
Vol. 43 No. SIG 6(HPS 5) IPSJ Transactions on High Performance Computing Systems Sep. 2002

Regular Paper

Multimedia Accelerator ACE:

A Practical Approach for Multimedia Applications

Chikako Nakanishi,† Isao Minematsu,† Hisakazu Sato,†

Kiyoshi Nakakimura,† Takahiko Arakawa† and Shuhei Iwade†

In a highly information-oriented society, demands for information appliances are rapidly
increasing, and high performance LSIs to meet this demand are being widely developed. In
particular, an LSI that has high performance both in control tasks and signal-processing
tasks is in high demand. There have been several approaches to address this issue, but
they each have their respective strengths and limitations. In this paper a novel approach
to solve conventional problems is proposed utilizing a DSP accelerator “ACE” that can be
implemented with a general-purpose MCU. It features high programmability so that it can
be adapted to various applications. Also it can be realized at low cost by limiting its usage
as an accelerator. Moreover, in order to boost the total performance of the MCU-ACE
system, independent parallel execution is exploited. In order to reduce the overhead of the
transactions between the cores, a double-buffered shared memory and a well thought out
simple interface are employed. A software development methodology to improve productivity
in multi-processor systems by unifying the development platforms is also proposed. For a
fair comparison with various architectures, an instruction set simulator and an instruction
scheduler were developed. Using benchmark programs in the audio-voice area with these tools,
the new approach performs 53–61% better than the conventional one. Thus the superiority
of the proposed approach over conventional approaches is proven.

1. Introduction

In the highly information-oriented society
that we are facing, information appliances are
increasing their number of functions rapidly
and becoming more and more complex1)∼3).
For example, digital handsets equipped with a
Java-enabled Web browser are becoming popu-
lar. Similarly, set-top-boxes incorporating such
functions as Voice-Over-IP (VoIP) for the In-
ternet telephones and digital audio decoding of
MPEG1 audio layer-3 (MP3) while maintaining
conventional user interface operations are also
growing in number.
As a result of such a rapid improvement in ap-

pliances with multimedia applications, the LSIs
used in these appliances need to meet various
requirements including higher performance and
a shorter development period. In particular,
since such applications need to operate com-
plicated control tasks and data-intensive signal
processing tasks at the same time, an LSI which
sustains high performance for both these kinds
of processing is in high demand.
One solution to this requirement might be to

adopt a general purpose micro-controller unit

† System LSI Development Center, Mitsubishi Elec-
tric Corporation

(MCU) that would deliver a high enough per-
formance to meet all these diverse operations.
However, since low cost and low power are
among the most critical requirements for these
applications, this MCU-centric solution is inap-
propriate in most cases. Another solution has
usually been adopted in which an ASIC is used
with an MCU or with a digital signal proces-
sor (DSP). However, since a quick turn around
time (TAT) is becoming more critical due to
both an even shorter product life cycle and on-
going specification changes in multimedia stan-
dards, this approach, which requires a consider-
ably long TAT, is becoming less attractive. As
a result, a new solution with high programma-
bility to meet this quick TAT requirement while
conforming to conventional demands is now re-
quired for multimedia applications.
Recently, many approaches to address this

problem have been proposed. They include an
MCU with enhanced DSP-like functions4)∼6),
an MCU combined with a DSP in a single
LSI 7), and mediaprocessors which feature novel
architectures such as very long instruction word
(VLIW) 8),9). These approaches, however, have
their respective strengths and limitations.
Aside from these possible solutions, we are in-

terested in still another approach that features
a combination of a general-purpose MCU and

230

Vol. 43 No. SIG 6(HPS 5) Multimedia Accelerator ACE 231

an application specific accelerator in order to
achieve a well-balanced performance between
control and signal processing tasks. We con-
sider that this approach has inherent advan-
tages over other approaches as follows. Firstly,
it is expected to achieve higher performance
with a smaller die area by limiting the usage
of the accelerator. Secondly, it can realize a
lower power dissipation since a dynamic power
management feature can easily be adopted for
the accelerator, which is separated from the ac-
companying MCU. Finally, since the accelera-
tor can be implemented with a developed MCU,
utilizing resources for the MCU can reduce the
development periods for its software tools and
LSI hardware. Overall, this approach should
provide the best tradeoff between high perfor-
mance, low cost, low power and a short TAT.
Our approach highlights a DSP accelera-

tor that commands high programmability and
high portability so as to be compatible with
a general-purpose MCU in order to be used
in many applications. This DSP accelerator,
which we have dubbed ACE, can be realized
with a small die area by limiting its usage only
for the accelerator accompanying an MCU and,
as a result, by removing the hardware only
needed for standalone usage. It also features ef-
ficient interfaces with MCUs in order to reduce
the overhead of transactions between MCU and
ACE. Also, by utilizing this inter-core interface,
we propose a solution to software development
problems that are generic in multi-core hard-
ware configurations.
In this work, we compare the characteristics

of conventional approaches, and describe the
motivation for our approach in Section 2. Next,
we describe the features of our hardware spec-
ification in Section 3, and some novel ideas to
simplify software development in Section 4. In
Section 5 we evaluate the performance of our
approach by comparing with some conventional
approaches, and we engage in a detailed discus-
sion regarding the comparison. Finally, we offer
our conclusions in Section 6.

2. Conventional Approaches

MCUs deliver high performance for control
processing while DSPs deliver high performance
for signal processing. In order to achieve high
performance for both processes at the same
time, several approaches are possible, as fol-
lows.

