
IPSJ SIG Technical Report

Real-time caustics rendering in large marine environments

Killian Guerin1,a) Masao Izumi1,b)

Abstract: Simulating caustics is a challenging and computationally expensive task. This paper introduces a real-time
method to simulate caustics in large marine environments, depending on the surface producing these light effects.
Inspired by existing techniques, it tries to improve the quality without adding too much constraint on the GPU.
Caustics are first approximated using a lookup at the water surface’s informations. For a given underwater point, we
deduce a light strength coefficient by comparing a refraction ray with the global light’s direction.
Past techniques does the refraction ray computing by assuming the underwater surface is a plane. By modifying the
way we seek surface informations in our textures, we can generalize this technique to more complex surfaces. Then,
by refining formulas in our computing, we tend to improve the results.
Another aspect we added to this algorithm is the god rays generation. By using the caustic rendering method on sample
points projected unto a grid defined by planes, it is possible to have a stable volumetric alike rendering underwater.

1. Introduction
Caustics are fascinating light effects. Present in our everyday

life because of very reflective or refractive materials, it has a great
effect on how a scene will appear to us. Although this effect can
sometimes be very subtle, one can notice when it is absent from
an image, even if they cannot say what is missing. Caustics are
simply areas where rays of light are focused.

Simulating this effect in computer graphics is a necessity to
reach realistic images. The most comfortable way of simulating
this effect in computer graphics is to recompute the light path to
know where rays end after reflection or refraction. However, even
though the origin of this effect can be quite simple to understand,
it is really hard and expensive to do so and images can take a lot
of time to be computed.

Real-time techniques need heavy approximations to be able to
run at sufficient speed. By ignoring multi-bounces or trying to
minimize the number of samples, these algorithms are really sim-
ple mimics of what light should do. They sometimes even ignore
spatial data as we will see later. The aim here is to simulate caus-
tics in real-time for large environments. Even though we pro-
ceed by doing severe approximations for efficiency, we want to
include as much data as possible to respect the actual scene being
rendered.

In this paper we will first describe the phenomenon behind
caustics. It will allow to understand the idea behind the algo-
rithms used nowadays and we will present ours afterward. We
will then analyze the results obtained and discuss further possi-
bilities in the implementation.

1 Osaka Prefecture University
a) killian.guerin.92@gmail.com
b) izumi@las.osakafu-u.ac.jp

Fig. 1 Caustic’s origin

2. Phenomenon origin
2.1 Caustics

To understand this effect, let’s consider a ray of light coming
from the sun and entering the ocean. Water is translucent and will
allow light to pass. However, it has a different constitution from
our atmosphere and light will progress through it in a different
manner, with a different speed for instance. This change in speed
makes the light beam change its trajectory at the boundary of the
two materials. This is called refraction.

Caustics can be generated by such phenomenon. Water is not a
perfectly flat surface. There are disturbances on it, thus modify-
ing the refracted rays directions. Those rays can then concentrate
on some areas, rising the light strength there. Moreover, not all
light rays enter water. Some are also reflected, creating in the
same manner areas where concentrated light meet. Those areas
are what we call caustics. Figure 1 illustrates the effect. Red

1ⓒ 2017 Information Processing Society of Japan

Vol.2017-CG-166 No.6
2017/3/13



IPSJ SIG Technical Report

Fig. 2 A real caustics formation example

Fig. 3 Crepuscular rays example

rays are reflections whereas yellow ones are refractions. You can
notice the way they gather depending on water surface’s shape.

This effect can be noticed on image 2 these effects. It repre-
sents caustics created by the water on the sand beyond it. The
water surface’s complexity create the seemingly random shapes
of the caustics.

2.2 God rays
When light goes into a non-empty environment, it will be scat-

tered as it encounters the small particles inhabiting it. This will
give the feeling we can see the light ray, like when throwing sand
in front of a laser beam. However, there can be some objects cast-
ing shadows in this environment. If we imagine being in a forest,
pollen and such particles can make the light appear to our eyes.
But there will be trees casting shadows everywhere, giving the
feeling of having rays of light going around in the air.

