction steps and feedback inhibitions in the pathway.

Keywords: Metabolic pathway, Pathway dynamics, Small sample, S-system, Michaelis-Menten

1. Introduction

1.1 Mathematical model for metabolic pathways

Artificial and industrial uses of microorganisms for material

production have a long history of over a thousand years. Re-

cently, genetic operations are applied widely to improve produc-

tion. Two generally considered approaches introduce enzymes

that have higher activities from other organisms or species and in-

troduce enzymes to realize metabolic pathways that the microor-

ganisms do not have naturally. The former is a popular method

because the operation is simpler and improvements are more pre-

dictable than the latter one. Conventional gene modifications us-

ing ultraviolet or other radiation are easy. They have been widely

applied in many industries. Nevertheless, the efficiency of the

improvements is quite low because gene modifications occur ac-

cidentally and uncontrollably. Progress is made serendipitously.

Therefore, currently, gene introduction is used in addition to con-

ventional means.

Target genes for modification are chosen based on informa-

tion including the reaction rates of respective reaction steps in

the metabolic pathway, and include production materials and sub-
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strates of microorganisms, as well as changes in reaction rates by

changes in concentrations of metabolites that consist of the path-

way. Bottleneck reaction steps and feedback loop inhibitions are

suggested by this information. Genes of enzymes of such reac-

tions are candidates for modification.

Rates of enzymic reactions are generally defined as the limit

of changes of compounds over time[5], [6]. Several formulae

are established for types of enzymic reactions, such as inhibition

schemes. The most popular is the Michaelis-Menten law[1], [2]

for a simple one-to-one enzymic reaction without inhibition and

catalysis by an enzyme. The reaction rate is modeled based on

the following reaction scheme:

S + E ⇋ ES → P + E (1)

in which S stands for the substrate of the reaction, E signifies the

enzyme, and P denotes the product. The bi-directional arrow rep-

resents a reversible reaction. The one-directional arrow signifies

a one-way reaction. The reaction rate is modeled as the following

ordinary differential equation (ODE).

d[P]

dt
=

Vmax[S ]

Km + [S ]
(2)

Therein, a pair of square brackets denotes concentration of the

compound, t is time, Vmax and Km are parameters that define the

kinetic character of the enzyme. All reaction steps in a metabolic

pathway can be represented by the ODE above if all reactions

are simple enzymic reactions and if parameter values are defined.

Then the pathway is modeled as simultaneous ODEs, or the ODE

system. Consequently, simulations can be done of concentration

changes of metabolites, stability analysis, steady state estimation,

1ⓒ 2017 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2017-BIO-49 No.7
2017/3/24



and bottleneck finding[12], [15].

Generally, finding parameter values is difficult and expensive

because it requires enzyme isolation and measurements of reac-

tion rates in test tubes (in vitro measurement). Although enzyme

information in literatures and public databases are growing[11],

these kinetic parameter values are not published or accumulated

sufficiently. An enzyme generally has different values of param-

eters for conditions and species of organisms. Moreover, param-

eter values differ generally between in vitro and in vivo (in living

cells) conditions[3], [4]. For most industrial applications, dynam-

ical analysis of pathways must be done without reaction scheme

information or kinetic parameter values.

1.2 Canonical ODE model

ODE systems in canonical forms are applicable because they

are independent of the molecular mechanism the reaction scheme.

The S-system[15] is one such canonical ODE model. For a reac-

tion scheme with two reactions as

X1 + X2 + . . . + Xl → P→ Xl+1 + Xl+2 + . . . + Xm (3)

where X1, X2 · · ·, and Xl and P respectively denote the substrates

and product of the first reaction, and P and Xl+1, · · · Xm respec-

tively denote the substrate and products of the second reaction,

the form of the S-system is represented as

d[P]

dt
= α

n∏

j=1

[X j]
g j − β

n∏

j=1

[X j]
h j (4)

where X j stands for the concentration of the metabolite j, g j sig-

nifies the kinetic parameter that represents the influence of X j to

the increasing processes of P, h j denotes the influence of X j to the

decreasing processes of P, and α and β represent rate constants.

The first term of the left hand of the equation represents the total

rate of increasing or composing processes of P. The second term

is the total rate of decreasing or decomposing processes. l and m

in the reaction (3) are numbers of composing and decomposing

processes of P respectively. All l and m compounds are suffixed

sequentially in eq. (4).