(1) MCU enhancing DSP functions
An MCU can introduce DSP-like instruc-
tions or mechanisms to compensate for the
lack of signal processing performance. Such
instructions include multiply-and-accumulate
(MAC), saturation, count-leading-zero’s and
so on. ARM9E 4) and MIPS “Jade” 6) are
among the examples. Conversely, a DSP
can introduce MCU-like mechanisms, such as
flexible input-output (I/O) functions, for the
corresponding reason.

(2) Combining MCU with DSP via a
bus
This approach combines an MCU with a DSP
by connecting then with a dedicated bus in-
terface, examples of this approach include
M*Core7). A derivative approach is to con-
nect an MCU and signal-processing unit in a
loosely coupled way10),11).

(3) Mediaprocessors
A newly developed mediaprocessor can be
another solution, and VLIW architecture is
likely to be adopted in these processors. One
example is SH-DSP 8) which combines an
MCU core with a DSP in a tightly coupled
way, the resulting core behaving as a sin-
gle VLIW processor. Another example is
D30V 9) which realizes both MCU and DSP
functions within one core using VLIW.
The first approach has an advantage over oth-

ers in that the development cost of such an LSI
is expected to be the lowest. However, this ap-
proach has the possible drawback of low effec-
tive performance since the optimization for an
existing core can be less efficient than a core
designed from scratch. Furthermore, introduc-
ing sophisticated mechanisms to overcome this
drawback might reduce the advantage of a low
development cost.
The second approach has an inherent ad-

vantage in that the hardware and software re-
sources of the original cores can basically be ap-
propriated. For example, the hardware devel-
opment period of an LSI in which the cores are
already implemented is expected to be small.
Also, some peripheral modules in such an LSI
can be shared by the cores, which results in
a small die size. In addition, since both cores
can execute instructions independently, the ef-
fective performance can be the best of these
approaches. However, this approach has se-
rious drawbacks in terms of software develop-
ment. Since the cores execute their respective
programs with different instruction sets, soft-

232 IPSJ Transactions on High Performance Computing Systems Sep. 2002

ware development including debugging and op-
timizing is by its nature fiendishly difficult. Al-
though a unified software development environ-
ment that handles both cores seamlessly would
solve these difficulties, this tool is still too im-
mature to be used in practice. Another serious
drawback of this approach is that the trans-
actions between the cores including inter-core
data transfer and synchronizing could generate
an adverse effect on performance to a consider-
able degree.
The third approach, on the other hand, has

an advantage over the second one in terms of
software development productivity. Firstly pro-
grammers need learn the instruction set and the
software tools of only a single core. Secondly,
the concurrent development of control and sig-
nal processing tasks can be realized, which re-
sult in simpler procedures in debugging and ver-
ifying. Since the importance of software de-
velopment is surpassing that of hardware de-
velopment in order to achieve a short TAT,
this advantage regarding software programming
cannot be overestimated in many applications.
However, this approach has the serious draw-
back of the high cost of hardware develop-
ment because it needs to develop larger hard-
ware than the others do. Moreover, a VLIW
approach, which consumes considerable hard-
ware resources in large register files or cross-bar
switches, may suffer from ineffective hardware
usage since its inherent parallelism cannot be
fully exploited in many applications. Therefore,
this approach might be the least effective one
in terms of hardware cost-performance as well
as power dissipation.
Of these three approaches, we consider that

the second one, which combines an MCU with
a DSP, is the most practical way to realize well-
balanced high performance of control and sig-
nal processing tasks at the same time. Specif-
ically, to enjoy the inherent advantage of its
small hardware size, a combination of a general-
purpose MCU and an application specific hard-
ware accelerator would be quite an attractive
derivative of the approach.
However, as stated above, the second ap-

proach has serious problems in interfacing the
cores both in the light of software development
productivity and of the transaction overhead.
In addition, if an application specific accelera-
tor were introduced in this approach, another
advantage of a quick TAT would be spoiled due
to the core development period.

In order to solve the problems of this ap-
proach as well as the possible drawbacks of in-
troducing an accelerator, we propose a solu-
tion featuring a special DSP accelerator. This
accelerator, known as ACE, realizes high pro-
grammability so that it can be adapted to var-
ious applications. Also, by removing the hard-
ware needed only for standalone usage, the ac-
celerator core can be realized with a small die
area. Moreover, a simple interface mechanism
is introduced to overcome the problem of inter-
core transactions that would degrade overall
performance. This inter-core interface mech-
anism also realizes a simple software develop-
ment environment, which will solve the inherent
problems of productivity in multi-core proces-
sor systems.
In the following sections, we describe the ba-

sic characteristics and software development en-
vironment using the ACE accelerator.

3. Architecture Overview

The design goal of the ACE accelerator is
to provide a portable DSP core with high pro-
grammability so that it can be used with any
MCU while maintaining the advantages of an
MCU-DSP combination. In order to achieve
this goal, we decided on two basic architectural
features before breaking down its specifications.
(1) The ACE core can be controlled from

an MCU via dedicated memory-mapped
registers so that the accompanying MCU
basically does not have to be modified.

(2) The ACE core is not equipped with flex-
ible operation for I/O or for memory
access in order to reduce hardware size
while maintaining high programmability

Moreover, we adopted the following ideas to
solve the problems of this approach discussed
in the previous section.
(1) In order to reduce the overhead of data

transfer, a shared memory placed be-
tween the cores is employed so that ex-
plicit data transfer is unnecessary.