The image 3 illustrates this effect in the forest scenery. Notice
how the trees are hiding the light, thus casting shadows not only
on the ground, but also in the air.

The same thing is happening in the water, but with a different
mechanism. Shadows are cast by the refractions. When focusing
beams on a place, some other areas are put in the shadows, thus
disturbing the uniformity of light distribution. This is how we can
have god rays in the water. Of course, you can also have objects
casting shadows in the water itself, adding to the effect.

3. Related works
Many researchers have been investigating caustics. Fascinat-

ing effect adding a lot to realism, it is however extremely hard and
time consuming to compute in a realistic way. We will however

Fig. 4 [1]’s technique logic

Fig. 5 A caustic map generated by [3]

focus on real-time techniques trying to compute environment de-
pendents caustics, and exclude ray-tracing or simple texture pro-
jections techniques.

Caustic rendering is done according to multiple techniques
compatible with different situations. Some of them focus on par-
ticular objects, other on global informations. But all use heavy
approximations or pre-computing in order to ensure speed in their
computations.

For instance, one technique try to compute beforehand the be-
havior light should have with an object. This information is stored
in spheres including the object to be reused later when projecting
the scene [1].

By computing beforehand how a directional light will behave
on a specific object, they can then use these informations to
project light once refracted and reflected on the scene being ren-
dered. Moreover, by having a sphere distribution like in the image
4, they can use interpolation to produce volumetric caustics.

However, once precomputed, it can only be used with the set-
tings used to produce the data. Although they can rotate the
spheres to cope with directional lights changing their facing di-
rections in some cases, the mesh cannot be distorted or animated.

Another technique produces a photon map by refracting the
light direction using the refractive objects vertex informations.
Then, as in shadow mapping, these informations are projected on
the scene to know which areas on screen are brighter than the
others [3].

This technique can be applied on animated mesh, as it can be
updated before caustic map projection. It can also adapt to light

2ⓒ 2017 Information Processing Society of Japan

Vol.2017-CG-166 No.6
2017/3/13



IPSJ SIG Technical Report

Fig. 6 Even if still work in progress, [4] reaches convincing results

Fig. 7 [3]’s object subdivision

settings changes. Being an image space technique like shadow
mapping, it suits very well to real-time rendering. However, it in-
herits all disadvantages shadow-mapping has : map textures size
quality dependence, aliasing and projection resolution.

Pushing further the similarity with shadow computing tech-
niques, [4] uses the shadow volume logic to add a volumetric side
to the caustic mapping technique. By extruding the silhouette and
making it thinner on the end, the volume generation allows to get
not only projections on neighboring objects, but also the light ef-
fect in the air.

In another approach, [2] tries to emulate a disco ball effect by
dividing the refractive or reflective casting surface.

Objects are subdivided so that each cell will be treated as a
facet of the disco ball. Each facet will be reflecting the light
source, and as such it will be possible to sum the contribution
of every object by averaging the facets reflections. To ensure re-
flection continuity, the cells also have some parameters like cur-
vature. This allow to compute sharper reflections without discon-
tinuities.

The results are encouraging, but this method is heavy. At the
time, it needed a lot of samples before getting convincing results.
However, the more samples, the slower it gets as its computa-
tional cost increases. On simple scenes they hardly reach 20fps,
and it could drop to 5fps. Although is was in 2003, those rates
were obtained when computing 400x400 images on a good GPU.

When talking about water, a lot of assumptions can be made
like in [5]. They consider the surface underwater as an horizontal
plane. Then, they strip the caustics rendering as being only done
by one ray, refracted by the surface above itself and compared to
the original light’s direction.