An S-system above is a simplified form of the general mass

action law[15], which can be presented as follows.

d[P]

dt
=

m∑

i=1

αi

n∏

j=1

[Xi j]
gi j (5)

Therein the i suffix denotes each composing and decomposing

reaction of P. Simplification for the S-system is summarizing

composing reactions of P into a term with α and decomposing

reactions into β term in eq. (4). Parameters g j and h j respec-

tively correspond to reaction orders in the mass action law, gi j,

and represent dependencies between the metabolites P and X j.

Consequently, they represent the network scheme of the reaction

pathway. No direct dependence exists between P and X j when g j

and h j in eq. (4) are equal to zero. X j suppresses production of P

when g j is negative.

Parameter values of g j, h j, α, and β can be estimated using

numerical optimization methods that find parameter values by

which the calculated time series of P by numerical integration of

eq. (4) matches the observed time series of the concentration of

P. Found values of g j and h j might be considered that represent

orders of each reaction between X j and P. However, parameter

optimization is the inverse problem[14] because several sets of

different parameter values are found generally for the given ob-

served time series data. Restrictions and limitations are effective

for difficulties such as fixing some g j to zero based on biological

knowledge.

1.3 Method for small sample

Numerical optimizations require a sufficient number of ob-

served samples. Smaller needs are better because observations

entail costs. A mathematical model with fewer parameters re-

quires fewer samples. We propose a canonical ODE model for

small samples by simplification of the second term of eq. (4), as

shown below.

d[P]

dt
= α

n∏

j=1

[X j]
g j − β[P]h. (6)

The decomposition rate of a compound depends only on its con-

centration in many biological processes like Michaelis-Menten

type reactions shown in eq. (2). We introduce this idea as an as-

sumption in eq. (6). Although the decomposition reactions are

often modeled as linear ODE like

d[P]

dt
= A exp(−[P]t),

our model includes a nonlinear decomposition term because we

suspect that the linear term might be too simple for the metabo-

lite in the complex biological network system that contains many

unkown reactions.

Resulting time series of the model by numerical integration

varies greatly by change of the initial value. Finding the best ini-

tial value is difficult because the observed initial value often has

errors, especially for small sample datasets. Therefore, we com-

pare the model and data in differential spaces. One can calculate

the differential of observed data by numerical differentiation and

evaluate parameter values by comparing the differential values

and values of eq. (6).

We evaluated the proposed method according to its applica-

tion to phenyl lactate production pathway from glucose by Es-

cherichia coli. For the pathway includes branches and feedback

loops, we estimated the actually activated reaction steps and ac-

tivities of feedback inhibitions that suggest strategies for produc-

tion improvement.

2. Method

First we built a pathway map based on information from the

literature and databases. Then we chose some metabolites in the

map as observation targets. The pathway map is reconstructed

with target metabolites only. Observations are measurements of

the target metabolite concentration at sampling time points with

equal intervals. The simplified S-system model is defined based

on the reconstructed pathway map by fixing some g j to zero if

the link to P from X j does not exist in the reconstructed pathway

map.

Observed time series data of the concentration of metabolites
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Fig. 1 Main pathway of phenyl lactate metabolism of Escherichia coli. Dashed line means that the

path consists of plural reactions. Solid one-directional line indicate a single enzymic reaction.

Bi-directional line indicate two reactions; forward and backword processes catalyzed by same or

different enzymes. Double lined circle indicate a selected target metabolite for observation.
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Fig. 2 Reconstructed pathway consists of observation target metabolites.
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Fig. 3 Observed time series of concentrations of target metabolites on six

time points. SA, PP, PA and PL are for Shikimic acid, Phenyl pyru-

vate, Phenylalanine and Phenyl lactate respectively.

are numerically differentiated. Optimal values of g j, h, α, and

β are sought using a nonlinear numerical optimization method

such as the genetic algorithm[14] or the differential evolution[13]

to minimize the difference between differentials of the observed

data by numerical differentiation and those of by eq. (6). Optimal

g j are considered. They represent activity of the reaction from X j

to P. Building the formula of eq. (6) and optimization of param-

eters are done for each target metabolite. We chose the phenyl

lactate production metabolic pathway[7], [8], [9], [10] (Fig. 1)

as the application target and chose six metabolites for the obser-

vation target. Then, we reconstructed the pathway only with the

observation target metabolites (Fig. 2). The number of sampling

time points is set to 6. Changes in concentration of metabolites

are observed in the log phase of cell growth (Fig. 3).