(2) In order to facilitate transactions be-
tween the cores, the shared memory
is implemented as double-buffered, each
core can only access one side of this ex-
clusively.

(3) In order to reduce the control overhead
from the MCU, a few dedicated control
registers are employed to synchronize the
programs running on both cores.

(4) In order for MCU programmers to eas-

Vol. 43 No. SIG 6(HPS 5) Multimedia Accelerator ACE 233

ily control the ACE, the control func-
tions used in MCU programs written in
C are provided with simple application
programming interface (API). The func-
tions are implemented in a non-blocking
way with the result that the MCU pro-
gram does not have to waste cycles.

(5) In order to make the software develop-
ment environment of the cores as seam-
less as possible, ACE’s debugging tools
are incorporated into those of the MCU.
As a result, the concurrent development
of the programs on the MCU and the
ACE can be realized, which we expect
will result in higher productivity in pro-
gramming and debugging.

The double-buffered memory mechanism
with a few control registers that enables ex-
clusive access from the MCU and the ACE
leads to a natural solution of the race condition
problem, which is inherent in multi-processor
systems. In addition, such a mechanism en-
ables simple synchronization. These two fea-
tures greatly alleviate the difficulties in devel-
oping software for multiprocessor system while
maintaining high performance due to the par-
allel processing of the cores. In the following
subsections, we describe the overall hardware
structures and the details of the ACE.

3.1 Overall Hardware Structure
Figure 1 shows a typical hardware struc-

ture of an ACE combined with an MCU. The
ACE consists of a core, which includes a pro-
cessing unit, a data memory (XMEM), a coef-
ficient memory (YMEM), an instruction mem-
ory (IMEM), and a set of control registers. The
XMEM is shared by both cores and consists of a
pair of memory areas. The MCU and the ACE
can access only one of the memory spaces at a
time, exclusively. In addition, one of the mem-
ory spaces is mapped to the same address alter-
nately when accessible. In other words, XMEM
is implemented as double-buffered.
The ACE can access XMEM, YMEM and

IMEM with no-waiting. The XMEM and
YMEM are accessed using address registers in a
similar way as conventional DSPs. It should be
remarked here that only one side of the double-
buffered XMEM is accessible at a time.
On the other hand, the MCU can access all

the resource of ACE including XMEM, YMEM,
IMEM and all the control registers when ACE
is inactive. When ACE is active and executing
a program, the MCU can access only that one

Fig. 1 Typical hardware structure of ACE combined
with MCU.

side of XMEM selected for its exclusive access
and a control register indicating the status of
ACE. The resources of ACE can be accessed in
the same way as an ordinary memory-mapped
peripheral device by using general memory ac-
cess instructions such as load and store. The
details of the control registers are described in
the following subsections.

3.2 Shared Memory
As described above, the shared memory

XMEM consists of a pair of memory spaces,
each of which can be accessed only by the MCU
or the ACE respectively. In this section, we de-
scribe how this double-buffer memory is real-
ized as well as its behavior in detail.

Figure 2 shows an example of the mem-
ory map of ACE from MCU. Note that one
side of the double-buffered XMEM, which
is selected with one of the control registers
“BUFFER NUM”, is mapped onto a different
address in addition to its real address. As a re-
sult, when ACE is active, MCU can exclusively
access the selected side of XMEMwith the same
address, while ACE is exclusively accessing the
other side. This address is called the “shadow
address”. When ACE is inactive, on the other
hand, MCU can access both sides of XMEM
at their real address as well as one side at its
shadow address. The BUFFER NUM register
can be modified from MCU only when ACE is
inactive.
The behavior of the write access to the shared

memory XMEM when ACE is active is de-
scribed in more detail with Fig. 3. The address
data from MCU (MCU address) is transferred
to one of the two memory spaces of XMEM ac-
cording to buffer num which is the value of the
BUFFER NUM register. Conversely, the ad-
dress data from ACE (ACE address) is trans-
ferred to the other side of XMEM. Similarly,
data that is read out from one of the buffers
is transferred to either MCU or ACE according

234 IPSJ Transactions on High Performance Computing Systems Sep. 2002

Fig. 2 Example of memory map of ACE from MCU.

Fig. 3 Shared memory.

to BUFFER NUM. As a result, the MCU and
ACE can access one of the buffers exclusively.
For example, if BUFFER NUM is 0, the MCU
can access XMEM #0 at the shadow address.
As described earlier, BUFFER NUM can be

modified only by MCU when ACE is inactive.
This interlock mechanism avoids the inherent
race condition problem. Otherwise, MCU or
ACE may toggle the BUFFER NUM by mis-
take when the other core is accessing, or MCU
and ACE may try to access the same buffer.
We do not believe that this access methodology
will pose any disadvantages in software devel-
opment. It should be noted that when MCU
tries to modify the BUFFER NUM when ACE
is active, it has no effect; the program must

confirm whether ACE is active or not before it
tries to toggle the buffer.

3.3 Control Registers
In this section, the control registers of ACE

are listed with brief functional explanations.
• RESET CNT
Used for resetting ACE from MCU. ACE
cannot access this register.

• ACE CNT
Used for examining and changing the status
of ACE from MCU. MCU can modify this
register only when ACE is inactive, though
it can read the register anytime. By modi-
fying the register, MCU can change its sta-
tus to either ACTIVE or HALT. In HALT
status ACE ceases executing its program
and all the resources are accessible from
MCU. Though ACE cannot access the reg-
ister directly, it can change the value when
it falls into the HALT state by issuing a
“halt” instruction.