Fig. 8 [5]’s results

Fig. 9 How [6] pushes the logic

This technique makes some heavy assumptions making it
applicable only in a small number of cases. Moreover, as it
simplifies a lot the caustics logic, it is a more artistic approach
rather than a physically correct rendering. However, it is very
light to compute and reaches convincing results.

In order to be closer to physically correct techniques, [6] tries
to push further [5]’s method. The logic is the same, appart from
the fact that the aim is to sample the surface not only once, but
also consider neighboring positions. Caustics are then an average
of different contributions coming from different places.

By calculating the participation of one entire region, it tries
to improve the caustics computing logic. However, to get better
results one needs to increase the neighboring region’s size, thus
putting more load on the GPU. Although results are better, we
need more computations and it is especially intensive on texture
accesses. To avoid this, [6] computes the contribution over mul-
tiple passes to minimize the texture look-up number. This is a
choice to do as it then needs memory to store the temporary in-
formations computed by each pass.

4. Our implementation
Our method is inspired by current lightweight algorithms spe-

cialized for water rendering. The aim being to render large envi-
ronments, we need it to be fast to compute.

We wanted to be independent from geometry complexity. This
method acts in post-process by reconstructing pixels’ positions
and using informations stored by a standard deferred rendering
pipeline. By doing so, we can process the right amount of data
without having to manage level of detail stages. Moreover, as it is
a post-process method, it adapts to everything on screen without

3ⓒ 2017 Information Processing Society of Japan

Vol.2017-CG-166 No.6
2017/3/13



IPSJ SIG Technical Report

Fig. 10 We compute the ‘α’ coefficient and combine it with the ‘β’ one

Fig. 11 τ’s influence as it increases (from left to right, values are 5, 10, 30)

having to change anything in the standard scene rendering.
The method begins by considering one ray departing from the

point we want to light as in [5]. This ray goes in a straightforward
up direction, assuming the given point belongs to a plane. From
the water surface informations up this point, we refract the direc-
tion vector and compute the dot product of it with a perpendicular
x direction. This gives us a coefficient we will use to assign a light
strength factor to this point.

Along with this, we also compute the reflection ray coefficient
using the same surface informations and method. This newly gen-
erated ray will be incorporated in the formula. The idea behind
this is to consider one bounce the light could do on the material.
This simple component adds to the random side of the generated
caustics.

Considering the example 10, we compute the cosine of the an-
gle α to get an alignment ratio between the reference vector and
the refracted ray. It is also done for the reflection ray. These two
components are blended to get the final caustic coefficient.

However, we apply a filter to process our values. We define
a translation formula, to “tighten” the caustics generated by the
algorithm, described like this :

ω = e−τ×a2
(1)

Where ω is the final assigned caustic strength, τ is the factor
of tightening, and a our cosine computed beforehand, being the
refracted or reflected ones. τ should be positive. The higher τ is,
the more compressed will be our result.

Notice this exponential curve bell is centered on 0, meaning
the light coefficient attached will be 1 if the dot product is 0, and
0 if the product is 1. This is why we compare our rays with a
reference vector perpendicular to the incident ray, so that we can
measure the degree of divergence from the original ray according
to our formula.

This allows us to get more natural caustics, more compressed
even on calm waters, as we can notice on example 2.

Getting the water surface information is done using UV tri-
planar texture projection. This allows us to work on not-only
planar underwater surfaces, as we project the informations in 3D.
Complex shapes are possible with this technique.

Fig. 12 The idea behind tri-planar projection

As we work in world space by reconstructing a given pixel’s
position, we use this 3 dimensional (x, y and z) information to
sample the water surface textures. As these textures are defined
in 2 dimensions (u and v), we have to choose wisely which com-
ponent has to be ignored. Tri-planar projection uses the surface
normal to define which components are the most important.

Informations will be computed 3 times. One time using as (u,
v) the (x, y) of our position, and then two other times using (x, z)
and (y, z).