2.1 Pathway map construction and observation

The pathway from glucose to phenyl lactate consists roughly

of the glycolysis and the shikimic acid pathway. Phenyl lac-

tate is from phenyl pyruvate. Phenyl pyruvate is from pheny-

lalanine. Phenylalanine is from prephenic acid. Also, prephenic

acid is from chorismic acid in the shikimic acid pathway. We

chose phosphoenolpyruvate (PEP), erythrose 4-phosphate (E4P),

shikimic acid (SA), phenylalanine (PA), phenyl pyruvate (PP),

and phenyl lactate (PL) as the observation targets. Then we re-

constructed the pathway for these six metabolites (Fig. 2). The

pathway includes a branching point and two feedback loops.

2.2 ODE models for respective metabolite

Changes of concentration of metabolites in the reconstructed

pathway are modeled mathematically using the following ODE

models.

d[S A]

dt
= αSA[PEP]gSA,PEP [E4P]gSA,E4P − βSA[S A]hSA

d[PP]

dt
= αPP[S A]gPP,SA [PA]gPP,PA [PL]gPP,PL − βPP[PP]hPP

d[PA]

dt
= αPA[S A]gPL,SA [PP]gPA,PP − βPA[PA]hPA

d[PL]

dt
= αPL[PP]gPL,PP − βPL[PL]hPL (7)

Actually, PEP and E4P are not controlled by any other metabo-

lite. These are independent variables in the ODE system above.

Their respective dynamics are not modeled. Parameter gPP,S A in

the ODE system represents the summarized actual activity of the

reaction chain to phenyl pyruvate from shikimic acid, consisting

of several reaction steps. ga,b represents the rate of concentration

change of a is raised by b when the sign of ga,b is positive. A

negative value of ga,b means that b suppresses the composition

processes of a. Larger h signifies a higher rate of decomposi-

tion or consumption of the metabolite. Negative h means that the

metabolite suppresses decomposition itself. Therein, the α and β

are fixed rate coefficients. For each metabolite, activities of the

respective reaction step of composition of the metabolite can be

compared.

Time differential values of metabolite concentration are cal-
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Fig. 4 Estimated actual reaction activities on the reconstructed pathway.

Numerical values shown in the figure are g j in eq. (6) that represent

incoming links for each metabolite.
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Fig. 5 Values of differentials calculated from observed data by quadratic in-

terpolation and calculated from the optimized ODE model. Dashed

line shows differential values that calculated from the ODE model

with optimized parameters. Solid line is values of numerical differ-

entiation from observed data. SA, PP, PA and PL are for Shikimic

acid, Phenyl pyruvate, Phenylalanine and Phenyl lactate respectively.

culable with the ODE system by determining all parameter val-

ues. We introduce the differential evolution algorithm[13] to find

the parameter values that minimize differences between differen-

tial of concentration values calculated using the ODE system, as

shown below.

E =

T∑

t=1

(Dct − Dot) (8)

Therein, E stands for the summarized differences, Dct signifies

the calculated differentials by the ODE system with parameter

values at time point t, and Dot denotes the differential at time point

t of observed data. Dot is calculated using quadratic interpolation

of the observed data. E is minimized by searching parameter

values of g, h, α, and β for each metabolite. The optimization

algorithm introduces uniformly distributed random numbers for

initial values of searching parameter values.

3. Result

3.1 Model interpretation

The ODE system with found values of parameters is shown

below (Fig. 4).

d[S A]

dt
= 21.1[PEP]65.4[E4P]33.9

− 99.2[S A]−0.0674

d[PP]

dt
= 9.38[S A]−9.44[PA]8.77[PL]−0.390

− 57.2[PP]−1.95

d[PA]

dt
= 0.000223[S A]2.12[PP]−0.307 − 90.7[PA]0.207

d[PL]

dt
= 5.60[PP]1.13

− 1.51 × 10−6[PL]2.82

The ODE system suggests that the reaction chain to shikimic

acid from phosphoenolpyruvate is more active than that from ery-

throse 4-phosphate. Also, phenyl pyruvate is inhibited by feed-

back loops from both phenylalanine and phenyl lactate.