• PC CNT
Mirror register of PC in ACE. ACE starts
executing a program from the address spec-
ified in this register. MCU can modify this
register only when ACE is inactive.

• BUFFER NUM
Used to specify the buffer that MCU can
access exclusively as described in the pre-
vious subsection.

• BD CNT

Vol. 43 No. SIG 6(HPS 5) Multimedia Accelerator ACE 235

Table 1 ACE API.

Name Operation
reset ace Initializing and resetting

(setting RESET CNT)
start ace Start executing program

(setting PC CNT and ACE CNT)
check ace st Checking the status

(reading ACE CNT)
halt ace Halting

(setting ACE CNT)
set ace buffer Specifing buffer of shared memory

(setting BUFFER NUM)
req ace db Requesting debug interrupt

(setting DB CNT)

Request a debug interrupt from MCU.
When the request is accepted, ACE stops
executing the program and falls into the
DEBUG state.

The basic procedure of starting ACE from
MCU is explained as follows.
(1) MCU confirms whether ACE is in the

HALT state by examining ACE CNT.
(2) MCU sets the start address of the pro-

gram to PC CNT.
(3) MCU changes ACE to its ACTIVE state

by changing ACE CNT.
Note that ACE does not notify MCU when it

falls into the HALT state. In order to synchro-
nize the programs running on MCU and ACE,
MCU needs to check the status of ACE.

3.4 Control Functions (ACE API)
In order for software programmers to use the

control procedures from MCU described in the
previous section, the control functions are de-
fined with simple APIs. The number of such
control functions can be reduced for several
reasons. First, since ACE is equipped with a
hardware mechanism to interlock access to the
double-buffered XMEM, software does not need
to pay regard to race condition problems and a
function for such a purpose is not required. Sec-
ond, since XMEM, YMEM and IMEM can be
accessed from MCU like conventional memory,
APIs for transferring data are also unnecessary.
Consequently, the only functions required are
for resetting, starting, checking, halting, speci-
fying the buffer of the shared memory, and re-
questing debug interrupt.
Those functions are summarized in Table 1

with simple explanations regarding how they
are implemented in terms of the usage of the
control registers. The functions can be used
from C programs executed on MCU.

3.5 ACE Core
The ACE core has a similar functional struc-

Fig. 4 Block diagram of ACE core.

Table 2 ACE core.

Instruction word 16-bit
Data word 16-bit

(integer/fixed-point)
Multiply-and-accumulate 16 x 16 + 40-bit

(1 cycle throughput)
Clock frequency 100MHz
Performance 100MMAC/s
Design methodology Soft Macro
Process technology 0.18 um (CMOS)
Logic size 24K gates (approx.)

ture as conventional 16-bit fixed-point DSPs as
shown in Fig. 4. The address generation unit
comprises of four address registers (AR0-AR3),
four address modification registers (AMD0-
AMD3) and two adders, one of which supports
modulo addressing. It generates two addresses
for XMEM and YMEM concurrently. The data
arithmetic unit, on the other hand, has four
16-bit general purpose registers (R0-R3), four
16-bit temporary registers (TR0-TR3) and two
40-bit accumulators (A0-A1). It comprises of
a shifter (SFT) an ALU and a multiplier. The
multiplier product can be fed into the ALU.
A MAC operation is realized by pipelining the
multiplier and the ALU. Table 2 summarizes
the basic characteristics of the ACE core.

4. Software Development

Since our approach with ACE is similar to

236 IPSJ Transactions on High Performance Computing Systems Sep. 2002

the conventional one of an MCU combined with
a DSP, it has the same drawbacks in terms of
software development. Furthermore, since ACE
is expected to be used with a finer granular-
ity to its software structure in order to exploit
its advantage of less overhead in data trans-
fers and synchronization, software development
can be more elaborate, for example in balanc-
ing workload between the cores. As a result, it
is very important to assuage a possible increase
of problems in developing software for ACE.
In this section, we propose a methodology

to improve software productivity, especially in
debugging. First, we explain the software de-
velopment flow by comparing that of an MCU
alone with that of an MCU combined with a
DSP. We then propose a software toolchain
methodology for the concurrent development of
a program running on MCU and ACE.

4.1 Software Development Flow
Generally speaking, a program coded in a

high-level language like C results in a less effec-
tive implementation than one coded in assem-
bly language. Therefore, the intensive portions
in a program are coded in assembly to meet
this performance requirement. This tendency
is strengthened in the case of signal processing.
Figure 5 shows a typical flow in developing a
program that is executed on either an MCU or
a DSP alone where the intensive portion in a
program coded in assembly is called from C as
a function.
On the other hand, Fig. 6 illustrates a typi-

cal flow in programming for an MCU combined
with DSP. The differences from Fig. 5 are writ-
ten in italics. It is apparent this flow is much
more complicated with a longer feedback loop
than the previous one, especially when the soft-
ware development environment is not unified.
Since our approach with ACE is similar to

this multi-core approach, the software devel-
opment environment would resemble the one
shown in Fig. 6 if we were to implement it sim-
ply. Therefore, we decided to set one of the
design goals of ACE to be that its software de-
velopment would be as seamless as possible like
the one for single core approaches.
We will now explain the flow in developing

our software, shown in Fig. 7, by comparing
with Fig. 5. The differences from Fig. 5 are writ-
ten in italics. Similar procedures are taken un-
til the benchmarking step. The only major dif-
ference is that a discussion toward parallel ex-
ecution utilizing the two cores is added, i.e.,