On the example 12, we understand why informations are com-
puted using these components alternatively. Each data will be
representative of one plane, one defined by (x, y), the other one
by (x, z), and the last one by (y, z). By using the normal assigned
to the surface point we want to process, we can know in which di-
rection it points, thus knowing which plane it faces the most. By
blending between the 3 informations according to this, we reach a
natural way of projecting informations on 3 dimensional surfaces.

By using this method, we lift a limitation of older similar algo-
rithms that were only compatible with planar surfaces, allowing
us to work with more natural and complex surfaces.

Our next step is to compute the crepuscular rays that can be
present in the water. For simplicity, their computing was done
using the presented caustic rendering method without tri-planar
UV projection. The aim was to sample n different positions along
the direction vector of one pixel, and sum up their light contribu-
tions obtained to average them later.

The challenging part here is to ensure continuity when the cam-
era moves. If we simply split the line between the pixel and the
seen surface, then when changing the position of the camera the
sampling points will move too, making the result differ as differ-
ent surface informations will be used. To avoid that we consider
the rays shape.

Indeed, the rays will be considered straight. By doing so, we
can imagine a grid of interleaved planes centered in the world.
Each plane will be disposed at different values on each axis, al-
lowing us to know our position in this imaginary grid.

The grid will consider only the x and z aligned planes to follow
the rays shape. Being snapped to world coordinates, it doesn’t
move with the camera, allowing each sampling position to be
constant on time.

4ⓒ 2017 Information Processing Society of Japan

Vol.2017-CG-166 No.6
2017/3/13



IPSJ SIG Technical Report

Fig. 13 The grid as imagined. Left is seen in 3D, right is from up

For a given pixel, the aim is to know on which plane the next
sampling point is. If we consider the x and z dimensions, by do-
ing simple computing, we can figure out which cell the camera is
in. It becomes easy to compute the next plane which will be hit
by our ray and deduce the intersection point coordinates.

We chose not to consider the grid as a set of cubes, but rather
as a set of planes crossing each other. This allows to simply re-
construct the grid and step into it from image space.

It is then possible to compute the sum of every coefficient and
divide it by the total distance done during the sampling process,
allowing to smooth the result. The smoothing goes further as we
also use the depth to fade the light strength. It simulates the out-
scattering part in a simple way. We also define a fading factor
computed according to the distance of one sample from the sur-
face. The closer, the less visible it should be to avoid a tiling
effect due to the grid’s nature. Here is the thought expressed as a
formula :

γ =

n∑
0
ρiωi

Dn
(2)

With γ being our pixel’s light factor, n the number of samples
taken, i the sample point being processed, ρ the participation co-
efficient based on the distance it is from the surface, ω the caus-
tic’s participation computed using our method, and Dn the total
distance crossed when advancing toward our sample points.

We also orient the ray along the light direction given. To do
so, we simply rotate the grid so that it has its up vector follow-
ing the light’s direction. By using a translation matrix to go from
the world’s coordinates to the grid’s rotated coordinates, we can
easily compute our values and retrieve the real sample position to
apply effects according to depth.

5. Results
Results were produced using DirectX11 on Windows. Mea-

sured times were taken on a MSI laptop under Windows 7, having
an Intel i7 CPU, a 8Go RAM and a Nvidia Geforce GTX960M.

5.1 Images
You can notice on image 14 the blending of only the caustics

compared to the original image. Then on figure 15, we blend only
the god rays to notice them easily. Finally, we show the whole ef-
fect compared to the image we were modifying in 16.

We can see how the effect enlighten the image, like normal
caustics would do in a real situation. Image 17 shows the total
result seen from another point of view underwater, whereas 18
shows the caustics as seen above water.

Fig. 14 A comparison when adding caustics

Fig. 15 A comparison when adding god rays

Fig. 16 The full comparison

Fig. 17 Underwater total effect

Fig. 18 The effect as seen from above the water

5.2 Time
Rendering times were taken using the DirectX11 GPU query

system’s capabilities. Time is measured in milliseconds.