4. Discussion

4.1 Numerical Advantages of our Model

Metabolite concentration changes in time can be modeled by

the Michaelis-Menten law as shown below.

d[S A]

dt
=

VSA,PEP[PEP]

KSA,PEP + [PEP]
+

VSA,E4P[E4P]

KSA,E4P + [E4P]

−
VPP,SA[S A]

KPP,SA + [S A]
−

VPA,SA[S A]

KPA,SA + [S A]

d[PP]

dt
=

VPP,SA[S A]

KPP,SA + [S A]
+

VPP,PA[PA]

KPP,PA + [PA]
+

VPP,PL[PL]

KPP,PL + [PL]

−
VPA,PP[PP]

KPA,PP + [PP]
−

VPL,PP[PP]

KPL,PP + [PP]

d[PA]

dt
=

VPA,SA[S A]

KPA,SA + [S A]
+

VPA,PP[PP]

KPA,PP + [PP]
−

VPP,PA[PA]

KPP,PA + [PA]

d[PL]

dt
=

VPL,PP[PP]

KPL,PP + [PP]
−

VPP,PL[PL]

KPP,PL + [PL]

Numbers of parameters for each metabolite are 8 for shikimic

acid, 10 for phenyl pyruvate, 6 for phenylalanine, and 4 for phenyl

lactate because a model of a reaction step (single enzymic reac-

tion) has two parameters. Phenyl pyruvate cannot be modeled

with the six sampling data in this study. The total number of

parameters for the reconstructed pathway is 16 because some pa-

rameters are common (one of out-going reactions of shikimic acid

is an incoming reaction of phenyl pyruvate). Some numerical

optimization methods can search 16 parameters simultaneously.

However, this simultaneous non-linear numerical optmization is

not easy because the optimization difficulty increases explosively

with the growing number of parameters (‘curse of dimension’).

The S-system model (in the original form, not simplified) of

the reconstructed pathway is the following.

d[S A]

dt
= αSA[PEP]gSA,PEP [E4P]gSA,E4P − βSA[S A]gPP,SA+gPA,SA

d[PP]

dt
= αPP[S A]gPP,SA [PA]gPP,PA [PL]gPP,PL − βPP[PP]gPA,PP+gPL,PP

d[PA]

dt
= αPA[S A]gPL,SA [PP]gPA,PP − βPA[PA]gPP,PA

d[PL]

dt
= αPL[PP]gPL,PP − βPL[PL]gPP,PL

The numbers of S-system parameters for each metabolite are 6 for

shikimic acid, 7 for phenyl pyruvate, 5 for phenylalanine and 4 for

phenyl lactate: 16 in all because some parameters are common.

Phenyl pyruvate cannot be modeled even by the S-system. In our

proposed model, the corresponding numbers are 5, 6, 5, and 4:

20 in all. Total number of parameters are not small, however, it

is not a problem that the total parameters were more numerous

than those of the S-system because no parameters are common to

any two metabolites and parameters of a metabolite are optimized

independently of other metabolites. Our model has fewer param-

eters for each metabolite, which means that our model is more ro-

bust against error than the S-system and Michaelis-Menten mod-

els.
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Apparently, the optimization precision of parameters (model

fitness to the data) shown in Fig. 5 is sufficiently good, although

the model and data do not match perfectly because data generally

include errors that exist in probabilistic distributions. According

to biochemical engineering sense, the values of some parame-

ters shown in the Fig. 4 are large as the reaction order. per-

haps because of fluxes of pathways other than the reconstructed

pathway from which we omitted pathways other than the main

reaction chain, although glycolysis has many branches to other

sub-systems. On the other hand, parameter values for phenylala-

nine (PA in Fig. 4), phenyl pyruvate (PP), and phenyl lactate

(PL) might more reliable because reaction steps occurring natu-

rally around these metabolites may be almost same as those of

the reconstructed pathway.

Parameter values of the α term of a metabolite (of the incoming

link of a metabolite in the pathway map) are directly comparable.

Phenyl pyruvate has three parameters to compare, two of which

are negative and one of which is positive. Therefore, phenyl pyru-

vate, which is inhibited by shikimic acid and phenyl lactate (the

final product), is composed mainly from phenylalanine.

Two negative feed back loops exist: phenyl pyruvate is inhib-

ited by phenyl lactate; and phenylalanine is inhibited by phenyl

pyruvate. Although it can be readily imagined that inhibition of

feedback reactions raises the production of phenyl lactate, the

main inhibitory effect to phenyl pyruvate is by shikimic acid. Dis-

rupting one or some genes of reactions to phenyl pyruvate from

shikimic acid might improve phenyl lactate production.

Phenylalanine decreases gradually (Fig. 3), but it shows no

natural decomposition, represented as A exp(−Bt), that might be

caused by the incoming link from phenyl pyruvate.

In conclusion, results show that the reliability of the estimated

parameter values might not the best or even very high because the

reconstructed pathway and the ODE system are simplified. These

values suggest that target genes can be modified for industrial

improvement of production by microorganisms. This case study

presents several suggestions that are useful when constrained by

few samples or low observation costs.
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