Fig. 5 Software development flow of conventional
MCU.

whether the intensive portion is suitable for
parallel execution with ACE is discussed by es-
timating the performance gain. This is a very
important step in boosting performance with
this method. Another difference in the flow is
that in Fig. 7 interfacing using an API must
be considered, whereas Fig. 5 includes a dis-
cussion about interfacing with C. Since ACE
is equipped with the API functions explained
in the previous section, this disparity does not
complicate the flow with ACE. In addition,
since the software tools are integrated into those
of the MCU, as described in the next subsec-
tion, software development, especially in debug-
ging and evaluation, can be realized in a natural
way. Overall, the whole flow of software devel-
opment and its methodologies are less compli-
cated than those of the MCU combined with
DSP approach. It is also apparent that they
are as simple as those shown in Fig. 5. This
results in a shorter feedback loop in optimiz-
ing and balancing programs executed on both
cores.

4.2 Software Development Environ-
ment

Here, a methodology for software develop-
ment is proposed which utilizes a single debug-
ging and evaluating environment in order to
simplify these procedures. With this methodol-
ogy, programmers are able to concurrently, and
more easily, debug programs executed on both
cores with a single environment. This method-
ology will provide much higher software produc-

Vol. 43 No. SIG 6(HPS 5) Multimedia Accelerator ACE 237

Fig. 6 Software development flow of MCU combined with general-purpose DSP.

tivity due to the following reasons.
(1) You do not have to arrange a separate

testbench for ACE (DSP), since the in-
put data is provided and the results are
checked by a program executed on MCU
(or its simulator) on the fly.

(2) The same program can be used when
MCU emulates ACE and ACE hardware
is actually executing. A library imple-
menting API conceals the implementa-
tion of ACE.

(3) Balancing the workload is much simpli-
fied with a single tool.

Next, we describe the ACE emulator used in
this methodology. The ACE emulator is a soft-
ware module that emulates the total behavior
of the ACE including interfaces to MCU. It is
implemented in a library with a compatible in-
terface with APIs. It also has debugging func-
tions such as setting a breakpoint.
The ACE emulator starts executing a pro-

gram on executing an API function from the
address which has been specified with another
API. ACE returns its control to the applica-
tion program running on MCU when it stops

Fig. 7 Software development flow of MCU combined
with ACE.

executing a program by executing a “halt” in-
struction. Thus basically MCU does not stop

238 IPSJ Transactions on High Performance Computing Systems Sep. 2002

Fig. 8 Software development toolchain of MCU with ACE.

ACE while it is executing a program. This is
also the case when you use ACE hardware in-
stead of the emulator library. Note that this
restricted control flow does not cause possible
limitations in debugging.
By executing a program linked with the API

emulator library, the MCU program can debug
a program easily. Since the ACE emulator uti-
lizes the console I/O for operations, it is possi-
ble to examine the values of all the registers, the
contents of memory, set a breakpoint and exe-
cute in single step mode by issuing a command.
In addition, if this program were executed on
a debugger for the MCU, the concurrent de-
bugging of the programs running on both cores
could easily be realized. We believe that we are
able to provide an adequate debugging environ-
ment with this methodology.

Figure 8 is a schematic diagram of the soft-
ware development toolchain. The ACE pro-
gram coded in assembly is converted into a few
C header files in its memory images in XMEM,
YMEM and IMEM as well as some mapping in-
formation. A program running on MCU with
this ACE program includes these header files
when compiling and is linked with a proper API
library. In this way, the ACE program is in-
corporated in the MCU program. As for the
initialization of ACE, the MCU program copies
ACE program images to IMEM and coefficient
images to YMEM, by using memory access in-
structions. As with the ACE emulator, a mem-

ory image of an ACE program is included in its
memories IMEM, XMEM, and YMEM.

5. Evaluation

In this section, we try to evaluate the per-
formance of ACE by comparing it with con-
ventional approaches that have been described
in Section 2. In Section 5.1, we describe the
comparison platform as well as the architectural
models characterizing each approach. Then, we
give explanations of the benchmark programs
used in Section 5.2. Finally, we present the
comparison method, and discuss the results in
Section 5.3.

5.1 Evaluation Models and Platform
For a fair comparison of the processor archi-

tectures, we developed a platform in which the
number of parallel executions and the overhead
between the cores have the sole effect on the
performance. In order to conceal the effect of
the detailed instruction sets, we employed ACE
to represent a general-purpose DSP.
In order to compare the performance gain due

to several DSP enhancement approaches, a ref-
erence MCU should be so chosen that it has lit-
tle DSP functions in itself. We believe that the
early generations of the MIPS architecture are
well-suited for this purpose, and we employed a
reference MCU based on MIPS R3000 with one
multiplier added; we call this model the “basic
MCU” below. Also, we assume a perfect cache.
Next, we explain the architectural models used

Vol. 43 No. SIG 6(HPS 5) Multimedia Accelerator ACE 239

Table 3 Penalties and overhead.

Basic Model Model Model Model Model
MCU A C D B E

Branch 2 2 2 2 - -
Load 2 2 2 2 - -
Multiply 2 2 2 2 - -
Other Instructions 1 1 1 1 - -
Activate - - - - 20 5
Synchronize - - - - 12 6
Reset - - - - 10 5
Data transfer - - - - N∗ 0
Specifying a buffer - - - - - 6

* The data transfer overhead of model B is proportional to the transferred data word size N.