5ⓒ 2017 Information Processing Society of Japan

Vol.2017-CG-166 No.6
2017/3/13



IPSJ SIG Technical Report

We took these times when having the worst case scenario. As
we have a post-process method, the number of pixels to proceed
can have an influence on the rendering time. We took images that
needed a whole frame processing, so that we had to process every
pixel in it.

Caustics Time (ms)
M1 1.5

Caustics rendering time is under 2ms. If we aim for 60fps, it
takes about 12% of the rendering time.

Sample Number Time (ms)
4 0.2
8 1.0

16 1.9
32 6.6

What we can see is that from 16 to 32 samples, we lose a lot in
performance. This may be due to the fact that we are hitting a
bound when accessing the textures for surface informations.

6. Future work
On this algorithm, we worked a lot on the shape of the caustics

rendered. We tried to improve their generation, but did not have
time to insert them into a more complex lighting system.

Future works could use shadow mapping techniques to im-
prove the rendered images’ quality. This could help insert the
caustics further into the scene they take place in.

Another point would be to improve the computing formula to
be closer to how light scatter in the water environment. This could
alleviate the need of having parameters describing the color and
strength of the caustics to improve results.

Another important point not taken into account are the caus-
tics projected on upper water surfaces due to the reflections. At
this time, we do not have complete ideas on how to tackle this
problem.

Performances could also be improved by changing the way we
fetch data. We are doing it without especially considering per-
formances by reconstructing for every point, every time and dy-
namically the informations. By being able to compute beforehand
some informations or improve the reconstructing method, it could
be possible to improve the rendering times.

7. Conclusion
Caustics are fascinating light effects. Due to the random path a

light can take, it focuses on particular zones, enlightening them.
By nature, it is really hard to compute correctly in a short time
and we have to make severe approximations as we did in our al-
gorithm.

We however tried to improve the number of cases in which this
kind of solution is acceptable by changing the way we seek water
surface informations. We also tried to add a new effect, using a
volumetric-like approach, to improve the visual quality. All these
computing are done keeping the scene shape in mind so that it
scales well with what is being seen. Another important point is
that we do this in a full post-process pass, allowing the algorithm
to be easily inserted into a pipeline.

To summarize our method’s functionalities :
• We increased the number of suitable situations for this kind

of algorithms by using tri-planar UV mapping.
• The caustic’s shapes randomness was improved by introduc-

ing a bounce in the light’s computation.
• Crepuscular rays are simulated using a static grid setting

when searching for sample points.
• All of this can be rendered for a large marine environment

even on standard consumer computers.
There is however still a lot to do to keep increasing the cor-

relation with the scene. Computing shadows, more complex re-
flections and scattering could help to closer the gap between the
current approximation and the real behavior.

References
[1] Budianto Tandianus, Henry Johan and Hock Soon Seah: Real-Time

Caustics in Dynamic Scenes with Multiple Directional Lights, En-
tertainment Computing - ICEC 2010, 9th International Conference,
Seoul, South Korea, September 8-11, 2010. Proceedings, Seoul, South
Korea, 2013.

[2] M. Wand and W. Straer: Real-time Caustics, EUROGRAPHICS, Uni-
versity of Tbingen, 2003.

[3] Musawir Shah and Sumanta Pattanaik: Caustics Mapping: An Image-
space Technique for Real-time Caustics School of Engineering and
Computer Science, 2007.

[4] Andrei Diakonov: Real-Time Caustics Rendering Institute of Mathe-
matical Modelling, Technical University of Denmark, 2009.

[5] Juan Guardado and Daniel Snchez-Crespo: Rendering Water Caustics
GPU Gems, Vol. 1, Nvidia, Universitat popeu Fabra and Novarama
Technology, 2007.

[6] Cem Yuksel and John Keyser, Fast Real-time Caustics From Height
Field, Texas A&M University, 2009.

6ⓒ 2017 Information Processing Society of Japan

Vol.2017-CG-166 No.6
2017/3/13