Table 4 Benchmark programs and their code sizes (Kbytes).

Program General description Original Optimized
Name MCU ACE
MP1 MPEG1 audio layer 1 decoding 8.6 5.1 (−3.5) 2.2
MP3 MPEG1 audio layer 3 decoding 19.7 13.6 (−6.1) 2.8

G.723.1 Voice codec 99.5 66.5 (−33.0) 8.8
autcor Auto-correlation 0.5 0.4 (−0.1) 0.06
fbital Bit manipulation 0.8 0.5 (−0.3) 0.08
FFT 128-point fast-fourier-transform 1.2 0.5 (−0.7) 0.15
viterb Viterbi-decoding 2.3 0.3 (−2.0) 0.19
conven Convolution encoding 0.7 0.4 (−0.3) 0.10

for the comparison.
Model A: MCU with DSP enhance-

ment (single-issue)
This model is a single-core approach where

some DSP functions are added to the basic
MCU as follows. It includes MAC, multi-
ply with shift, and a loop instruction. Also,
it has a saturation function, and auto incre-
ment/decrement addressing with load/store in-
structions. Two 32-bit registers can be used as
a single accumulator.

Model B: Multi-core
This is a model where a basic MCU and a

general-purpose DSP are connected in a loosely
coupled way. The cores do not have a shared
memory. The cores can execute programs inde-
pendently.

Model C: VLIW
This model is a four-way VLIW architecture

that has the same instruction set as the basic
MCU. The execution units include one multi-
plier, one arithmetic unit, two memory units,
one shifter and one branch unit. Since this
model is so defined that the combination of the
execution units realizes a MAC operation with
one-cycle throughput, it properly represents a
conventional VLIW approach.

Model D: MCU with DSP enhance-
ment (four-issue)
This model is a further enhancement over

model A. It has five heterogeneous execution

units, four of which can execute their respec-
tive instructions at a maximum. The execu-
tion units consist of one multiplier, one arith-
metic unit, one memory unit, one shifter, and
one branch unit. As with model C, this model
is so designed that it is able to realize a MAC
operation with one-cycle throughput.

Model E: ACE
This is a model where a basic MCU and a

general-purpose DSP (ACE) are combined as
described in Section 3.

Table 3 summarizes the penalties of the in-
struction groups as well as the overhead be-
tween the cores for each of the models.

5.2 Benchmark Programs
We employed several benchmark programs

with specific applications in mind, MPEG-1 au-
dio layer-1 and layer-3 (MP1 and MP3) are pop-
ular standards in the digital audio area, and
G.723.1 represents a voice-band application. In
addition, five small programs widely used in
many telecommunication applications are em-
ployed. All the benchmark programs were orig-
inally written in C. Table 4 summarizes the
benchmark programs with their original code
sizes when compiled with a MIPS C-compiler
for R3000 (cc Ver. 3.0) and code for MCU and
ACE after their respective intensive portions
have been transferred to ACE.
As for MP1 and MP3, the workloads of MCU

and ACE are balanced, and some optimizations

240 IPSJ Transactions on High Performance Computing Systems Sep. 2002

Fig. 9 Performance comparisons using audio-voice
applications.

have been done to the MCU program in order
to exploit the parallel executions of the cores.
As for G.723.1, the intensive portions are ex-
ecuted by ACE but the parallel executions of
the cores are not utilized. On the other hand,
five telecommunication benchmarks are totally
ported to ACE except for their respective top
routines.

5.3 Results and Discussion
We have developed a cycle-accurate instruc-

tion set simulator for all the models described in
the previous section. Also, we have developed
an instruction scheduler that post-processes an
assembler program generated by the MIPS C-
compiler to run on the simulator. This instruc-
tion scheduler analyzes the dependencies within
a basic block or within a function, and generates
a program that utilizes the function and inher-
ent parallelism of the target model. With this
scheduler, the programs are generated which
are executed on model A, model C, and model
D. On the other hand, programs executed on
ACE (DSP) are hand-coded in the assembly,
and they are used for models B and E.
The performances of the large benchmarks,

MP1, MP3, and G.723.1, are compared at the
necessary frequencies in Fig. 9 where a shorter
bar represents a better performance. On the
other hand, all the small benchmarks from
the telecommunications area are compared for
their relative performance to the basic MCU in
Fig. 10 where a longer bar represents a better
performance.
It is apparent from Fig. 9 that model E (ACE)

provides the best performance in all the three
benchmarks, followed by model B, model D,
model A and model C. Specifically, since MP1

Fig. 10 Performance comparisons using
telecommunication benchmarks.

and MP3 include an intensive filter using a
MAC, introducing the DSP function proved to
be very effective. Moreover, since model D pro-
vides better performance than model A, the ef-
fect of parallel execution is evident. On the
other hand, model E and model B provide bet-
ter performance than model D by 45–55%. This
result indicates that utilizing function-level par-
allel execution can be more effective than utiliz-
ing instruction-level parallel execution. A com-
parison between model B and model E gives
a noteworthy result in that model B requires
12–20% more cycles. This result provides the
insight that the overhead of inter-core trans-
actions has a considerable impact on the total
performance.
Since G.723.1 requires the saturation func-

tion very often, the basic MCU and model
C provide much worse performances than the
other models. We can thus conclude that these
approaches are not suitable for this application.
Furthermore, model B and model E which fea-
ture independent executions of the cores pro-
vide better performance than model A by 60–
61%, and model D by 53%. This result indi-
cates that the DSP functions added to models
A and D are insufficient to gain good perfor-
mance. Moreover, model E provides better re-
sults than model B by 0.6MHz, which is equiv-
alent to 29% of the optimized MCU workload.
Since the MCU is assumed to execute compli-
cated protocol processing, this difference may
generate a considerable difference in the overall
performance. This is another example where
the overhead of inter-core transactions has a
considerable impact on the MCU workload.
However the telecommunication benchmarks

Vol. 43 No. SIG 6(HPS 5) Multimedia Accelerator ACE 241

provide less evidence of the apparent superi-
ority of the B and E architectures. Model E
presents the best performance in autcor and
FFT, which contain intensive DSP operations.
On the other hand, model C and model D
give better results than model E in the other
benchmarks, which contain less DSP opera-
tions. Overall, the relative performances are
greatly dependent on the characteristics of a
program, and general architectural superiority
cannot be determined. In other words, in order
to select the proper processor architecture, it is
important to know in advance the characteris-
tics of the program.
Another result shown in Fig. 10 is that model

E presents a much better performance than
model B for the FFT benchmark whereas it
presents comparable performance for the other
benchmarks. This disparity can be accounted
for by the fact that the FFT involves the most
data transfer of all the benchmarks and, as a
result, the inter-core data transfer consumes a
majority of the execution cycles for model B.
This is still another example that indicates the
transaction overhead when using an MCU has
a strong impact on performance. In addition,
the results of comparing the two models implies
that data transfer overhead would be even more
conspicuous in the case of benchmarks where
DSP enhancements are effective in reducing the
computation cycle.
Finally, we can conclude from the results in

this section that the introduction of an applica-
tion specific hardware accelerator boosts perfor-
mance by utilizing parallel processing. Paral-
lel processing is more effectively exploited with
the help of the double-buffered shared memory
since both cores can execute programs more
independently. Moreover, it is evident that
an inter-core transaction causes a serious im-
pact on performance, and that smaller over-
heads in data transfer and in synchronization
assuage this effect considerably. Overall, we
have demonstrated the effectiveness of our ap-
proach in achieving higher performance.

6. Conclusion

In a highly information-oriented society, de-
mands for information appliances are rapidly
increasing, and high performance LSIs to meet
these demands are being widely developed. In
particular, an LSI that has high performance
both in control tasks and signal-processing
tasks is in high demand. In such applications

where low cost and low power are among the
most critical requirements, a general purpose
MCU that delivers a high enough performance
is inappropriate in most cases. A conventional
approach using ASIC is becoming less appro-
priate because its considerable TAT is crucial
in some applications. Several new approaches
have been proposed to address these problems,
but they each have their respective strengths
and limitations.
In this paper, we have proposed a novel ap-

proach to solve these problems utilizing a DSP
accelerator “ACE” that can be implemented
with any general-purpose MCU. It features high
programmability so that it can be adapted to
various applications. Also, it can be realized at
low cost by limiting its usage as an accelera-
tor. Moreover, in order to boost the total per-
formance of the MCU-ACE system, indepen-
dent parallel execution is exploited. In order
to reduce the overhead of the transactions be-
tween the cores, a double-buffered shared mem-
ory and a well thought out simple interface are
employed. We have also proposed a software de-
velopment methodology to improve productiv-
ity in multi-processor systems by unifying the
development platforms.
We have developed an instruction set simu-

lator and an instruction scheduler in order to
evaluate the performance of ACE by compar-
ing it with conventional approaches. The re-
sults using audio applications show that, when
independent parallel execution is exploited, the
MCU-ACE combination performs 45–55% bet-
ter than conventional approaches, where the
proposed interface between the cores accounts
for 12–20% in boosting performance. On the
other hand, the results using a voice-band ap-
plication show that, when sequential execution
is exploited, our approach performs 53–61%
better than the conventional ones, where the
proposed interface accounts for a 29% reduc-
tion of the required MCU operation frequency.
We can conclude from these results that the

introduction of a hardware accelerator that spe-
cializes in DSP functions greatly boosts perfor-
mance when utilizing independent parallel ex-
ecution. Another conclusion is that the pro-
posed interface contributes to considerable per-
formance gain by reducing the overhead of
transactions between the cores.
The ACE can be implemented with a logic

size as small as about 24 K gates, which is as-
sumed to be less than half of an ordinary 32-bit

242 IPSJ Transactions on High Performance Computing Systems Sep. 2002

MCU. Consequently, an excellent cost perfor-
mance can be realized by incorporating ACE
with an MCU. Moreover, since ACE is so de-
signed that it can be implemented with any
MCU without changes, this characteristic can
contribute to a short development period of a
silicon-on-chip. Another characteristic of being
an independent core is that it is easy to incor-
porate a dynamic power management feature.
In this paper, we have shown a superiority of

our approach in term of performance. In the fu-
ture, we are going to look at the overall power
dissipation as well as hardware sizes in detail.
At the same time, we are going to improve the
ACE core to be more compact in terms of logic
size and power dissipation. Moreover, in order
to be used in a wider range of applications, we
are planning further improvements in the archi-
tecture and the implementation; possible im-
provements include a combination of an MCU
with multiple ACEs and a more flexible and
reusable implementation.

References

1) Diefendorff, K. and Dubey, P.K.: How Multi-
media Workloads Will Change Processor De-
sign, IEEE Computer , Vol.30, No.9, pp.43–45
(1997).

2) Kozyrakis, C.E. and Patterson, D.A.: A
New Direction for Computer Architecture Re-
search, IEEE Computer , Vol.32, No.11, pp.24–
32 (1997).

3) Eyre, J. and Eier, J.: DSP Processors Hit the
Mainstream, IEEE Computer, Vol.31, No.8,
pp.51–59 (1998).

4) Yarlagadda, K.: Arm Refocuses DSP Effort,
Microprocessor Report, Vol.13, No.8, pp.11–13
(1999).

5) Yarlagadda, K.: Lexra Adds DSP Extensions,
Microprocessor Report, Vol.13, No.11, pp.19–21
(1999).

6) Halfhill, T.R.: Jade Enriches MIPS Embedded
Family, Microprocessor Report, Vol.13, No.7,
pp.18–21 (1999).

7) Scott, J., Lee, L.H., Arends, J. and Moyer,
B.: Designing the Low-Power M*Core Archi-
tecture, Proc. IEEE Power Driven Microar-
chitecture Workshop at ISCA98, pp.145–150,
IEEE (1998).

8) Turley, J.: Hitachi Adds FP, DSP Units to
SuperH Chips, Microprocessor Report, Vol.9,
No.16, pp.10–11 (1995).

9) Yoshida, T., et al.: A 2V 250MHz Multimedia
Processor, ISSCC Digest of Technical Papers,
pp.266–267 (1997).

10) Turley, J.: ARM Tunes Piccolo for DSP

Performance, Microprocessor Report , Vol.10,
No.15, pp.17–21 (1996).

11) Dolle, M. and Schlett, M.: A Cost-Effective
RISC/DSP Microprocessor for Embedded Sys-
tems, IEEE Micro, Vol.15, No.5, pp.32–40
(1995).

(Received January 25, 2002)
(Accepted May 9, 2002)

Chikako Nakanishi received
a B.S. degree from the Dept.
of Information and Computer
Sciences, Faculty of Engineer-
ing Science, Osaka University,
in 1988, and a Ph.D. degree in
Engineering Science from Osaka

University, in 2000. She joined Mitsubishi Elec-
tric Corporation in April 1988. Since then she
has been engaged in the research and develop-
ment of microprocessors and digital signal pro-
cessors. She is now a staff member of the system
LSI Development Center, Itami, Japan.

Isao Minematsu received
B.S. and M.S. degrees in Geo-
physics from Kyoto University,
Japan, in 1989 and 1991 re-
spectively. In 1991, he joined
Mitsubishi Electric Corporation,
where he has been engaged in

developing embedded software and micropro-
cessors. He is now a staff member of the Sys-
tem LSI Development Center in Itami, Japan.
Since 2001, he has doubled as a researcher at
Semiconductor Technology Academic Research
Center (STARC). He is a member of the IEEE-
CS. His research interests include digital signal
processor architectures and low-power SoC de-
signs.

Hisakazu Sato received B.S.
and M.S. degrees in Electrical
and Electronic Engineering from
Toyohashi University of Tech-
nology, Toyohashi, Japan, in
1986 and 1988, respectively. He
joined Mitsubishi Electric Cor-

poration in April 1988. Since then he has been
engaged in research and development of micro-
processors and digital signal processors. He is
currently a senior engineer of Design Group B
in the System LSI Design R&D Department,
System LSI Development Center.

Vol. 43 No. SIG 6(HPS 5) Multimedia Accelerator ACE 243

Kiyoshi Nakakimura was
born in Hyogo, Japan, in 1964.
He received B.S. and M.S. de-
grees in Instrumentation Engi-
neering from Keio University,
Kanagawa, Japan, in 1988 and
1990, respectively. He joined

Mitsubishi Electric Corporation in 1990, where
he has been engaged in the development of dig-
ital signal processors. He is now a staff member
of the system LSI Development Center, Itami,
Japan.

Takahiko Arakawa was born
in Kagawa, Japan, in 1958. He
received a B.E. degree in Electri-
cal Engineering from Hiroshima
University, Hiroshima, Japan,
in 1981 and a Dr.E. degree
in Electronic Engineering from

Tokushima Bunri University, Kagawa, Japan,
in 2000. In 1981 he joined the LSI Re-
search and Development Laboratory, Mitsu-
bishi Electric Corporation, Itami, Japan, where
he worked on the research and development of
high-performance semi-custom CMOS LSIs un-
til 1997. Since 1998, he has been engaged in
the research and development of system LSIs
and low power digital circuits in the System
LSI Development Center. His current works are
the research and development of digital signal
processors and SoC design methodology. He is
a member of the Institute of Electronics, Infor-
mation and Communication Engineers (IEICE)
of Japan.

Shuhei Iwade was born in
Osaka, Japan, in 1952. He re-
ceived B.S., M.S., and Ph.D. de-
grees in Physics from Osaka Uni-
versity in 1976, 1978, and 1982,
respectively. In 1978, he joined
the LSI Research and Develop-

ment Laboratory, Mitsubishi Electric Corpora-
tion, Hyogo, Japan. From 1978, he was engaged
in the design of high speed Gate Arrays, in-
frared image sensors and MOS analog circuits.
Since 1997, he has been engaged in the develop-
ment of high speed & low power processors and
circuits as a Department Manager of the Sys-
tem LSI Design R&D Department in the Sys-
tem LSI Development Center, Hyogo, Japan.
He is a member of the Institute of Electron-
ics, Information and Communication Engineers
(IEICE) of Japan.

